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We derive the distribution of the product of two chi-squure variables when they are correlated 
through a bivariate chi-square distribution. The result is well known if the variables are 
independent. The cumulative distribution function of the distribution is also derived. Closed 
form expressions for raw moments and centered moments are obtained. The density function 
is graphed. The results are simply extended to the distribution of sample variances of 
bivariate normal distribution. Results match with the independent case in case coefficient of 
correlation vanishes.  

 
1. Introduction 
 
Let 1 2, , ( 2)NX X X N >  be two-dimensional independent normal random vectors with 
mean vector 1 2( , )X X X ′=  so that the sums of squares and cross product matrix is given by 

1
( )( )

N

j j
j

X X X X A
=

′− − =∑  which can be denoted by ( ), 1, 2; 1,2ikA a i k= = =   where 

2 , 1, ( 1, 2)ii ia ms m N i= = − =  and 12 1 2a mrs s= .  Also let ( )ikσΣ = , 1, 2;  1, 2i k= =  where 
2 2

11 1 22 2 12 1 2,  ,  σ σ σ σ σ ρσ σ= = =  with 1 20,  0σ σ> > . The quantity ρ  ( 1 1)ρ− < <  is  the 
product moment correlation coefficient between 1X  and 2X .  

 
The joint density function of 2 2

1 1/U mS σ=  and 2 2
2 2/V mS σ= , called the bivariate chi-square 

distribution,  was derived by Joarder (2009). The product moment correlation coefficient 
between  U and V can be calculated to be 2.ρ  For the estimation of correlation coefficient 
by modern techniques, we refer to Ahmed (1992).  In case the correlation coefficient 0ρ = , 
the density function of U and V  becomes that of the product of two independent chi-square 
variables each with m  degrees of freedom.   
 
The distribution of the product of two variables arises in many contexts. Certain cases in  
traditional portfolio selection models involve the distribution of the product of two variables. 
The best examples of this are in the case of investment in a number of different overseas 
markets. In portfolio diversification models (see, e.g., Grubel, 1968) not only are the prices of 
shares in local markets uncertain but also the exchange rates, and so the value of the portfolio 
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 2 
in domestic currency is related to a product of  random variables. Similarly,  in models of 
diversified production by multinationals (see e.g. Rugman 1979), there are local production 
uncertainty and exchange rate uncertainty, and so profits in home currency are again related 
to a product of random variables.. 
 
An entirely different example can be drawn from the econometric literature.  While 
forecasting from an estimated equation, Feldstein (1971),  pointed out that both the parameter 
and the value of the exogenous variable in the forecast period could be considered random 
variables. Hence the forecast was proportional to a product of random variables. 
 
Wells, Anderson and Cell (1962) derived the distribution of the product of two independent 
chi-square variables with degrees of freedom 1m  and 2m . Note that Springer (1979, 365) 
also derived the same but with some misprints.  
 
We derive the distribution of W UV= in Theorem 3.1 when 2 2

1 1/U mS σ=  and 
2 2
2 2/V mS σ= have a bivariate chi-square distribution with common degrees of freedom m .  

Our contribution is more general than Wells, Anderson and Cell (1962) or Springer (1979) in 
the sense of accommodating correlated chi-square variables U  and V . In case the variables 
are uncorrelated, Theorem 3.1 matches exactly with Wells, Anderson and Cell for 1 2m m= . 
The cumulative distribution function of W  is derived in Theorem 3.2.  Higher order raw 
moments, centered moments, and coefficient of skewness and kurtosis of W are derived in 
Section 4. The results are often simply extended to the distribution of sample variances of 
bivariate normal distribution. 
 
 
2.  The Bivariate Chi-Square Distribution 
 
Theorem 2.2 Let 2

1S  and 2
2S  be two sample variances based on a bivariate normal 

distribution as discussed in the introduction. Then 2 2
1 1/U mS σ=  and 2 2

2 2/V mS σ= have the 
following joint density function: 
 

( 2) / 2 2

0 12 2 / 2 2 2 2

( )  ( , ) exp  ; ,
2  ( / 2 )(1 ) 2 2 2 (2 2 )

m

m m
uv u v m uvf u v F
m

ρ
ρ ρ ρ

−   +
= −   Γ − − −   

             ( 2.1 ) 

 
where 1 1,ρ− < <  2m >  and 0 1(; ; )F b z is a generalized hypergeometric function. 
 
The random variables U  and V  are said to have a correlated bivariate chi-square 
distribution each with m  degrees of freedom,  if its density function is given by (2.1).   
 
In case 0ρ = , the density function of the joint probability distribution in (2.1), would be that 
of the product of two independent chi-square random variables.  
 
By a simple transformation in (2.1) we have the following corollary. 
 
Corollary 2.1 The joint density of  2

1S  and 2
2S  is given by 
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2 2 ( 2)/2 2 2
2 2 1 2 1 2
1 2 2 /2 2 2 2 2

1 2 1 2

2 2 2
1 2

0 1 2 2 2 2 2
1 2

( )( , )  exp
2 (1 ) ( / 2) 2 2

( )              ; ,
(2 2 )

m m

m

m

s s s sm mf s s
m

m s sF

σ σ ρ ρ σ σ

ρ
ρ σ σ

−     −
= +    − Γ −    

 
×  − 

          (2.2) 

 
where 1 2m N= − > , 1 1ρ− < <  and 0 1( ; )F a z is a generalized hypergeometric function.  
 
By integrating out v in (2.1), it can be easily checked that 2 2 2

1 1/ ~ mU mS σ χ= . Similarly, it 
can be proved that  2 2 2

2 2/ ~ mV mS σ χ= . Then by a simple transformation we have the 
following corollary. 
 
Corollary 2.2 Let 2

1S  and 2
2S  be two correlated chi-square variables with density function 

given by (3.2). Then 2 ( 1, 2)iS i =  has the density function 
 

/2 2 ( 2)/2 2
2

2 2

( )( )  exp ,    ( 1, 2),
2 ( / 2) 2

m m
i i

i i
i i

s msmg s i
mσ σ

−   −
= =   Γ   

              (2.3) 

 
where 1 2m N= − > .  
 
In case 2

1S  and 2
2S are independent, then the density function of   2

1S  and 2
2S would be  

 
2 2 ( 2)/2 2 2

2 2 1 2 1 2
1 2 2 2 2

1 2 1 2

( )( , )  exp ,
2 ( / 2) 2

m ms s s sm mf s s
mσ σ σ σ

−     −
= +    Γ    

                     (2.4) 

 
where 1 2.m N= − >  
 
 
3. Main Results 
 
Theorem 3.1 Let U and V be two correlated chi-square variables with density function given 
by  Theorem 2.1. Then the density function of   W UV=  is given by  
 

2 /2 ( 2)/2 2

0 0 11 2 2 2 2

(1 )( ) ;  ,
2  ( / 2) 1 2 (2 2 )

m m

W m
w w m wf w K F
m

ρ ρ
ρ ρ

− −

−

   −
=     Γ − −  

 0w >                         (3.1) 

 
where 2,  1 1m ρ> − < < , 0 1( )F x is a generalized hypergeometric function and 0 ( )K x is a 
modified Bessel function of the second kind (Gradshteyn and Ryzhik, 1994). 
 
Proof. Let 1 2( , ) ,  ( , ) ,y h u v u v w h u v u v= = + = = 1 1

1 2( , ), ( , )u h y w v h y w− −= =  in (2.1) so 
that the joint density function of Y and W is given by 



 4 
1 1 1 1

1 2 1 1 2 2( , ) ( ( , ), ( , )) | | ( ( , ), ( , )) | |f y w f h y w h y w J f h y w h y w J− − − −= +                                   (3.2) 

where  | |, ( 1, 2)iJ i =  is the Jacobian of transformation in the domain 1 {( , ), }D u v u v= >  and   

2 {( , ) : }D u v u v= <  respectively. In 1 {( , ) : }D u v u v= >  we have 22 4 ,u y y w= + −   

22 4v y y w= − −  so that  2 1/ 2( 4 )u v u v y w
y w w y

−∂ ∂ ∂ ∂
− = −

∂ ∂ ∂ ∂
 

yielding 2 1/ 2( , , ) ( 4 ) ,  2J u v y w y w y w−→ = − > . In 2 {( , ) : }D u v u v= < , we have 
2 2 2 4 ,2 4u y y w v y y w= − − = + −  and as above, it can be proved that  

2 1/ 2( 4 )u v u v y w
y w w y

−∂ ∂ ∂ ∂
− = − −

∂ ∂ ∂ ∂
 , 

so that the Jacobian of the transformation is ( ) 1/ 22| ( , , ) | 4 , 2 .J u v y w y w y w
−

→ = − >  
Then the joint probability density function of  Y and V  is given by  

( 2)/2 2 1/2
2 2

0 11 2 2 /2 2 2

 ( 4 ) exp
2 2

( , )  ; ,
2  ( / 2)(1 ) 2 (2 2 )

m

m m

yw y w
m wf y w F

m
ρ ρ

ρ ρ

− −

−

 −
−    − =  Γ − − 

                             (3.3) 

where 0,  2 ,  2w y w m> > > and 1 1ρ− < <  .  

 
By integrating out ,y  it follows from (3.3)  that 
 

2 /2 ( 2)/2 2

0 11 2 2 2

(1 )( ) ;  ( , ),
2  ( / 2) 2 (2 2 )

m m

W m
w m wf w F I w
m

ρ ρ ρ
ρ

− −

−

 −
=  Γ − 

 

where  

2 1/ 2
2

2

( , ) ( 4 ) exp
2 2w

yI w y w dyρ
ρ

∞
−  −

= −  − 
∫ . 

Substituting ,  2
2

y t dy w dt
w

= = , in the integral, we have  

2 1/2
2

1

0 2

( , ) ( 1) exp
1

            ,
1

t wI w t dt

wK

ρ
ρ

ρ

∞
−  

= −   − 
 

=   − 

∫
 

where ( )K xα  is the modified Bessel function of the second kind (Gradshteyn and Ryzhik, 
1994).   
 



 5 
Figure 1 in the Appendix 1 shows the graph of the density function (3.1) of the product of 
two chi-square variables for various values of ρ for 5m = . If  W is the product of two 
independent chi-square variables with degrees of freedom 1m  and 2m , then  

1 2

1 21 2

[( )/4] 1

( )/2[( )/2] 1
1 2

( ) ( ),               0
2 ( / 2) ( / 2)

m m

W m mm m
wf w K w w

m m

+ −

−+ −= >
Γ Γ

            (3.4)                                                                                 

(Wells, Anderson and Cell, 1962) where ( )K xα  is the modified Bessel function of the 
second kind (Gradshteyn and Ryzhik, 1994).  Note that Springer (1979, 365) derived the 
above but there is a misprint in the density function.  If 0ρ =  and 1 2m m m= =  in (4.4), it 
reduces to the joint density of the product of two independent chi-square variables each 
having m degrees of freedom. 
 
Corollary 3.1 Let  2

1S  and 2
2S   be two correlated variables with density function given by 

(2.2). Then the density function of   2 2
1 2W S S=   is given by  

( /2) 1 2

0 1 01 2 /2 2 2 2 2 2 2
1 2 1 2 1 2

( )( ) ;
2 (1 ) ( / 2)( ) 2 (2 2 ) (1 )

m m

W m m m
m w m m w m wf w F K

m
ρ

ρ σ σ ρ σ σ ρ σ σ

−

−

  
=     − Γ − −   

,          (3.5)  

where 0,w >   1 1ρ− < < , 2,m >  0 1( ; )F b z is a generalized hypergeometric function and  
( )K xα  is the modified Bessel function of the second kind (Gradshteyn and Ryzhik, 1994). 

 
Corollary 3.2 Let 2

1S  and 2
2S   be independent chi-square random variable with density 

functions given by (3.3). Then the density function of   2 2
1 2W S S=   is given by  

 

( 2)/2
01 2

1 2 1 2

 ( ) ,   
2  ( / 2)( )  

m
m

W m m
m mf w w K w

m σ σ σ σ
−

−

 
=  Γ  

                                                   (3.6) 

  
where 0,w >  and 2.m >  
 
Theorem 3.2 Let U and V have the joint chi-square distribution with density function given 
by (2.1). Then the cumulative distribution function (CDF) of W UV= is given by 
 

2 /2 2

1 2 2 20

(1 ) ( / 2)( ) ( ; , ),
2  ( / 2) (( ( / 2)) (2 2 ) !

m k

W m kk

mF w J k m
m k m k

ρ ρ ρ
ρ

−
∞

− =

− Γ
=

Γ Γ + −∑             (3.7) 

 
where 
 

( /2) 1
0 20

( ; , ) .
1

w m k y
J k m y K dyρ

ρ
+ −

 
=   − 
∫                 (3.8) 

 
with 2,m >   1 1,ρ− < <  0 1( ; )F b x is a generalied hypergeometric function and 0 ( )K x is a 
Bessel function of the second kind (Gradshteyn and Ryzhik, 1994).  
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Proof. The CDF of the distribution is given by 
 

0
( ) ( )

w

W WF w f y dy= ∫  

 
which can be written as 
 

2 /2

1 2

(1 )( ) ( ; , ),
2  ( / 2)

m

W mF w I w m
m

ρ ρ
−

−

−
=

Γ
 

 
where 

( /2)
2

0 1 2 2
1

0 20
;

2 (2 2 )
( ; , )  .

1
w m m yF

y
I w m y K dyρ

ρ
ρ

ρ
−

 
=   

 
 − − 

∫  

 
 
By expanding the hypergeometric function, the above integral can be written as 
 

2

2 20

( / 2)( ; , ) ( ; , )
(( ( / 2)) (2 2 ) !

k

kk

mI w m J k m
k m k

ρρ ρ
ρ

∞

=

Γ
=

Γ + −∑               (3.9) 

 
where 

( /2) 1
0 20

( ; , ) .
1

w m k y
J k m y K dyρ

ρ
+ −

 
=   − 
∫              (3.10) 

 
The integral is evaluated in Appendix 2. 
 
Corollary 3.3 Let U and V be distributed as independent chi-square variables each having 
m  degrees of freedom. Then the cumulative distribution function of W UV= is given by 
 

1 2

1( ) ( ; ),     0,
2  ( / 2)W mF w I w m w

m−= >
Γ

           (3.11) 

 
where 2,m >  
 

( )( /2) 1
00

( ; )  ,
w mI w m y K y dy−= ∫                                             (3.12) 

 
and ( )0K x is a modified Bessel function of the second kind (Gradshteyn and Ryzhik, 1994). 
 
In case 2

1S  and 2
2S are independent with density function in (2.4), then the CDF of 

2 2
1 2S S follows from the above theorem by virtue of  2 2 2 2 2

1 2 1 2 .m S S Wσ σ=   
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4.  Higher Order Moments  
 
Theorem 4.1 Let  W  have the density function given by Theorem 4.2. Then for 2m >  and 

1 1ρ− < < ,  the a-th  moment of W is given by ( )a
a E Wµ′ = , is given by 

 
( )2

2
2 12

( / 2)
( ) 4  ( , ; / 2; )

( / 2)
a a a m

E W F a a m
m

ρ
Γ +

= − −
Γ

                                                            (4.1) 

   
where 2 1 1 2 1( , ; ; )F a a b z is a generalized hypergeometric function.  
 
Proof.  The -tha  moment ( )aE W  is given by  
 

( ) ( ) ( )
2 2 ( /2)

2
2

0

2
(

4 (1 ) ( )( ) ( / 2) (1/ 2)
( / 2) ( / 2) 2 )!

ka a m
a

k
E W k a m k

kk mmπ
ρ ρ+ ∞

=

−
= Γ + + Γ +

Γ +Γ
∑   

   
which, by virtue of duplication formula of gamma function,  can be written as 
 

( )2
2 2 ( /2) 2

2 12

( / 2)
( ) 4 (1 ) ( ( / 2 ), ( / 2 ); / 2; )

( / 2)
a a a m a m

E W F a m a m m
m

ρ ρ+ Γ +
= − + +

Γ
 

 
which can be transformed to (4.1).  
 
 
Corollary 4.1 Let  U  and V  have the bivariate chi-square distribution with density function 
given by Theorem 3.1.  Then for any integer a , ( )aE W  is given by  
 

( ) 2
{ } { } { }

0
 ( )  4 ( / 2)  (1 ) ( / 2)

a
a a k

a k a k
k

a
E W m a k m k

k
ρ

−
=

 
= + − + 

 
∑ ,                      (4.2) 

 
where { } ( 1) ( 1)ak k k k a= + + − , 2m >  and 1 1.ρ− < <  
 
Proof. Since a and b are integers, we have  
 

 { } { }2
2 1

0 { }

( ) ( )
( , ; / 2; )

( / 2) !

ka
k k

k k

a b
F a b m

m k
ρρ

=

− −
− − =∑ ,   

 
and hence, from Theorem 4.1, we have  
 

( ) 2

0 { }

2
{ }

2

[( ) ]
( / 2)

( / 2)
( ) 4

( / 2) !

ka
ka

k

a

k

a m
E W

m
a

m k
ρ

=

Γ +
=

Γ

−
∑ . 
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Further by virtue of } { }{ ( 1) ( 1)( ) k

kk a ka − − +− = we have 
 

( )
( ){

{ } 2

0
}

( / 2)
( / 2)

( / 2)
( 1)

( ) 4 ,
a

ka
a

a k

k

aa ka
E W

k
m

m
m k

ρ
=

− +  Γ +

Γ
 +

= 


∑  

 
since { }( ) ( ) ( ).ka a a kΓ = Γ +  The above is equivalent to what we have in (4.2). 
  
The above moments are represented by Jacobi's Polynomials in the following corollary: 
 
Corollary 4.2 Let  U  and V  have the bivariate chi-square distribution with density function 
given by Theorem 2.1.  Then for nonnegative integers a  and b , we have the following: 
 

( )( /2) 1, 2 ( /2)2 2 2
{ } ( )  4 ( / 2) (1 ) ! (1 2 )m a ma a a

a aE W m a Pρ ρ− − −−= − − , 2m > .              
 
Proof.  The proof is obvious from Theorem 4.1 by virtue of  
 

( )( /2) 1, ( /2)2 2
2 1

{ }

!( , ; / 2; ) (1 2 ).
( / 2)

m a b m
a

a

aF a b m P
m

ρ ρ− − − −− − = −  

 
The corollary below follows from Corollary 4.1 (cf.  Joarder , 2009). 
 
Corollary 4.3 For 2, 1 1m ρ> − < < , then the first raw four moments ( ),aE W 1,2,3,4a =  of  
W UV=  are given by  
 

2( ) ( 2 )E W m m ρ= + ,  
2 4 2( ) ( 2)[8 8( 2) ( 2)],E W m m m m mρ ρ= + + + + +  
3 6 4 2( ) ( 2)( 4)[48 72( 4) 18( 2)( 4) ) ( 2)( 4)],E W m m m m m m m m mρ ρ ρ= + + + + + + + + + +  
4 2

4 6 8

( ) ( 2)( 4)( 6) ( 2)( 4)( 6) 32( 2)( 4)( 6)

          288( 4)( 6) 768( 6) 384  .

E W m m m m m m m m m m m

m m m

ρ

ρ ρ ρ

= + + + + + + + + + +
+ + + + + + 

 

 
Since 2 2 2 2 2

1 2 1 2m S S Wσ σ= , moments, coefficient of skewness and kurtosis of  2 2
1 2S S  can be 

simply derived from the results in this section. In particular in the following corollary we 
report the mean and variance. 
 
Corollary 4.4 The mean and variance of 2 2

1 2S S  are respectively given by 
2 2 2 2 2

1 2 1 2
1( ) ( 2 ) ,E S S m
m

ρ σ σ= +  and 

2 2 2 2 2 4 4 4 4
1 2 1 23

1( )  [4(1 ) 4(1 8 ) 16 ] ,Var S S m m
m

ρ ρ ρ ρ σ σ= + + + − +  
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where  2m >  and 1 1.ρ− < <  The centered moments of W are given by 

( ( ))a
a E E E Wµ = − .  In particular,  the second, third and fourth order mean corrected 

moments are respectively given by 
 

2 2
2

3 2 3
3

4 3 2 2 4
4

( ) ,

( ) 3 ( ) 2 ,

( ) 4 ( ) 6 ( ) 3 .

E W
E W E W

E W E W E W

µ µ

µ µ µ

µ µ µ µ

= −

= − +

= − + −

 

 
Corollary 4.5 The first four centered moments of W are given respectively by  
 

4 2 2
2 4 [( 4) ( 8 8) ( 1)],m m m m m mµ ρ ρ= + + + + + +  

 
2 3 2 2 2 4

3
2 6

8 [ (5 12 8) 6(2 17 36 24) 3( 4)( 16 24)

    2( 12 24) ],

m m m m m m m m m m

m m

µ ρ ρ

ρ

= + + + + + + + + + +

+ + +
 

 
4 3 2 5 4 3 2 2

4
5 4 3 2 4 4 3 2 6

3 2 8

48 [ ( 16 59 88 48) 2( 37 304 976 1408 768)

    ( 56 798 4176 9024 6912) 2(3 84 728 2304 2304)
     (3 56 288 384 ],

m m m m m m m m m m m
m m m m m m m m m

m m m

µ ρ

ρ ρ

ρ

= + + + + + + + + + +

+ + + + + + + + + + +

+ + + +
 
where 2m >  and 1 1.ρ− < <  
 
Corollary 4.6 The coefficient of skewness and kurtosis of  W are given by the moment ratios 
 

3
3 3/2

2

( ) ,  W µα
µ

= and 4
4 2

2

( )W µα
µ

=  

 
respectively where 2 3,  µ µ  and 4µ are given by Corollary 4.4. 
 
The asymptotic behaviour of coefficient of skewness and kurtosis can be graphed. In case 

0ρ = , then W  will be the product of two independent chi-square random variables each 
with m  degrees of freedom and evidently the resulting moments are in agreement with that 
situation of independence. In particular, if 0ρ = , that is if W is the product of two 
independent chi-square variables each having m degrees of freedom, then the mean and 
variance of  W will be ( )E W m=  and  2( ) 4 ( 1)Var W m m= +  respectively. In that case the 
coefficient of skewness and kurtosis of W are respectively given by 
 

2

3/2

5 12 8
( 1)

m
m m

+ +
+

, and 
4 3 2

2

3( 16 59 88 48) .
[ ( 1)]

m m m m
m m

+ + + +
+
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Appendix 1 

 
ρ = -0.7 (red), 0(green), 0.5(blue), 0.9 (cyan) 

 

20 40 60 80 100
w

0.01

0.02

0.03

fw

 
ρ = -0.7 (red), 0(green), 0.5(blue), 0.9 (cyan) 

 
Figure 1. Density function of W for m = 5 and various ρ values 

 
 
Appendix 2 The evaluation of the integral 
 

( /2) 1
0 20

( ; , ) .
1

w m k y
J k m y K dyρ

ρ
+ −

 
=   − 
∫                (A1) 

 
From Gradshteyn and Ryzhik (1994), we have 
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where the psi function is defined in Gradshteyn and Ryzhik (1994). Using (A2) in (A1), we 
have 
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Having evaluated the simple integrals in (A3), we have 
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where the psi function is defined in Gradshteyn and Ryzhik (1994). 
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