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Abstract

A new approach for investigating polynomial solutions of differential equa-
tions is proposed. It is based on elementary linear algebra. Any differential

operator of the form L(y) =
k=N∑

k=0

ak(x)y(k), where ak is a polynomial of degree

≤ k, over an infinite ground field F has all eigenvalues in F in the space of
polynomials of degree at most n, for all n. If these eigenvalues are distinct, then
there is a unique monic polynomial of degree n which is an eigenfunction of the
operator L- for every non-negative integer n.

Specializing to the real field, the potential of the method is illustrated by
recovering Bochner’s classification of second order ODEs with polynomial coef-
ficients and polynomial solutions, as well as cases missed by him - namely that
of Romanovski polynomials, which are of recent interest in theoretical physics,
and some Jacobi type polynomials. An important feature of this approach is the
simplicity with which the eigenfunctions and their orthogonality and norms can
be determined, resulting in significant reduction in computational complexity of
such problems.

2000 MSC: 33C45, 34A05, 34A30, 34B24.

1 Introduction

Polynomial solutions of differential equations is a classical subject, going back to Routh

[9], Bochner [2] and Breneke [3] and it continues to be of interest in applications, as in

e.g. [5] and [8]. The idea we wish to present in this paper is to conduct the discussion

of differential equations with polynomial coefficients in a linear algebraic context. It is

surprising that by such a change of view point, one can add more than what is available

in the classical literature and, at the same time, recover classical results efficiently and

in a unified manner.
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We take this opportunity to correct a common misconception regarding Brenke’s

contributions in the classification of 2nd order ODEs that have polynomial solutions [7,

p 508]. He first considers all 2nd order ODEs that have a polynomial solution in every

degree and only subsequently classifies self-adjoint equations by an argument similar

to that given in Section 3. He then returns to the general 2nd order equation and, for

an inexplicable reason, does not carry through the argument to its logical conclusion

and misses some important cases.

In this paper we investigate operators of the form L(y) =
k=N∑

k=0

ak(x)y(k), where ak

is a polynomial of degree ≤ k, with coefficients in an infinite ground field F . Clearly,

any linear nth order differential operator, which has polynomial coefficients and eigen-

polynomials of degrees 0 up to n, must be of this form, and, as shown in Section 2,

such operators may not have eigenpolynomials in every degree. We show that these

operators, operating on polynomials, have all their eigenvalues in the ground field and

in case the eigenvalues are distinct, there is exactly one monic polynomial in every

degree which is an eigenfunction of L.

Specializing to second order equations because of their importance in applications

- and leaving in this paper the higher order case due to its technical complexity - the

canonical forms of second order equations, their eigenvalues and geometric multiplicities

are investigated. This includes the family of Romanovski polynomials and some Jacobi

type polynomials, which are missing in the classification of Brenke and Bochner as

well as in the latest books on the subject; the Romanovski polynomials are the main

subject of some recent physics literature [8, 10].

Necessary and sufficient conditions for a second order operator to be self-adjoint

are obtained and a reduction formula for computations of norms of eigenfunctions of

these operators is also given, which avoids the customary case by case analysis found

for example in [1, 6, 7].

A complete classification of second order operators which are self-adjoint with re-

spect to some weight function is also given: amongst all polynomial solutions of dif-
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ferential equations, the classical Legendre, Hermite, Laguerre and Jacobi polynomials

make their appearance as soon as one searches for self-adjoint operators. This classifi-

cation is due originally to Brenke [3].

Although one normally assumes that the leading polynomial coefficient of a differen-

tial equation should never vanish, it is worth noting that it is precisely the singularities

of the equation that encapsulate all the important information about the equation.

In the final section, the main examples of second order classical and some non-

standard operators are given in detail; Part A of this section is largely of pedagogical

interest.

2 Basic Results

Throughout, P is the space of all polynomials over an infinite field F and Pn is the

subspace of polynomials with degree at most n, and for a fixed positive integer N,

L : P −→ P is the N -th order operator given by Ly =
N∑

k=1

ak(x)Dky, where D is

the usual differential operator and where ak(x) is a polynomial of degree at most k

(1 ≤ k ≤ N). In this way, for each nonnegative integer n, Pn is L-invariant. Put

ak(x) =
∑
h≥0

akhx
h, where akh = 0 if k < h. As L(xn) is a scalar multiple of xn plus

lower order terms, we see that the matrix representation of L, w.r.t. the standard basis

Bn = {1, x, ..., xn}, is upper triangular and the eigenvalues are the coefficients of xn in

L(xn). In more detail the (n + 1)× (n + 1) matrix of L operating on Pn is

An =

[∑

k≥1

(j − k)kak,k+i−j

]

1≤i,j≤n+1

where (j − k)k = (j − 1)(j − 2) · · · (j − k) and akh = 0 when k < h, so An is upper

triangular (and where each row and each column has at most N + 1 nonzero entries).

Clearly, An+1 is obtained from An by adding one row and one column at the end, and

so all the eigenvalues of the operator L are in F and are given by

λ0 = 0, λn = na11 + n(n− 1)a22 + · · ·+ n!ann for n ≥ 1 (2.1)
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where ann = 0 if n > N. Each λn has, as an eigenfunction, a polynomial yn(x) =

yn0 + yn1x + · · · + ynnx
n whose vector representation (yn0, ..., ynn)T in the standard

basis Bn of Pn can be directly computed using the homogeneous triangular system

(An − λnI) (yn0, ..., ynn)T = 0

In particular, if the eigenvalues λ0, λ1, ..., λn (for some n) are distinct, then Pn has a

basis of eigenfunctions and, for reasons of degree, L has (up to a constant) a unique

polynomial of degree r (for each r, 0 ≤ r ≤ n) corresponding to λr as an eigenfunction.

We summarize this in

Proposition 2.1 Let L : P −→ P be an operator given by Ly =
N∑

k=1

ak(x)Dky, where

ak(x) is a polynomial of degree at most k. For each k (1 ≤ k ≤ N), let ck be the

coefficient of xk in ak(x). Then all the eigenvalues of L are in the ground field F and

are Z-linear combinations of the ck. If all the eigenvalues are distinct, then L has, up

to a constant, a unique polynomial for each degree as an eigenfunction.

Some observations concerning the eigenvalues and their multiplicity are in order. First,

let

f(x) = c1x + c2x(x− 1) + · · ·+ cNx(x− 1) · · · (x−N + 1)

where, as in Proposition 2.1, ck = akk is the coefficient of xk in ak(x). Then each

eigenvalue λn of L is just f(n) (n ≥ 0). This immediately gives an (N + 1)-term

recurrence relation between the eigenvalues, for if E is the shift operator given by

Ef(x) = f(x+1), then (E−1)N+1f(n) = 0. When all the ck are zero (i.e. all eigenvalues

are equal to zero), then f is identically zero and one can get the eigenfunctions of L

by considering the (N − 1)-st order operator obtained from L by replacing y by Dy.

We therefore assume that f is not the zero polynomial. Suppose that an eigenvalue is

repeated r times, say

λn1 = λn2 = · · · = λnr , where 0 ≤ n1 < n2 < · · · < nr.
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In this case, f takes on the same value at r different nonnegative integers, and so

r ≤ deg(f) ≤ N. Moreover, if the field F = R, it is clear that there is a positive integer

u such that for each integer v ≥ u, the set {n : f(n) = v} is a singleton. This means

that only finitely many eigenvalues λn of L have multiplicity greater than 1, and, if

any exist, they must all lie between the largest local maximum and the smallest local

minimum of f .

An interesting fact occurs when N = 2. Suppose, as before, that not both coefficients

c1 and c2 are zero and that an eigenvalue has algebraic multiplicity 2, say λn = λn′

for some nonnegative integers n < n′. Then from equation (2.1), nc1 + n(n − 1)c2 =

n′c1 + n′(n′ − 1)c2, i.e. λn+n′ = (n + n′)c1 + (n + n′)(n + n′ − 1)c2 = 0. Since the

multiplicity of the eigenvalue zero cannot exceed 2, we obtain that for each integer

k > n + n′, the eigenvalue λk has multiplicity 1. We also see that if n1 + n2 = n + n′,

where n1 < n2, then λn1 = λn2 . this means that the number of eigenvalues that have

multiplicity 2 is

⌈
n + n′

2

⌉
. We thus have

Proposition 2.2 Let the ground field be R. Then, with the above notation, either

all eigenvalues of the N-th order operator L are equal to 0 or all have multiplicity 1

except for finitely many of them which will then have multiplicity at most N. In case

N = 2, there will be eigenvalues with multiplicity 2 precisely when a nonnegative integer

k exists for which c1 + kc2 = 0, and then the number of such eigenvalues is

⌈
k + 1

2

⌉
.

It is perhaps tempting to think that the eigenvalues of the operator L, although not

necessarily distinct, are still semisimple. As proposition 2.3 below shows, this is not

always the case.

We now concentrate on second order operators. Let L(y) = a(x)y′′ + b(x)y′, where

deg(a) = 2, deg(b) ≤ 1. Following Bochner [2], by scaling and translation, we may

assume that a(x) = x2 − 1, x2 + 1 or x2. We then have the following result.

Proposition 2.3 (i) The equation (x2 + ε)y′′ + (αx + β)y′ + λy = 0, ε = 0, 1,−1

has unique monic polynomial solutions in every degree if α > 0 or if α < 0 and
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it is not an integer.

If α = −(n+m−1) for 0 ≤ m ≤ (n−1), then the eigenvalue λ = n(n−1)+αn =

−nm has algebraic multiplicity 2 and eigenpolynomials can only be of degree n or

m. An eigenpolynomial y =
n∑

k=0

akx
k is of degree n if and only if

εam+2(m + 2)(m + 1) + βam+1(m + 1) = 0

in which case the λ eigenspace in Pn is 2-dimensional; otherwise the λ eigenspace

is 1-dimensional.

(ii) The equation xy′′ + (αx + β)y′ + λy = 0 has unique monic polynomial solutions

in every degree if α 6= 0.

(iii) The equation y′′ + (αx + β)y′ + λy = 0 has unique monic polynomial solutions in

every degree if α 6= 0.

Proof. Let L(y) = (x2 + ε)y′′ + (αx + β)y′, where ε = 0, 1,−1. By Proposition 2.1

or noticing that the eigenvalues are given by the coefficients of xn in L(xn), these

eigenvalues are λ = n(n − 1) + αn. Suppose this eigenvalue is a repeated eigenvalue.

Then L(xm) = λxm+ lower degree terms, where m 6= n. Therefore n(n − 1) + αn =

m(m− 1) + αm gives α = −(n + m− 1). This means that if α is not an integer then

the operator L has distinct eigenvalues. Similarly if α is a positive integer the operator

L has distinct eigenvalues. Therefore in both these cases there is up to a scalar only

one polynomial in every degree which is an eigenfunction of L.

Now suppose α = −(n + m − 1) for distinct non-negative integers n,m and λ =

n(n − 1) + αn = −nm. We may assume that n > m. Suppose L(xk) = λxk+ lower

degree terms, with k 6= n. Then α = −(n + m − 1) = −(n + k − 1) gives k = m.

Therefore if there is a repeated eigenvalue, it is of multiplicity 2 and eigenpolynomials

can only be of degrees m and n. Moreover if α = −(n + m − 1) = −(i + j − 1) then

the eigenvalue −ij is also repeated.
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Also, if an eigenvalue is not repeated and there is a polynomial of degree, say, n for

this eigenvalue and there is a polynomial of degree k which is also an eigenpolynomial,

then n must equal k. If there are two linearly independent polynomials of degree n

which are eigenpolynomials for the same eigenvalue λ, we may suppose that they are

monic. Their difference is then an eigenfunction of lower degree, which implies that λ

is a repeated eigenvalue.

Therefore, for a non-repeated eigenvalue, there is exactly one monic polynomial

which is an eigenfunction of L.

Let us now determine the geometric multiplicities of all the eigenvalues in case α is

a non-positive integer.

Let α = −(n + m − 1) where n > m and n > 0. As seen above the eigenvalue

λ = n(n− 1) + αn = −nm is of algebraic multiplicity 2 and the corresponding eigen-

polynomials can only be in degrees n and m. If y =
n∑

k=0

akx
k then

L(y) =
n−2∑

k=0

[akk(k − 1) + εak+2(k + 2)(k + 1) + αakk + βak+1(k + 1)] xk

+ [an−1(n− 1)(n− 2) + αan−1(n− 1) + βann] xn−1 + [n(n− 1) + αn] anxn

The solutions of L(y) = λy = (n(n− 1) + αn)y = −(nm)y are therefore given by

akk(k− 1) + εak+2(k + 2)(k + 1) + αakk + βak+1(k + 1) = λak, (k = 0, . . . , n) (2.2)

where an+1 = 0, an+2 = 0 and an 6= 0. From equation (2.2) we can solve for ak in terms

of ak+1, ak+2 provided (k(k− 1) + αk− λ) 6= 0. Therefore we can solve for all ak with

k > m in terms of an. The equation (2.2) for k = m reads

εam+2(m + 2)(m + 1) + βam+1(m + 1) = [λ−m(m− 1)− αm] am = 0. (2.3)

If equation (2.3) holds then am can be arbitrary and every ak for k < m is determined

in terms of am and an. In this case the λ eigenspace is 2-dimensional. If equation (2.3)

does not hold then there is no eigenpolynomial of degree n. In this case there will be

a unique monic polynomial of degree m.
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The proofs of statements (ii) and (iii) are straightforward.

Proposition 2.3 shows in particular, that also for Jacobi-type differential equations,

there are cases where the algebraic and geometric multiplicities are equal to 2 and cases

where the algebraic multiplicity is 2 and the geometric multiplicity is 1. (Cf. [2].)

Corollary 2.4 Let L(y) = x2y′′ + (αx + β)y′.

(i) If α is not a non-positive integer then all the eigenvalues of L are simple.

(ii) If α = −(n + m − 1) where n > m then all eigenvalues λ except λ = −nm, are

simple and the eigenvalue −nm has multiplicity 2.

In this case if β = 0 then all the eigenvalues are semisimple with eigenpolynomials

xk (k = 0, 1, . . . ); and if β 6= 0 then the repeated eigenvalue −nm is defective

with eigenpolynomial
m∑

i=0

(
n
i

)(
m
i

)
i!(−x/β)i.

If α = −(n + m− 1) = −(r + s− 1) where r > s then the eigenvalue −rs is also

defective with eigenpolynomial
s∑

i=0

(
r
i

)(
s
i

)
i!(−x/β)i.

Proof. The proof follows by using equations (2.2), (2.3) with ε = 0. In this case if

there is an eigenpolynomial of degree n then am+1 = 0 = · · · = an. Therefore the

eigenpolynomial must be of degree m. The form of the eigenpolynomial follows by

using equation (2.2).

In proposition 2.3 there is no claim to any kind of orthogonality properties. Never-

theless, the non-classical functions appearing here are of great interest in Physics and

their properties and applications are investigated in [4, 8, 10].

Now the equations a(x)y′′+b(x)y′+c(x)y = λx can be written as 2nd order Sturm-

Liouville equations in the sense of [6, p. 291] by multiplying by a suitable weight

function [1, p. 45] and for suitable boundary conditions. A natural question is:

What is the explanation for the weight function and the particular form of the boundary

conditions?

The following proposition shows that both the weight and general boundary conditions
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are forced upon us as soon as we demand that the operator L(y) = a(x)y′′ + b(x)y′ +

c(x)y should be self-adjoint for some weight function p.

Proposition 2.5 Let L be the operator defined by Ly = a(x)y′′ + b(x)y′ + c(x)y on a

linear space C of functions which are at least twice differentiable on a finite interval I.

Define a bilinear function on C by (y, u) =
∫
I

pyudx, where p ∈ C is nonnegative and

does not vanish identically in any open subinterval of I. Then

(Ly, u)− (y, Lu) = pa(uy′ − u′y)|I for all y, u ∈ C if and only if (pa)′ = pb

Proof. We have

(Ly, u)− (y, Lu) =

∫

I

(pa) (uy′ − u′y)′ +
∫

I

pb(uy′ − u′y)

If (pa)′ = pb, then (Ly, u) − (y, Lu) =
∫

I

(
(pa) (uy′ − u′y)′ + (pa)′ (uy′ − u′y)

)
=

(pa) (uy′ − u′y)|I .

For the converse, assume that (Ly, u)− (y, Lu) = (pa) (uy′ − u′y)|I , then, since

(pa) (uy′ − u′y)|I −
∫

I

(pa) (uy′ − u′y)′ =
∫

I

(pa)′ (uy′ − u′y)

we get
∫

I
(pa)′ (uy′ − u′y) =

∫
I
pb(uy′ − u′y), i.e.

∫

I

(
(pa)′ − pb

)
(uy′ − u′y) = 0

Putting w = (pa)′ − pb, u = 1, and choosing y so that y′ = (pa)′ − pb, we get

∫

I

w2 = 0.

Suppose first that I is an open interval (α, β). Then, from lim
s→α+

t→β−

t∫

s

w2 = 0, we get for

each subinterval [σ, τ ] of I,

τ∫

σ

w2 = 0. This implies that w is identically zero on [σ, τ ],

and since this interval is an arbitrary subinterval of I, we have w = 0 on I. The case

when one or both endpoints of I are in I is similarly dealt with.

Norms of eigenfunctions

9



The norms of the eigenfunctions relative to the weight p can be obtained by using the

well-known three term recurrence relation for orthogonal polynomials. We include a

proof for the readers’ convenience and because it is the main point in computation of

norms of eigenfunctions.

Proposition 2.6 [1, p.306] If {Pn}n=0,1,2... is a sequence of orthogonal polynomials,

then in the expression

xPn =

j=n+1∑
j=0

kjPj,

all the coefficients are 0 except for j = n + 1, n, n− 1.

Proof. Denoting the inner product by round brackets, we have

kj(Pj, Pj) = (xPn, Pj) = (Pn, xPj) = 0,

if j + 1 ≤ n− 1 that is, if j ≤ n− 2, which is what we wanted to show.

Now

xPn = kn+1Pn+1 + knPn + kn−1Pn−1 (2.4)

Let us rewrite this equation as

xPn = anPn+1 + bnPn + cnPn−1

As there is only one monic eigenpolynomial in every degree, the differential equation

must determine all the coefficients. We assume that all eigenfunctions are normalized

to be monic.

So Pn = xPn−1 + q(x), where deg(q) ≤ n − 1. Therefore (Pn, Pn) = (xPn−1, Pn) =

(Pn−1, xPn) = (Pn−1, cnPn−1) = cn(Pn−1, Pn−1) - using equation (2.4) and orthogonality

of eigenfunctions of different degrees.

Now, from the differential equation, determining the leading three coefficients of

every Pn and using equation (2.4) leads to the determination of cn, taking into account

that an = 1. This gives (Pn, Pn) = cncn−1 . . . c1(P0, P0) and (P0, P0) is the integral of

the weight function p over an appropriate interval.
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The values of an, bn, cn for classical orthogonal polynomials are given in the table

below.

Polynomial an bn cn

Legendre 1 0 n2

(2n+1)(2n−1)

Hermite 1 0 n
2

Laguerre 1 2n + 1 n2

Chebychev 1 0 1
4

(for n ≥ 2)

Jacobi 1 −β(2+α)
(2n−2−α)(2n−α)

n(n−α−2)(2n−(β+α+2))(2n+(β−α−2))
(2n−α−3)(2n−2−α)2(2n−α−1)

(for n ≥ 2)

b1 = β(2+α)
α(2−α)

c1 = (α−β)(α+β)
(1−α)α2

: here α < β < −α

3 Canonical Forms of Self-adjoint Second Order

Equations with Polynomial Coefficients

Let us now determine the operators for which there is a basis of orthogonal eigen-

polynomials for the weight function determined by the operator. The results of this

section were arrived at independently; however the authors found later that such a

classification was done first by Brenke [3].

From proposition 2.5, the operator L would be self adjoint if there is no contribution

from the boundary terms: this is ensured if the product a(x)p(x) vanishes at the end

points of the interval – finite or infinite – on which the natural weight function p(x)

associated to L is integrable on the entire interval.

The integrability of the weight function determines the differential equation and

finiteness of the norm of polynomials ensures that manipulations as in proposition 2.5

are legitimate. The operator L will then be self-adjoint and it will operate on the

vector space of all polynomials of degree at most n for every non-negative integer n.

As L has a basis of eigenvectors in any finite dimensional subspace on which it

operates, we see that there will be monic polynomial of degree n, which will be an

eigenfunction of L, and the corresponding eigenvalues would therefore be determined

from the form of the equation. If these eigenvalues are distinct for different degrees,
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these polynomials would automatically be orthogonal.

We now determine the operators L from the requirements that

(1) the leading term a(x) is non-zero and of degree at most 2, the degree of b(x) is

at most 1 and c(x) is a constant

(2) the natural weight function associated to L is integrable on the interval I deter-

mined by roots of a(x)

(3) a(x)p(x) vanishes at the end points of I and, in case there is an end point at

infinity, the product a(x)p(x)P (x) should vanish at infinity for all polynomials

P (x)

(4) all polynomials should have finite norm on the interval I with the weight p(x).

Case I: The polynomial a(x) has two distinct real roots.

By a linear change of variables and scaling we may assume that the roots are 1 and

−1. Assuming that a(x) is non-negative in the interval [−1, 1], we have a(x) = 1− x2.

Let b(x) = αx + β so

b(x)

a(x)
=

αx + β

(1− x)(1 + x)
=

β+α
2

1− x
+

β−α
2

1 + x
.

So the weight p(x) is

p(x) =
1

1− x2
e
R
(

β+α
2

1−x
+

β−α
2

1+x
)dx =

(1 + x)
β−α−2

2

(1− x)
β+α+2

2

The weight is obviously finite in the interval (−1, 1). For p(x) to be integrable we must

have β − α > 0 and β + α < 0. Thus α < β < −α , so α < 0.

Case II: The polynomial a(x) has repeated real roots. In this case we can assume

that a(x) = x2. Let b(x) = αx + β. The weight function is now p(x) =
1

x2
e
R αx+β

x2 dx =

|x|α
x2

e−β/x. We may take the interval I = (0,∞).

In this case a necessary condition for the integrability of the weight is that deg(b)−

deg(a) + 1 > 0, so this case does not arise.
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Case III: The polynomial a(x) is linear.

In this case we can take a(x) = x. Let b(x) = αx+β. In this case the weight function is

p(x) =
1

|x|e
R αx+β

x
dx = |x|β−1eαx. This is integrable near zero if and only if β ≥ 1. Since

∫ ∞

0

eαxxεdx, where ε > 0, is finite only if α ≤ 0 we see that we cannot take the interval

I from −∞ to ∞. Without loss of generality we can take this to be the interval [0,∞).

So the weight function is now p(x) = xβ−1eαx with α < 0 and β ≥ 1. All polynomials

have finite norm with respect to this weight and for all polynomials p(x) the product

P (x)p(x) vanishes at 0 and ∞. Therefore the equation xy′′ + (αx + β)y′ + λy = 0 has

polynomial solutions for every degree n. The corresponding eigenvalue is λ = −αn.

Case IV: α(x) = 1

In this case L(y) = y′′ + (αx + β)y′ + γy. The weight is p(x) = e
αx2

2 eβx. So α must be

negative, for the product P (x)p(x) to vanish at the end points of the interval I for all

polynomials P (x), and therefore I must be (−∞,∞).

Remark The case of a second degree a(x) with no real roots does not arise, because

of the requirements (3) and (4) above which a weight function must satisfy.

4 Examples

Examples of classical orthogonal polynomials and some non-classical polynomials with

finite orthogonality properties in the sense of [8, 10] are discussed below using ideas of

the previous sections.

A) Classical orthogonal polynomials

1. Legendre polynomials:

Consider the eigenvalue problem

(1− x2)y′′ − 2xy′ = λy.

Let L be the operator defined by L(y) = (1 − x2)y′′ − 2xy′. The weight

function here is p(x) =

(
1

|1− x2|
)

e
R −2x

1−x2 dx
= 1. So in the interval [−1, 1],

p(x)a(x) is 1− x2.

13



For every non-negative integer n the operator L maps the vector space Pn

of polynomials of degree at most n into itself. As p(x)a(x) vanishes at

the boundary points, there are no boundary conditions required to make L

self-adjoint. So L must have a basis of eigenvectors in Pn.

As L maps every Pm to itself for all m ≤ n there must be a polynomial of

every degree n which is an eigenfunction of L. We normalize this polynomial

so that the coefficient of its leading term is 1. The corresponding eigenvalue

is therefore given by the coefficient of xn in the expression

(1− x2)(n(n− 1)xn−2x · · · )− 2x(nxn−1 + · · · ).

So, it is equal to −n(n− 1)− 2n = −n(n + 1).

These eigenvalues are all distinct. Therefore, for every non- negative integer

n, there is a unique polynomial of degree n which is an eigenfunction of L.

Because the corresponding eigenvalues are distinct, these polynomials are

orthogonal.

We have therefore recovered the differential equation for the Legendre poly-

nomial: namely (1− x2)y′′ − 2xy′ + n(n + 1)y = 0.

2. Laguerre polynomials:

Here the eigenvalue problem is

xy′′ + (1− x)y′ = λy.

The operator L is given by L(y) = xy′′ + (1 − x)y′. The weight func-

tion is p(x) =

(
1

|x|
)

e
R

1−x
x

dx = e−x. Here the inner product is defined for

all functions on [0,∞) for the weight p(x) = e−x. As

∫ ∞

0

xne−xdx = n!,

all polynomials have finite norm. As xp(x) vanishes at x = 0, the oper-

ator L will be self adjoint on the space of all functions with finite norm

which are such that xe−x(uy′ − u′y) vanishes at ∞ for any two functions

u, y in this space. As in the first example, for every non-negative inte-
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ger n, there must be a polynomial of degree n which is an eigenfunction

of L. The corresponding eigenvalue is given by the coefficient of xn in

x
(
n(n− 1)xn−2 + · · ·)+(1−x)(nxn−1+· · · ). So, it is equal to −n The differ-

ential equation for Laguerre polynomial is therefore xy′′+(1−x)y′+ny = 0.

3. Hermite polynomials:

The Hermite differential equation is y′′−2xy′+λy = 0. The weight function

is p(x) = e
R −2x dx = e−x2

. Thus all polynomials have finite norm relative

to this weight. By the same consideration as in the previous examples

there must be a unique monic polynomial of every degree n which is an

eigenfunction of L with eigenvalue −2n.

4. Confluent hypergeometric equation:

This is the equation xy′′ + (c− x)y′ − λy = 0. The operator here is L(y) =

xy′′ + (c− x)y′. The weight function is therefore p(x) = |x|c−1e−x. L maps

polynomials to polynomials and all polynomials have finite norm relative

to p(x) if c > 1. As above L maps the space Pn to itself, so by similar

considerations as in the previous examples, there must be a polynomial of

every degree n which is an eigenfunction of L. The corresponding eigenvalue

is −n. These polynomials are therefore solutions of the differential equation

xy′′ + (c− x)y′ + ny = 0.

5. Chebyschev polynomials:

These are eigenfunctions of the equations

L(y) = (1− x2)y′′ − xy′ and L(y) = (1− x2)x′′ − 3xy′.

We will discuss only the first case, as the other is similar. The weight

function is p(x) =
1√

1− x2
. The singularities at x = 1,−1 are not essential

singularities. The reason is that for any continuous function f , the integral∫ 1

−1

f(x)dx√
1− x2

is finite, as one sees by the substitution x = cos(θ).
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Also, the product of the leading term and the weight is
√

1− x2, so the

operator L is self-adjoint on the interval [−1, 1] as the contribution from

the boundary terms vanishes. Thus, exactly as for the case of Legendre

polynomials, there is, up to a constant, exactly one polynomial of degree n

which is an eigenfunction of the operator L. The corresponding eigenvalue

is −n2 and these polynomials are solutions of the equation (1−x2)y′′−xy′+

n2y = 0.

6. Jacobi polynomials:

First note that for any differentiable function f with f ′ continuous, the

integral

∫ ε

0

f(x)

xα
dx is finite if α < 1 – as one sees by using integration by

parts.

Consider the equation (1 − x2)y′′ + (αx + β)y′ + λy = 0. As above, the

weight function p(x) for the operator

L(y) = (1− x2)y′′ + (αx + β)y′

is

p(x) =
1

1− x2
e(

β+α
2

1−x
+

β−α
2

1+x
)dx =

(1 + x)
β−α−2

2

(1− x)
β+α+2

2

=
1

(1− x)
β+α+2

2 (1 + x)
−β+α+2

2

So

∫ 1

−1

p(x)f(x)dx would be finite if β + α < 0 and −β + α < 0, that is, if

α < β < −α.

The weight is not differentiable at the end points of the interval. So, first

consider L operating on twice differentiable functions on the interval [−1 +

ε, 1− ε]. If u, v are functions in this class then by Proposition 2.5,

∫ 1−ε

−1+ε

p(x)L(u(x))v(x)dx−
∫ 1−ε

−1+ε

p(x)u(x)L(v(x))dx

= p(x)a(x)(u(x)v′(x)− u′(x)v(x))|1−ε
−1+ε

Moreover, (1−x2)p(x) = (1−x)
−(β+α)

2 (1+x)
β−α

2 is continuous on the interval

[−1, 1] and vanishes at the end-points −1 and 1. Therefore, if we define
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(u, v) = lim
ε→0

∫ 1−ε

−1+ε

p(x)u(x)v(x)dx then L would be a self-adjoint operator

on all polynomials of degree n and so, there must be, up to a scalar, a unique

polynomial which is an eigenfunction of L for eigenvalue −n(n− 1) + nα.

So these polynomials satisfy the equation

(1− x2)y′′ + (αx + β)y′ + (n(n− 1)− nα)y = 0

and this equation has unique monic polynomial eigenfunctions of every de-

gree, which are all orthogonal.

Although the Legendre and Chebyschev polynomials are special cases, cor-

responding to the values α = −1, 2,−3 and β = 0, we have included them

because of their specific importance.

B. Some non-standard examples:

1. The equation t(1− t)y′′ + (1− t)y + λy = 0.

This equation is investigated in [5] and the eigenvalues determined experi-

mentally, by machine computations. Here, we will determine the eigenvalues

in the framework provided by Propositions 2.1 and 2.5.

Let L(y) = t(1− t)y′′ + (1 − t)y′. Let Pn be the space of al polynomials of

degree at most n. As L maps Pn into itself, the eigenvalues of L are given by

the coefficient of xn in L(xn). The eigenvalues turn out to be −n2. As these

eigenvalues are distinct, there is, up to a constant, a unique polynomial of

degree n which is an eigenfunction of L.

The weight function is p(t) =
1

|1− t| =
1

1− t
on the interval [0, 1] and it

is not integrable. However, as L(y)(1) = 0, the operator maps the space

V of all polynomials that are multiples of (1 − t) into itself. Moreover,∫ 1

0

p(t)((1− t)ψ(t))2dt is finite.

The requirement for L to be self-adjoint on V is t(ξη′− ξ′η)|10 = 0 for all ξ, η

in V . As ξ, η vanish at 1, the operator L is indeed self- adjoint on V .

17



Let Vn = (1 − t)Pn, where Pn is the space of all polynomials of degree at

most n. As the codimension of Vn in Vn+1 is 1, the operator L must have

an eigenvector in Vn for all the degrees from 1 to n + 1. If y = (1 − t)ψ is

an eigenfunction and deg(ψ) = n, then, by the argument as in the examples

above, we see that the corresponding eigenvalue is λ = −(n + 1)2.

Therefore, up to a scalar, there is a unique eigenfunction of degree n + 1

which is a multiple of 1 − t and all these functions are orthogonal for the

weight p(t) =
1

1− t
. Using the uniqueness up to scalars of these functions,

the eigenfunctions are determined by the differential equation and can be

computed explicitly.

2. Romanovski Polynomials:

These polynomials are investigated in [10, 8] and their finite orthogonality

is also proved there. Here, we establish this in the framework of Proposition

2.5.

The Romanovski polynomials are eigenfunctions of the operator L(y) =

(1 + x2)y′′ + (αx + β)y′. For α > 0, or α < 0, α not an integer, there is only

one monic polynomial in every degree which is an eigenfunction of L; for

α a non-positive integer, the eigenspaces can be 2 dimensional for certain

values of β (Proposition 2.3).

The formal weight function is p(x) = (x2+1)(
α−2

2 )eβ tan−1(x) = (x2+1)
γ
2 eβ tan−1(x),

where γ = α − 2. Therefore, a polynomial of degree N is integrable over

the reals with weight p if and only if N + γ + 1 < 0; and if the product

of two polynomials P,Q is integrable, then the polynomials are themselves

integrable for the weight p.

Arguing as in the proof of Proposition 2.5, we find that (LP, Q)−(P,LQ) =

(x2 + 1)p(x)(PQ′−P ′Q)|∞−∞, because if deg(P ) 6= deg(Q) then the product

(x2+1)p(x)(PQ′−P ′Q) is asymptotic to x2+γ+deg(P )+deg(Q)−1 = xdeg(P )+deg(Q)+γ+1
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and deg(P ) + deg(Q) + γ + 1 < 0.

Therefore, if P, Q are integrable eigenfunctions of L with different eigenval-

ues and deg(P ) + deg(Q) + γ + 1) < 0, then P,Q are orthogonal.

For several non-trivial applications to problems in Physics, the reader is

referred to [8].
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