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Abstract

Depending on the nature of the coefficients and forcing term, many differential equations
cannot be solved analytically, especially, when forcing term is nonsmooth. In such cases,
numerical approximations and graphical visualization of the solution are highly desirable.
Spectral method based on Gauss-Legendre points is presented and implementation strategies
to explicitly impose different boundary conditions is given. Techniques using several domains
and solving problems with constant as well as variable coefficients are described. Various types
of boundary conditions are considered, for example, Dirichlet, Dirichlet–Neumann, Neumann,
and Robin. Numerical solution of several nontrivial problems having smooth as well as nons-
mooth forcing terms with random Gaussian noise is computed and graphs of their exact and
numerical solutions are presented.

Key words: Gauss– Legendre, Spectral, Numerical Differentiation, Boundary Value
Problems.

1 Introduction

A short introduction to spectral methods with particular emphasize on practical ex-
amples having nonsmooth data is described. Several books have been written about
spectral methods. Therefore our aim is not to present an exhaustive mathematical pre-
sentation of the method. With an efficient boundary conditions implementation strat-
egy, the presented material should instead be considered as a toolkit for implementing
spectral methods in simple and efficient way.
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1 The support of King Fahd University of Petroleum and Minerals, Saudi Arabia, is gratefully
acknowledged.



Many differential equations cannot be solved analytically, in which case we have to sat-
isfy ourselves with an approximation to the solution. The basic idea of all the numerical
methods is to approximate a function by polynomials. Finite difference method converts
BVP into system of algebraic equations by replacing the derivatives with finite difference
approximations. These formulas are based on local representation of functions–usually
by low–order polynomials. Derivatives are approximated at a given grid point or node
through combinations of values at the neighboring points. More neighboring points are
required to achieve better accuracy. Use of second order central finite difference formu-
las results in a tridiagonal system which is easy to solve and saves on both work and
storage compared to general system of equations. But much smaller step size and many
more mesh points would be required to achieve acceptable accuracy.

The spectral methods make use of global representation, usually by higher order poly-
nomials or Fourier series. A derivative calculated at a given grid point will make use of
information from the entire spatial domain of the problem. Under suitable conditions
the result of spatial approximation is a degree of accuracy that local methods can-
not match. In particular, they allow to reach very good accuracy with only moderate
computational resources.

A collocation method is to choose a finite-dimensional space of basis functions and
a mesh of points in the domain and approximates solution to BVP by finite linear
combination of basis functions. Basis functions with global support, such as polynomials
or trigonometric functions, yield spectral method. Mesh of points, called collocation
points, can be equally spaced or Chebyshev points or Gaussian quadrature points.
Since smooth basis functions can be differentiated analytically, therefore approximate
solution and its derivatives can be substituted into ODE and BC to obtain system of
algebraic equations. We shall use Gauss–Legendre points xi to discretize the domain and
construct a Lagrange polynomial interpolating yi at these mesh points. The numerical
solution yi is computed such that it satisfy the given differential equation along with
boundary conditions.

It would be hard to overemphasized the difficulties caused by boundary conditions in
scientific computing. Boundary conditions can easily make the difference between a
successful and an unsuccessful computation or between a fast and a slow one. Yet in
many important cases, there is little agreement about what the proper treatment of
the boundary should be. Spectral methods are affected far more than finite difference
methods in the presence of boundary conditions. This can cause stability problems
that are ill-understood and sometimes highly restrictive as regards time step. The rea-
son that spectral methods have not replaced their lower-accuracy competition in most
applications is the difficulty with boundaries.

Since the mesh points (Gauss–Legendre or Chebyshev) are more congested near bound-
aries, the spectral methods are more sensitive to boundary conditions. Boundary con-
ditions implementation makes the method more complicated. A BVP with inhomoge-
neous boundary conditions can be transformed into a similar problem with homogeneous
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boundary conditions using a linear transformation, see (1; 2). A BVP with the Dirichlet–
Neumann and Robin boundary conditions, we cannot find such transformation which
make it difficult to implement spectral methods.

We are presenting implementation strategies to resolve boundary conditions issues.
Using these techniques, we can not only implement inhomogeneous Dirichlet bound-
ary conditions without transforming the problem but also implement mixed Dirichlet–
Neumann or Robin boundary conditions efficiently. A Legendre-collocation method is
employed to obtain highly accurate numerical approximations to the exact solution.

Organization of this paper is as follows: In section 2 we mention the spectral method
and an algorithm to construct differentiation matrix. Various implementation strategies
to implement different boundary conditions are given in section 3. Several problems
are solved in section 4 to show the performance of the method. Finally we provide
concluding remarks in section 5.

2 Spectral Method

The idea of spectral methods arise from the problem of approximating a function using
interpolating polynomials. In this section we shall describe the Gauss–Legendre spectral
method. The idea is similar to the Chebyshev spectral method cf.(1, Ch. 6), (2, Ch. 8),
and (3). We shall use Gauss–Legendre points to construct the differentiation matrices
to approximate the derivatives. For Gauss–Legendre spectral method the grid points
used are the Gauss–Legendre points, also known as Gaussian quadrature points. These
points are the eigenvalues of the triangular matrix, (1)

A =




0 0.5√
(1−(2×1)−2)

0.5√
(1−(2×1)−2)

0 0.5√
(1−(2×2)−2)

0.5√
(1−(2×2)−2)

0 0.5√
(1−(2×3)−2)

. . . . . . . . .

0.5√
(1−(2×(N−2))−2)

0 0.5√
(1−(2×(N−1))−2)

0.5√
(1−(2×(N−1))−2)

0




,

which are not equally spaced. These points are used to construct the differentiation
matrices. Given a function u defined on the Gauss–Legendre points, a discrete derivative
denoted by w is obtained in two steps as follows:

• Let P be the unique polynomial of degree ≤ N with P (xj) = yj, 0 ≤ j ≤ N .
• Define wj = P ′(xj).

3



Since this is a linear operation, it can be represented using matrix notation w = DNy.
We shall use P (x) as the Lagrange interpolation polynomial interpolating yj at xj, j =
0, 1, 2, ..., N ,

P (x) = y0l0(x) + y1l1(x) + y2l2(x) + ...+ yN lN(x), (1)

where

lj(x) =
N∏

k=0
k 6=j

(
x− xk
xj − xk

)
=

1

aj

N∏

k=0
k 6=j

(x− xk), aj =
N∏

k=0
k 6=j

(xj − xk). (2)

Differentiating (2) using logarithm, we get,

l′j(x) = lj(x)
N∑

k=0
k 6=j

(
1

x− xk
)

=
1

aj

N∑

k=0
k 6=j

[ N∏

k=0
k 6=i,j

(x− xk)
]
. (3)

For N = 2,

P ′(x) = l′0(x)y0 + l′1(x)y1 + l′2(x)y2

=
1

a0

[
(x− x1) + (x− x2)

]
y0 +

1

a1

[
(x− x0) + (x− x2)

]
y1

+
1

a2

[
(x− x0) + (x− x1)

]
y2.

At x0, x1, and x2,

P ′(x0) =
1

a0

[
(x0 − x1) + (x0 − x2)

]
y0 +

1

a1

[
(x0 − x2)

]
y1 +

1

a2

[
(x0 − x1)

]
y2

=
(x0 − x1) + (x0 − x2)

(x0 − x1)(x0 − x2)
y0 +

(x0 − x2)

(x1 − x0)(x1 − x2)
y1 +

(x0 − x1)

(x2 − x0)(x2 − x1)
y2

=
(x0 − x1) + (x0 − x2)

(x0 − x1)(x0 − x2)
y0 +

(x0 − x1)(x0 − x2)

(x0 − x1)(x1 − x0)(x1 − x2)
y1

+
(x0 − x2)(x0 − x1)

(x0 − x2)(x2 − x0)(x2 − x1)
y2

=
(
(x0 − x1)−1 + (x0 − x2)−1

)
y0 +

a0

a1(x0 − x1)
y1 +

a0

a2(x0 − x2)
y2.

Similarly,

P ′(x1) =
a1

a0(x1 − x0)
y0 +

(
(x1 − x0)−1 + (x1 − x2)−1

)
y1 +

a1

a2(x1 − x2)
y2

P ′(x2) =
a2

a0(x2 − x0)
y0 +

a2

a1(x2 − x1)
y1 +

(
(x2 − x0)−1 + (x2 − x1)−1

)
y2.
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Which can be written as w = D2y, where

D2 =




(x0 − x1)−1 + (x0 − x2)−1 a0

a1(x0−x1)
a0

a2(x0−x2)

a1

a0(x2−x1)
(x1 − x0)−1 + (x1 − x2)−1 a1

a2(x1−x2)

a2

a0(x2−x0)
a2

a1(x2−x1)
y1 (x2 − x0)−1 + (x2 − x1)−1



,

For x0 = −1, x1 = 0, x2 = 1, this matrix simplifies to

D2 =




−1.5 2 −0.5

−0.5 0 0.5

0.5 −2 1.5



.

Similarly, for x0 = −1, x1 = − 1√
3

= −0.5774, x2 = 1√
3

= 0.5774, x3 = 1, the differentia-
tion matrix becomes,

D3 =




−3.5000 4.0981 −1.0981 0.5000

−1.3660 0.8660 0.8660 −0.3660

0.3660 −0.8660 −0.8660 1.3660

−0.5000 1.0981 −4.0981 3.5000




.

From these three examples we find that the differentiation matrices are in general not
symmetric or skew-symmetric. A more general statement is that they are not normal,
which is a reason that stability analysis is difficult for spectral methods.

For an arbitrary N , the differentiation matrix is given by the following theorem.

Theorem 1 (1) For N ≥ 2 any integer, the first order spectral differentiation matrix
DN has the following entries

(DN)ij =
1

aj

N∏

k=0
k 6=i,j

(xi − xk) =
ai

aj(xi − xj) i 6= j,

(DN)jj =
N∑

k=0
k 6=j

(
1

xj − xk
)
.

The second order spatial derivative can be approximated via D2
N , the square of the

matrix DN .
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3 Implementation Strategies

I this section various implementation strategies are given to solve second order boundary
value problems

p(x)y′′ + q(x)y′ + r(x)y = f(x), a ≤ x ≤ b (4)

3.1 Constant Coefficients Case

For the case when p(x), q(x), and r(x) are constant, we can write the problem (4) as
Ay = f , where A = pD2+qD+rI, y = [y0 y1 . . . yn]T , and f = [f(x0) f(x1) . . . f(xn)]T .

1. For homogeneous boundary conditions y(x0) = y0 = 0 and y(xn) = yn = 0, first
and last columns of the matrix A have no effect and therefore these columns are
deleted. Also first and last rows deleted since these rows corresponds to y0 and yn.
See (1) for more details.

2. For inhomogeneous boundary conditions y(x0) = y0 and y(xn) = yn when not both
y0 and yn are zero, we replace the first and last rows of A by the first and last rows
of an Identity matrix I of the same size and replace f(x0) by y0 and f(xn) by yn.

3. For Neumann boundary conditions y′(x0) = d1 and y′(xn) = d2, we replace the
first and last rows of A by the first and last rows of D and replace f(x0) by d1 and
f(xn) by d2.

4. For Dirichlet boundary condition on one side and Neumann boundary condition
on the other side, say y(x0) = y0 and y′(xn) = d2, we replace the first row of A by
the first row of I and last row of A by the last row of D. Also replace f(x0) by y0

and f(xn) by d2.

3.2 Nonconstant Coefficients Case

For the case when p(x), q(x), and r(x) are not all constant, we compute the matrix A
as:

A =




p(x0)D2(1, :) + q(x0)D(1, :) + r(x0)I(1, :)

p(x1)D2(2, :) + q(x1)D(2, :) + r(x1)I(2, :)
...

...
...

p(xN−1)D2(N, :) + q(xN−1)D(N, :) + r(xN−1)I(N, :)

p(xN)D2(N + 1, :) + q(xN)D(N + 1, :) + r(xN)I(N + 1, :)




,

and solve the system Ay = f for all cases mentioned in the previous subsection. Note
that D(i, :) denotes the i− th row of D.

6



−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Forcing term with random noise
Forcing term without random noise

Fig. 1. Example 1. Nonsmooth forcing term with and without random noise.

4 Numerical Experiments

Numerical experiments are performed on various nontrivial examples, particularly ex-
amples with nonsmooth forcing term. We have checked the stability of the method by
perturbing the forcing term. Stability has also been checked by adding White Gaussian
Random noise to the forcing term.

Example 1. This is a Sturm–Liouville differential equation with inhomogeneous bound-
ary conditions and nonsmooth forcing term. We consider the differential equation,

x2y′′ + 2xy′ − 6y = |x| (5)

with
y(−1) = 1, y(1) = 1. (6)

having the exact solution

y(x) =
5

4
x2 +

1

5x3





5x4

4
if x < 0

undefined if x = 0

−5x4

4
if x > 0

Figure 1 shows graph of the forcing term with and without random noise. Solution of
(5) is shown in figure 2.

Example 2. This example has constant coefficients and homogeneous Dirichlet bound-
ary conditions. We consider the problem

y′′ + y′ − 6y = |x| (7)

with
y(−1) = 0, y(1) = 0, (8)
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−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Numerical with random noise
Numerical without random noise
Exact

Fig. 2. Example 1. Exact and Numerical solution with and without random noise.
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0.6

0.8

1

1.2
Forcing Function with random noise
Forcing without random noise

Fig. 3. Example 2. Graph of forcing term.

having the exact solution

y(x) =− 1

180

e2x−3 (−18 e8 − 25 + 35 (e6) + 8 e3)

e−5 − e5

+
1

180

e−3x (−18 + 35 e−2 + 8 e−5 − 25 e2)

e−5 − e5

+





1+6x
36

if x ≤ 0

− 1
180

(5 + 30x+ 8− 18e2x) if x > 0

We also compute the numerical solution of the perturbed problem

y′′ + y′ − 6y = (1 + ε)|x|

with same boundary conditions. We find that the perturbed solutions converge to the
unperturbed solution as ε→ 0 as is shown in the figure 5.
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−1 −0.5 0 0.5 1
−0.05

−0.045

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0
Numerical with random noise
Numerical without random noise
Exact

Fig. 4. Example 2. Exact and Numerical solution with and without random noise.

−1 −0.5 0 0.5 1
−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0
Exact
Epsilon = 0.2
Epsilon = 0.1
Epsilon = 0.05
Epsilon = 0.025

Fig. 5. Example 2. Perturbed numerical solutions converge to the exact solution as ε→ 0.

Example 3. (Nonconstant Coefficients and Homogeneous Dirichlet Boundary) Con-
sider the differential equation,

y′′ + y′ − 6y = Heaviside(x) (9)

with homogeneous boundary conditions

y(−1) = 0, y(1) = 0, (10)

and the exact solution

y(x) = 1/30
e2xe3 (−5 + 3 e2 + 2 e−3)

−e2e3 + e−3e−2
− 1/30

e−3xe−2 (−5 + 3 e2 + 2 e−3)

−e2e3 + e−3e−2

+ 1/30 Heaviside (x)
(
−5 + 3 e2x + 2 e−3x

)

Example 4.(Constant Coefficient and Inhomogeneous Neumann Boundary) Consider
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Fig. 6. Example 3. Discontinuous forcing term with and without random noise.

−1 −0.5 0 0.5 1
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Fig. 7. Example 3. Exact and Numerical solution with and without random noise.

−1 −0.5 0 0.5 1
−0.12

−0.1
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0
Exact
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Epsilon = 0.1
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Fig. 8. Example 3. Perturbed numerical solutions converge to the exact solution as ε→ 0.
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0 1 2 3 4 5 6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Maximum Error = 2.1982e−014    Computation Time=0.062

Numerical
Exact

Fig. 9. Example 4. Exact and Numerical Solutions.

the differential equation,
y′′ − y′ − 6y = sin(x) (11)

with homogeneous boundary conditions

y′(0) = 1, y′(2π) = −1, (12)

and the exact solution

y(x) = − 1

150

e3x(43 + 57 e−4π)

e6π − e−4π
− 1

100

e−2x(57 e6π + 43)

e6π − e−4π
+

1

50
cos(x)− 7

50
sin(x) (13)

Example 5. (Hermite Differential Equation) Consider the differential equation,

y′′ − 2xy′ + λy = 0 (14)

with homogeneous boundary conditions

y(0) = 0, y(1) = 1. (15)

Exact solution of this problem for λ = 3 computed by Maple 10 consists of several
Bessel–I functions.

y(x) = −
e
x2

2
√
x
[
2x2BesselI (−3

4
,−x2

2
) + 2 BesselI (1

4
,−x2

2
)x2 − BesselI (1

4
,−x2

2
)
]

e
1
2 (BesselI (1

4
,−1

2
)− 2 BesselI (5

4
,−x2

2
))

(16)

Exact solution corresponding to λ = 8 consists of erfi(x) function,

y(x) = −(10x− 4x3)ex
2

+ 4 erfi(x)(3
4
− 3x2 + x4)

√
π

−6 e+ 5 erfi(1)
√
π

(17)

Note: erfi(x) is not a Matlab function.
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Fig. 10. Example 5. Numerical and Exact Solutions for λ = 3.
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Fig. 11. Example 5. Exact and Numerical Solutions corresponding to λ = 8.
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Fig. 12. Example 5. Numerical Solutions corresponding to λ = 0, 1, 2, 3, 4, 5, 6, 7, 8.
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Fig. 13. Example 6. Exact and Numerical Solutions corresponding to v = 1.

Example 6.(Anger’s Differential Equation) Consider the differential equation,

x2y′′ + xy′ + (x2 − v2)y =
x− v
π

sin(πv) (18)

with Dirichlet–Neumann boundary conditions

y(0.5) = 1, y′(5) = 2. (19)

Exact solution of this problem computed by Maple 10 consists of several Bessel func-
tions. The exact solution of (18) for v = 1 computed by Maple 10 is:

y(x) =−


(
− 10BesselY (1,

1

2
) + 5BesselY (0, 5)− BesselY (1, 5)

)
BesselJ (1, x)




/
BesselY (1,

1

2
)
(

5BesselJ (0, 5)− BesselJ (1, 5)
)

−
(

5BesselY (0, 5)− BesselY (1, 5)
)

BesselJ (1,
1

2
)




+



(
− 10BesselJ (1,

1

2
) + 5BesselJ (0, 5)− BesselJ (1, 5)

)
BesselY (1, x)




/
BesselY (1,

1

2
)
(

5BesselJ (0, 5)− BesselJ (1, 5)
)

−
(

5BesselY (0, 5)− BesselY (1, 5)
)

BesselJ (1,
1

2
)
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Numerical for v =1
Numerical for v =2
Numerical for v =3
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Fig. 14. Example 6. Numerical Solution corresponding to v = 1, 2, 3, 4, 5.
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Fig. 15. Example 6. Numerical Solution corresponding to v = 0.1.
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