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Abstract: The classical inverse problem of recovering the initial temperature distribution from the final

temperature distribution is extremely ill-posed. It is believed that it is very difficult to recover the initial

temperature distribution in case of noisy final data by usual methods. A simple and convenient Fourier

regularization method for solving one dimensional backward heat equation was proposed by Fu et. al. [4]. The

method is extended to two dimensional backward heat equation problem. Some quite sharp error estimates

between the approximate solution and exact solution are provided. Numerical examples show that the method

works effectively.
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1 INTRODUCTION

The inverse heat conduction problems are extremely ill-posed [11, 2, 6] and without regularization of

the inverse solution, the results are not suitable for a particular application. If solution of backward

heat conduction problem (BHCP) exist, it will not be continuously dependent on the final data. Some

special regularization methods are required to obtain meaningful results both by analytic and numerical

methods.
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2 Initial Inverse Problems

Several techniques have been developed to regularize the solution of inverse heat conduction prob-

lems. Masood et.al [14, 15] developed an approach to recover the initial temperature distribution using

Bessel operator. A quasi-reversibility method is applied by Lattes and Lions [10], Ames [1] and Miller

[17]. Tautenhahn and Schroter [22] proposed an optimal error estimate for a particular backward

problem. Seidman established an optimal filtering method [20]. Mera [16] and Jourhmane and Mera

[8] used many regularization techniques and numerical methods to solve backward heat conduction

problems. A mollification method has been studied by Hào [5]. Recently, Liu used a group preserv-

ing scheme to solve the backward heat equation numerically [13]. Kirkup and Wadsworth used an

operator-splitting method [9].

The quasi-solution method to solve the equation of the first kind was introduced by Ivanov [7]. The

essence of this method is to change the notion of solution of an ill-posed problem so that, for certain

conditions, the problem of its determination will be well-posed. Tikhonov’s regularization method is

widely used for solving linear and nonlinear operator equations of the first kind, see Tikhonov and

Arsenin [23]. Iterative methods are applied to solve different problems and particularly these methods

can also be applied to solve operator equations of the first kind. Moultanovsky [19] applied such

iterative method to solve an initial inverse heat transfer problem. The projective methods for solving

various ill-posed problems are based on the representation of the approximate solution as a finite

linear combination of a certain functional systems, see e.g. Vasin and Ageev [24]. For some recent

developments in the ill posed inverse heat conduction problems, see Shidfar et al. [21], Ling et al. [12]

and references there in.

2 FOURIER TRANSFORMATION

In this section we shall describe the Foruier regularization method for the inverse heat conduction

problem. Fu et. al. [3] proposed a quite simple and convenient method–Fourier regularization method

for one dimensional problem. Error analysis with some faster convergence error estimates are given

in [3]. Especially, the convergence of the approximate solution at t = 0 is proved in [3]. A numerical

example is also presented in [3] to demonstrate the performance of the method.

We are presenting an extension of the method to two dimensional problem. Error estimates between

the approximate solution and exact solution are provided. A numerical example is also solved to show

how closely the proposed method approximates the exact profile.

We consider the following two dimensional heat conduction problem

ut = uxx + uyy, −∞ < x < ∞, −∞ < y < ∞, 0 ≤ t < T (2.1)

u(x, y, T ) = ϕT (x, y)
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Heat Equation 3

The objective is to determine the temperature distribution u(x, y, t), 0 ≤ t < T from the given final

data ϕT (x, y). Let ĝ(ξ, η) denote the Fourier transformation of g(x, y) ∈ L(R×R)

ĝ(ξ, η) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
e−i(ξx+ηy)g(x, y)dxdy. (2.2)

Define the norm ∥g∥Hs on the Sobolev space Hs(R2)

∥g∥Hs =

(∫ ∞

−∞

∫ ∞

−∞
|ĝ(ξ, η)|2(1 + ξ2)s(1 + η2)sdξdη

)1/2

, (2.3)

and ∥g∥H0 = ∥.∥ reduces to the L2(R2)–norm. A solution of the problem (2.1) is a function u(x, y, t)

satisfying (2.1) in the classical sense and is twice integrable for every fixed t ∈ [0, T ]. We also assume

that if the solution of (2.1) exist, it must be unique. Applying the Fourier transformation to problem

(2.1) with respect to the variables x and y, we can get the Fourier transform û(ξ, η, t) of the exact

solution u(x, y, t) of (2.1) as:

û(ξ, η, t) = e(ξ
2+η2)(T−t)ϕ̂T (ξ, η) (2.4)

and by the inverse Fourier transformation

u(x, y, t) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
ei(ξx+ηy)e(ξ

2+η2)(T−t)ϕ̂T (ξ, η)dξdη. (2.5)

From equation (2.4) we get,

û(ξ, η, 0) = e(ξ
2+η2)T ϕ̂T (ξ, η). (2.6)

The initial temperature distribution u(x, y, 0) ∈ L2(R2), therefore there exists an apriori bound

∥u(x, y, 0)∥ ≤ E. (2.7)

From (2.6) and (2.7) and using Parseval identity,

∥u(x, y, 0)∥2 =

∫ ∞

−∞

∫ ∞

−∞
|e(ξ

2+η2)T ϕ̂T (ξ, η)|2dξdη < ∞. (2.8)

From (2.8) we note that e(ξ
2+η2)T → ∞ as |ξ|, |η| → ∞, therefore a rapid decay of ϕ̂T (ξ, η) occurs

at high frequencies. As the inverse heat conduction problem is severely ill–posed, a small error in

measured data ϕm
T (x, y) at t = T produces a large error in the observed temperature distribution

u(x, y, t) for 0 ≤ t < T .

Many authors tried to recover the temperature distribution by filtering out the high frequencies.

Miranker [18] considered a subspace of L(R2) of functions whose Fourier transform have compact

support and proved that the backward problem is well posed in that subspace in the sense of Hadamard.

The only draw back in Miranker’s method is that it is conditionally stable and it does not take into

account the noise in the measured data. In the present work, following [3], the high frequencies in the

solution are eliminated by considering the inverse Fourier transform only for |ξ| < ξmax and |η| < ηmax

where ξmax and ηmax are some suitable constants. The Fourier regularization method is simple and

robust and may be applicable to a large number of inverse heat conduction problems.
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4 Initial Inverse Problems

3 ERROR ESTIMATES

Consider the exact data ϕT (x, y) and the measured data ϕm
T (x, y) at t = T , which satisfy the following

condition

∥ϕT − ϕm
T ∥ ≤ ϵ, (3.1)

and

∥u(x, y, 0)∥Hs ≤ E, s ≥ 0. (3.2)

Define an approximate solution um
ξmax,ηmax

(x, y, t) of (2.1) for the measured data ϕm
T (x, y) as

um
ξmax,ηmax

(x, y, t) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
ei(ξx+ηy)e(ξ

2+η2)(T−t)ϕ̂m
T (ξ, η)χξmaxχηmaxdξdη, (3.3)

where χξmax and χηmax are characteristics functions on the intervals [−ξmax, ξmax] and [−ηmax, ηmax]

respectively. The solution given in (3.3) is Fourier regularized solution for suitable choices of ξmax and

ηmax. Error estimates and choices of appropriate constants ξmax and ηmax are described in the next

theorem.

Theorem 3.1. : Let u(x, y, t) be the exact solution and um
ξmax,ηmax

be the Fourier regularized solution

of (2.1) for 0 ≤ t < T . Suppose conditions (3.1) and (3.2) hold. If we choose

ξmax =

[
1

2
ln

((
E

ϵ

) 1
T
(
ln

(
E

ϵ

))−s
2T

)] 1
2

, (3.4)

ηmax =

[
1

2
ln

((
E

ϵ

) 1
T
(
ln

(
E

ϵ

))−s
2T

)] 1
2

, (3.5)

then the following logarithmic stability estimate holds,

∥u(x, y, t)− um
ξmaxηmax

(x, y, t)∥ ≤ E1− t
T ϵ

t
T

(
ln

(
E

ϵ

)) s(t−T )
2T


 2

√
ln(Eϵ )

1
T ln(Eϵ ) + ln(ln(Eϵ ))

−s
2T

s

+ 1

 (3.6)
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Heat Equation 5

Proof. Using (2.5),(2.6),(3.1),(3.2), (3.3) and Parseval formula

∥u(x, y, t)− um
ξmax,ηmax

(x, y, t)∥

= ∥e(ξ
2+η2)(T−t)ϕ̂T (ξ, η)− e(ξ

2+η2)(T−t)ϕ̂m
T (ξ, η)χξmaxχηmax∥

≤ ∥e(ξ
2+η2)(T−t)ϕ̂T (ξ, η)− e(ξ

2+η2)(T−t)ϕ̂T (ξ, η)χξmaxχηmax∥

+ ∥e(ξ
2+η2)(T−t)ϕ̂T (ξ, η)χξmaxχηmax − e(ξ

2+η2)(T−t)ϕ̂m
T (ξ, η)χξmaxχηmax∥

=

(∫
|ξ|>ξmax

∫
|ξ|>ξmax

|e(ξ
2+η2)(T−t)ϕ̂T (ξ, η)|2dξdη

) 1
2

+

(∫
|ξ|≤ξmax

∫
|η|≤ηmax

|e(ξ
2+η2)(T−t)

(
ϕ̂T (ξ, η)− ϕ̂m

T (ξ, η)
)
|2dξdη

) 1
2

=

(∫
|ξ|>ξmax

∫
|η|>ηmax

|e(ξ
2+η2)(T−t)e−(ξ2+η2)T û(ξ, η, 0)|2dξdη

) 1
2

+

(∫
|ξ|≤ξmax

∫
|η|≤ηmax

|e(ξ
2+η2)(T−t)

(
ϕ̂T (ξ, η)− ϕ̂m

T (ξ, η)
)
|2dξdη

) 1
2

=

(∫
|ξ|>ξmax

∫
|η|>ηmax

|e−(ξ2+η2)tû(ξ, η, 0)|2dξdη

) 1
2

+

(∫
|ξ|≤ξmax

∫
|η|≤ηmax

|e(ξ
2+η2)(T−t)

(
ϕ̂T (ξ, η)− ϕ̂m

T (ξ, η)
)
|2dξdη

) 1
2

≤ sup
ξmax,ηmax

e−t(ξ2+η2)

(1 + ξ2)s/2(1 + η2)s/2

(∫
|ξ|>ξmax

∫
|η|>ηmax

|û(ξ, η, 0)|2(1 + ξ2)s(1 + η2)sdξdη

)1/2

+ sup
ξmax,ηmax

e(ξ
2+η2)(T−t)

(∫
|ξ|≤ξmax

∫
|η|≤ηmax

|ϕ̂T (ξ, η)− ϕ̂m
T (ξ, η)|2dξdη

)1/2

≤ sup
ξmax,ηmax

e−t(ξ2+η2)

|ξ|s|η|s
E + sup

ξmax,ηmax

e(ξ
2+η2)(T−t)ϵ

≤ e−t ln(E
ϵ )1/T (ln(E

ϵ )−s/2T )[
1
2 ln

(
(Eϵ )

1/T ln(Eϵ )
−s/2T

)] + e(T−t) ln(E
ϵ )1/T (ln(E

ϵ ))
−s/2T

ϵ

=

(
E

ϵ

)t/T (
ln

(
E

ϵ

))st/2T
 2

√
ln
(
E
ϵ

)
1
T ln

(
E
ϵ

)
+ ln

(
ln
(
E
ϵ

))−s/2T

s(
ln

(
E

ϵ

))−s/2

E

+

(
E

ϵ

)T−t
T
(
ln

(
E

ϵ

))−s(T−t)
2T

ϵ

= E1− t
T ϵ

t
T

ln

(
E

ϵ

) s(t−T )
2T



 2

√
ln
(
E
ϵ

)
1
T ln

(
E
ϵ

)
+ ln

(
ln
(
E
ϵ

))−s/2T

s

+ 1

 .
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6 Initial Inverse Problems

In the estimate (3.6), the term

√
ln(E

ϵ )
1
T ln(E

ϵ )+ln(ln(E
ϵ ))

−s/2T is bounded as ϵ → 0. For s = 0, estimate

(3.6) can be written as

∥u(x, y, t)− um
ξmax,ηmax

(x, y, t)∥ ≤ 2E1− t
T ϵ

t
T (3.7)

Remark. From the estimate (3.7), it is clear that as t → 0, the error bound is 2E, i.e. the conver-

gence at t = 0 cannot be obtained. However from (3.6), for t = 0,

∥u(x, y, t)− um
ξmax,ηmax

(x, y, t)∥ ≤ E1− t
T ϵ

t
T

(
ln

(
E

ϵ

)) s(t−T )
2T


 2

√
ln(Eϵ )

1
T ln(Eϵ ) + ln(ln(Eϵ ))

−s
2T

s

+ 1


→ 0, as ϵ → 0 and s > 0

Remark. Note that

√
ln(E

ϵ )
1
T ln(E

ϵ )+ln(ln(E
ϵ ))

−s/2T → 0 as ϵ → 0. Therefore (3.6) can be written as

∥u(x, y, t)− um
ξmax,ηmax

(x, y, t)∥ ≤ E1− t
T ϵ

t
T

(
ln

(
E

ϵ

)) s(t−T )
2T

[1 + o(1)] , as ϵ → 0 (3.8)

It is clear form (3.8) that accuracy of the estimate increases with decreasing T .

Remark. In actual practice, the bound on E is not known, and therefore, we assume

ξmax =

[
1

2
ln

((
1

ϵ

) 1
T
(
ln

(
1

ϵ

))−s
2T

)] 1
2

, (3.9)

ηmax =

[
1

2
ln

((
1

ϵ

) 1
T
(
ln

(
1

ϵ

))−s
2T

)] 1
2

, (3.10)

and also assume that as estimate on ϵ is available for practical applications. In this case the estimate

(3.5) takes the form

∥u(x, y, t)− um
ξmax,ηmax

(x, y, t)∥ ≤ ϵ
t
T

(
ln

(
1

ϵ

)) s(t−T )
2T

E
 2

√
ln(1ϵ )

1
T ln(1ϵ ) + ln(ln(1ϵ ))

−s
2T

s

+ 1


or

∥u(x, y, t)− um
ξmax,ηmax

(x, y, t)∥ ≤ ϵ
t
T

(
ln

(
1

ϵ

)) s(t−T )
2T

[1 + o(1)] , as ϵ → 0. (3.11)

4 NUMERICAL EXPERIMENTS

Numerical experiments are performed on a two dimensional problem for various values of ϵ, ξmax and

ηmax. To test the method, Matlab function rand is used to generate the noisy (measured) data

ϕm
T (x, y) = ϕT (x, y) + ϵ rand(ϕT (x, y)), (4.1)
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FIG. 1. Exact solution at t=0.

where ϕT (x, y) is the exact data, rand(ϕT (x, y)) is an n× n matrix of random numbers in [0, 1] and ϵ

is the magnitude of the random noise.

Example 1. Consider the function

u(x, y, t) =
1

1 + 4t
e

−(x2+y2)
1+4t . (4.2)

as solution of the following initial value problem

ut = uxx + uyy, x, y ∈ D, t ∈ (0, T ] (4.3)

with initial condition

u(x, y, 0) = e−(x2+y2), x, y ∈ D, (4.4)

where the domain D is taken as a rectangle [−5, 5]× [−5, 5]. The solution (4.2) is also the solution of

the following backward heat equation for 0 ≤ t < T

ut = uxx + uyy, x, y ∈ D, t ∈ (0, T ] (4.5)

with initial condition

u(x, y, T ) =
1

1 + 4T
e

−(x2+y2)
1+4T . (4.6)
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8 Initial Inverse Problems
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FIG. 2. Numerical solution at t=0 for ϵ = 0.001, ξmax = 2.0 and ηmax = 2.125.
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FIG. 3. Numerical solution at t=0 for ϵ = 0.0001, ξmax = 2.00 and ηmax = 2.125.
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FIG. 4. Numerical solution at t=0 for ϵ = 0.0001, ξmax = 2.25 and ηmax = 2.25.
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FIG. 5. Numerical solution at t=0 for ϵ = 0.00001, ξmax = 2.50 and ηmax = 2.50.
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5. D.N. Hào, A mollification method for ill-posed problems, Numer. Math. 68 (1994) 469–506.

6. V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, New York, 1998.

7. Ivanov, V. K., 1963, On ill-posed problems, Mat. Sb., 61(2), pp. 211-223 (in Russian).

8. M. Jourhmane, N.S. Mera, An iterative algorithm for the backward heat conduction problem based on

variable relaxation factors, Inverse Problems in Engineering 10 (2002) 293–308.

9. S.M. Kirkup, M. Wadsworth, Solution of inverse diffusion problems by operator-splitting methods, Appl.

Math. Modelling 26 (10) (2002) 1003–1018.

10. R. Lattes, J.L. Lions, Methode de Quasi-Reversibility et Applications, Dunod, Paris, 1967 (English trans-

lation: R. Bellman, Elsevier, New York, 1969).
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