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ESTIMATION OF KURTOSIS FOR MULTIVARIATE DATA

S. E. AHMED, M. H. OMAR, AND A. H. JOARDER

Abstract. In this paper, we suggest some improved estimation strategies for
the kurtosis parameter based on shrinkage and pretest methodologies in the
presence of non-sample information (NSI) regarding the kurtosis parameter.
Indeed, the shrinkage and pretest methods use the NSI in some optimal sense.
In practice, NSI is readily available in the form of a realistic conjecture based
on the experimenter�s knowledge and experience with model and data. It is
advantageous to utilize NSI in the estimation process to construct improved
estimation for the kurtosis parameter. A large sample theory of the suggested
estimators are developed where the properties of these estimators are examined
both analytically. Further research directions are also discussed.

1. Introduction and Preliminaries

Skewness and kurtosis have been used in tests of normality, robustness, outliers,
modi�ed tests and estimation, large sample inferences, and other situations. The
kurtosis parameter is embedded in many inference problems. For example, the
asymptotic variance of process capability indices, coe¢ cient of variation and ef-
fect size index depend on kurtosis parameter, among other parameters. In its own
right, kurtosis measure the "peakedness" of a distribution. Generally speaking, the
kurtosis parameter and its estimation is not "stable", specially in the presence of
outliers. In this communication, our parameter of interest is kurtosis and we con-
sider some improved alternative estimation strategies. Our objective is to combine
sample and non-sample information in the estimation process for the kurtosis pa-
rameter of a multivariate normal distribution. The kurtosis parameter estimation
is embedded in many statistical estimation problems and applications, see Douglas
(2006) and An and Ahmed (2008). The asymptotic variance of many important
indices are a function of kurtosis parameter and hence an accurate and precise esti-
mation of kurtosis is needed. Kim and White (2004) argued that the role of higher
moments has become increasingly important in the literature mainly because the
traditional measure of risk, variance (or standard deviation), has failed to capture
fully the �true risk� of the distribution of stock market returns; see also Harvey
and Siddique (2000).
This research is motivated by diverse applications and involvement. Some moti-

vating examples are given below.
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Let X be a p-dimensional random variable with mean vector � and covariance
matrix �. Then the kurtosis parameter is de�ned as

� = E[f(X� �)0��1(X� �)g2]:

For multivariate normal distribution, we have � = p(p+ 2); and for the univariate
normal distribution, since p = 1; the kurtosis parameter will have a value 3. For the
bivariate case, with p = 2, � has a simpli�ed version in terms of centered product
moments (Joarder and Abujiya, 2008).
The estimate of the kurtosis measure based on a sample (X1, , ... , Xn) is

^
� =

1

n

nX
i=1

f(Xi �
�
X)0S�1(Xi �

�
X)g2

where
�
X and S are sample mean and sample covariance matrix given by

�
X =

1

n

nX
i=1

Xi and S =
1

n� 1

nX
i=1

(Xi �
�
X)(Xi �

�
X)0

respectively. Further, the asymptotic normality of
^
� is presented in the following

lemma.

Lemma 1. (Mardia,1970). Let the p-dimensional random vector X � Np(�;�);
then as n !1

p
n(
^
� � �) �!

D
N (0; 8�);

where the notation �!
D
means convergence in distribution and Np is the multivariate

normal density function.

Now, we state another related de�nition (Srivastava, 1984). Let �1; � � � ; �p be
the eigenvalues of � and let 
1; � � � ; 
p be a columns of a matrix � such that �0��
= diag(�1; � � � ; �p). Let Yi = 
0iX and �i = 
0i� for i = 1; � � � p. Then, the kurtosis
parameter is de�ned as

�� =
1

p

pX
i=i

E[(Yi � �i)4]
�2i

:

Let �̂� be the corresponding sample measurements, then under multivariate nor-
mality np

24 (�̂� � 3) is asymptotically distributed as standard normal.
However, both estimators are very sensitive to outliers or unusual observation.

A few contaminated observations may have diverse e¤ect on its sample estimates.
For this reason we try to stabilize the kurtosis parameter estimation by incorporat-
ing the available parameter information in the estimation process. In this article,
although we focus on the estimation of �, the obtained results can also be imple-
mented for the estimation of ��.
A plan of this paper is as follows. The improved estimation procedures based

on shrinkage and the preliminary test method are considered in Section 2 along
with some asymptotic results. In Section 3, we compare our estimators with the
sample estimate and show that our methods are asymptotically superior to sample
estimate when the non-sample information (NSI) regarding the kurtosis parameter
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is credible or even nearly credible. The results of the simulation experiment are
given in Section 4 to illustrate our methods. Further, examples are given in section
5. Finally, we provide concluding remarks in Section 6.

2. Improved Estimation Strategies

Our main focus here is to improve the estimation of � when it is assumed that
the data come from a multivariate normal distribution. However, the data may be
contaminated by a few observation, which will have a very negative impact on the

sample estimate,
^
�. Hence, in an e¤ort to stabilize the parameter estimation of �,

we investigate alternative strategies for parameter estimation. In a number of real
problems, the practitioner has available both an approximation of � that provides
a constant �o and a sample based estimator that provides a point estimator �̂. The
quality of �o is unknown; the analyst, however, respect its ability to approximate
�. Our problem is to is to combine the approximation or opinion on �o and the
sample result �̂. Consequentially, we consider estimators based on shrinkage and
pretest estimation.
For both shrinkage and preliminary test estimators we discuss performance as

measured by mean squared error (MSE), the sum of squared bias and variance.
The approximation �o is deterministic, which can be interpreted as zero variance;
its error, � � �o, can be interpreted as bias. Suppose the analyst wishes to report
the point estimator de�ned by the linear combination

(2.1)
^
�S = c�o + (1� c)

^
�;

in which we would choose, in ideal circumstances, the coe¢ cient c so as to minimize
the mean squared error (MSE ). Further, c may also be de�ned as the degree of
con�dence in the prior information �o: The value of c 2 [0; 1] may be assigned by
the experimenter according to con�dence in the prior value of �o: If c = 0, then we
use the sample data only. We may choose an estimator of optimal c that minimizes
the variance. However, the optimal value of c depends on the unknown parameter
� and thus it is not accessible (oracle). Estimators constructed as linear (or, more
precisely, convex) combinations of other estimators or guessed values as in (2.1),

are called composite estimators. The composite estimator
^
�S can be interpreted as

shrinkage estimator (SE ), as it shrinks the sample estimator
^
� towards �o. Ledoit

and Wolf (2003) applied this strategy to estimate the covariance matrix. They
suggested to shrink the MLE of the covariance matrix towards structured covariance
matrices that can have relatively small estimation error in comparison with the
MLE.
Ahmed and Krzanowski (2004) and others pointed out that such an estimator

yields smaller mean squared error (MSE ) when a priori information �o is correct
or nearly correct, however at the expense of poorer performance in the rest of
the parameter space induced by the prior information. We will demonstrate that
^
�S will have a smaller MSE than

^
� near the restriction, that is, �o. However,

^
�S becomes considerably biased and ine¢ cient when the restriction may not be
judiciously justi�ed. Thus, the performance of this shrinkage procedure depends



4 S. E. AHMED, M. H. OMAR, AND A. H. JOARDER

upon the correctness of the uncertain prior information. As such, when the prior
information is rather not trustworthy, it may be desirable to formulate a shrinkage

pretest estimator (SPE) denoted by
^
�
SP

which incorporates a pretest on �o. Thus,

the estimator yields either
^
� or

^
�S depending upon the outcome of the pretest. If

the prior information is tenable, one may use
^
�S , while

^
� may be chosen otherwise.

Thus, we consider the shrinkage pretest estimator which is de�ned as

(2.2)
^
�
SP

=
^
�I(Ln � c�) + [(1� c)

^
� + c�o]I(Ln < c�);

where I(A) is the indicator function of a set A and Ln is the test statistic for
the null hypothesis Ho: � = �o de�ned below. Based on the result of lemma 1,
we consider the following test statistics for Ho: � = �o against Ha: � 6= �o (or
� < �o or � > �o): A natural choice of �o will be �o = p(p + 2). In other words,
we are testing the normality of the parent population using the kurtosis measure.
However, the purpose here is to improve the estimation of the kurtosis parameter
�. Hence, the statistics is given by

Ln =
f
p
n(
^
� � �o)g2

8p(p+ 2)
:

For large n(� 50) and under the null hypothesis, the test statistics Ln follows a
�2-distribution with one degree of freedom, which provides the asymptotic critical
values. It is important to note that for a �xed alternative that is di¤erent from
the null hypothesis, the power of the test statistics will converge to one as n !1.
Hence, to explore the asymptotic power properties of Ln, we con�ne ourselves to
a sequence of local alternatives fKng. In the present work, such a sequence is
speci�ed by

(2.3) Kn : �n = �o +
�p
n
;

where � is a �xed real number. Stochastic convergence of
^
� to the parameter �

ensures that
^
� �!

p
� under local alternatives as well, where the notation �!

p
means

convergence in probability.
The following theorem, which we present without proof, characterizes the as-

ymptotic powers of the three test statistics under local alternatives.

Theorem 1. Under local alternatives in (2.3) the following results hold:

1.
p
n(
^
� � �) �!

D
N (�; 8p(p+ 2));

2. Ln has asymptotically a noncentral �2-distribution with 1 degree of freedom and

non-centrality parameter � =
�2

(8p(p+ 2))2
:

Hence, the power calculations of the proposed test statistic can be accomplished
by using noncentral �2-distribution. Thus, the critical value c� of Ln may be
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approximated by �21;�; the upper 100�% critical value of the �2-distribution with
1 degree of freedom.
Further, shrinkage pretest estimator (SPE ) can be written in a more computa-

tionally attractive form as follows:

(2.4)
^
�
SP

=
^
� � c(

^
� � �o)I(Ln < c�):

Thus, the classical pretest estimator (PE ) is readily obtained, by substituting c =
1 in above relation,

(2.5)
^
�
P

=
^
� � (

^
� � �o)I(Ln < c�):

The above PE is due to Bancroft (1944). The proposed SPE (Ahmed, 1992) may

be viewed as an improved PE which represents both
^
� and PE for c = 0 and c = 1

respectively. In the literature, a discussion about pretesting can be found in Giles
and Giles (1993), Magnus (1999), Ohanti (1999), Reif and Vlµcek (2002), Khan and
Ahmed (2003), among many others.

3. Asymptotic Bias and Mean Squared Error

We will assess the performance of all these listed estimator using the mean

squared error (MSE ) criterion. The MSE of an estimator
�
� aimed at the target �

is de�ned as

MSE(
�
�;�) = Ef(

�
� � �)2g;

where the notation E is the expectation operator with reference to hypothetical

replications of the sampling process. The bias of an estimator
�
� of � is denoted by

B(
�
�;�), so

MSE(
�
�;�) = var(

�
�) +B(

�
�;�)2:

We regard MSE as a measure of e¢ ciency. However, MSE is usually not known
and its value may depend on one or several parameters, sometimes on the target
parameter itself. In addition, an estimator may be e¢ cient for some values of the
parameters but not for others. All this makes the search for the most e¢ cient
estimator a challenging problem. To meet some of these challenges, we will express
the MSE for the listed estimators as a function of non-centrality parameter � for
a smooth reading of the �ndings of the article.

Further, note that our results are based on the asymptotic normality of
^
�, so

our results will be of asymptotic nature. The asymptotic bias of an estimator
�
� of

� is de�ned as
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(3.1) AB(
�
�;�) = lim

n!1
Ef
p
n(
�
� � �)g

Under the local alternatives AB(
^
�S) = �c �, an unbounded function of �. The

expression of AB(
^
�
SP

) is obtained with the aid of the following lemma.

Lemma 2. Let Z � N (�; 1). Then

EfZI(0 < Z2 < x)g = �P (�2
3;
�2

2

< x)

where �2
3;
�2

2

is distributed as a chi-square with 3 degrees of freedom and non-

centrality parameter �2

2 :

For proof of the lemma, readers are referred to Judge and Bock (1978).

Using Lemmas 1 and 2, the following relation is established.

AB(
^
�
SP

;�) = �c�G3(�21;�;�);

where Gq(:;�) is the cumulative distribution of a noncentral �2-distribution with q
degrees of freedom and non-centrality parameter �. Since lim�!1�G3(�

2
1;�;�) =

0, we safely conclude that
^
�
SP

is asymptotically unbiased, with respect to �. For

c = 1, AB(
^
�
P

;�) = ��G3(�21;�;�). The AB(
^
�
SP

;�) and AB(
^
�
P

;�) are 0 at
� = 0: The bias functions of both pretest estimators increases to maximum as
delta increases, then decreases towards 0 as � further increases. Further, it is seen
from the AMSE expression that the larger the value of c, the greater is the variation
in the bias values.
Under the local alternatives in (2.3) we present the expressions for the AMSE

for the estimators under consideration.

AMSE(
^
�S ;�) = AMSE(

^
�;�)�AMSE(

^
�;�)c(2� c) +AMSE(

^
�;�)c2�;

where AMSE(
^
�;�) = 8p(p+ 2):

AMSE(
^
�
SP

;�) = AMSE(
^
�;�)�AMSE(

^
�;�)c(2� c)G3(�21;�;�)

+AMSE(
^
�;�)c2�f2G3(�21;�;�)� (2� c)G5(�21;�;�)g:

The expression of AMSE(
^
�
SP

;�) is readily obtained with the use of the following
lemma.

Lemma 3. Let Z � N (�; 1). Then

EfZ2I(0 < Z2 < x)g = P
 
�2
3;
�2

2

< x

!
+ �2P

 
�2
5;
�2

2

< x

!
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The proof of this lemma can be found in Judge and Bock (1978).

TheAMSE(
^
�S ;�) is a straight line function of�; which intersects theAMSE(

^
�)

at � = (2�c)=c. Under the null hypothesis, the AMSE of
^
�S is less than the AMSE

of
^
�. Speci�cally,

AMSE(
^
�S ;�) � AMSE(

^
�;�) whenever � 2 [0; (2� c)=c]:

On the other hand, AMSE(
^
�
SP

;�) � AMSE(
^
�;�) if

(3.2) � � (2� c)G3(�21;�;�)f2G3(�21;�;�)� (2� c)G5(�21;�;�)g�1:

Alternatively,
^
�
SP

performs better than
^
� if

� < (2� c)G3(�21;�;�)f2G3(�21;�;�)� (2� c)G5(�21;�;�)g�1:
The AMSE of pretest estimators are a function of �, the level of the statis-

tical signi�cance. As � approaches one, AMSE(
^
�
SP

;�) tends to AMSE(
^
�;�):

Also, when � increases and tends to in�nity, the AMSE(
^
�
SP

;�) approaches the

AMSE(
^
�;�). Indeed, for larger values of �, the value of the AMSE(

^
�
SP

;�)

increases, reaches its maximum after crossing the AMSE(
^
�;�) and then monoton-

ically decreases and approaches the AMSE(
^
�;�). It appears from the AMSE ex-

pression that the smaller the value of �, the greater is the variation in the maximum

and minimum of AMSE(
^
�
SP

;�).

For c = 1 we get the AMSE of
^
�P as follows

AMSE(
^
�P ;�) =8p(p+ 2) + 8p(p+ 2)�f2G3(�21;�;�)�G5(�21;�;�)g

� 8p(p+ 2)�G3(�21;�;�)

and AMSE(
^
�P ;�) � AMSE(

^
�;�): Accordingly,

(3.3) � � G3(�21;�;�)f2G3(�21;�;�)�G5(�21;�;�)g�1:

Thus, we notice that the range of the parameter space in (2.4) is smaller than that
in (3.2).
The risk di¤erence
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AMSE(
^
�P ;�)�AMSE(

^
�
SP

;�) =�8p(p+ 2)f2(1� c)G3(�21;�;�)
� (1� c)2G5(�21;�;�)g
� 8p(p+ 2)(1� c)2G3(�21;�;�);

suggests that AMSE(
^
�P ;�) � AMSE(

^
�
SP

;�) since

� � (1� c)G3(�21;�;�)f2G3(�21;�;�)� (1� c)G5(�21;�;�)g�1:

Thus,
^
�
SP

outshines
^
�P when

� > (1� c)G3(�21;�;�)f2G3(�21;�;�)� (1� c)G5(�21;�;�)g�1:

Hence, it can be safely concluded that none of the estimators perform better than
the other three. However, at �=0, the shrinkage estimator will be the best choice.

Also, both pretest estimators have smaller AMSE than that of
^
� when the null

hypothesis is tenable.

4. Direction for Further Research

To examine the behavior of the relative precisions of
^
�S ;

^
�P ; and

^
�
SP

to
^
�; we

can consider Ho : � = �o against Ha : � = �o + � where � is a shift real number in
the neighborhood domain of � from various data distributions. Using Monte Carlo
simulations, the various kurtosis estimators discussed earlier can be calculated .
The performance of these kurtosis parameters can be studied by comparing their
simulated relative precisions (SRP) for various values of �; where generally for an

estimator
�
�

SRP (
^
�;

�
�) =

SMSE(
^
�)

SMSE(
�
�)

where SMSE(
�
�) and SMSE(

^
�) are the empirical mean square errors of

�
� and

^
�

respectively.
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