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1. Introduction 
Let 1 2, , ( 2)NX X X N >  be a two-dimensional independent normal random vectors drawn 
from a bivariate normal distribution with mean vector 1 2( , )θ θ θ′ ′= , and covariance matrix Σ . 
Then 1 1 2 2( ) , ( )j jE X E Xθ θ= = , 2

1 1( )jV X σ= , 2
2 2( )jV X σ=  , 1 1 2 2 1 2( )( )j jE X Xθ θ ρσ σ− − =   

12σ= , where the quantity ρ is the product moment correlation coefficient. The  sample mean 
vector 1 2( , )X X X ′=  so that the mean-centered sums of squares and cross product matrix is 

given by 
1
( )( ) ( ), 1, 2; 1, 2

N

j j ik
j

X X X X A a i k
=

′− − = = = =∑ .  Then 

2 2

1
( ) , 1, ( 1, 2)

N

ii i ij i
j

a ms X X m N i
=

= = − = − =∑  and 12 1 1 2 2 1 2
1
( )( )

N

j j
j

a X X X X mrs s
=

= − − =∑ .   

 
Fisher (1915) derived the distribution of the bivariate Wishart matrix  in order to study the 
distribution of correlation coefficient for a bivariate normal sample. Wishart (1928) obtained 
the distribution of  Wishart matrix as the joint distribution of sample variances and covariances 
from multivariate normal population. The bivariate matrix A  is said to have a Wishart 
distribution with parameters 1m N= −  and (2 2) 0Σ × > , written as 2~ ( , )A W m Σ  if its 
probability density function is given by 
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( )
2 / 2 ( 3) / 221 2

11 22 12 11 22 12

11 22 12
2 2 2 2 2

1 2 1 2

(1 ) ( )( , , )  
2 ( / 2) (( 1) / 2)

                       exp
2(1 ) 2(1 ) (1 )

m m m

m
f a a a a a a

m m

a a a

ρ σ σ
π

ρ
ρ σ ρ σ ρ σ σ

− − −−
= −

Γ Γ −

⎛ ⎞
× − − +⎜ ⎟− − −⎝ ⎠

         (1.1) 

 
11 22 120, 0, , 2, 1 1a a a m ρ> > −∞ < < ∞ > − < <  (Anderson, 2003, 123). 

 
Because of the important role of Wishart distribution in multivariate statistical analysis, various 
authors have given different derivations. See the references in Gupta and Nagar (2000, 87-88) 
for a good update on the Wishart distribution.  
 
The distribution of the sample covariance based on a sample from a bivariate normal 
population has been considered by Mahalanobis, Bose and Roy (1937), Pearson, Jeffery, and 
Elderton (1929), Wishart and Bartlett (1932), Hirschfeld (1937) and Springer, (1979, 343). 
 
In this paper, we derive the density function of sample covariance by making simple 
transformations on bivariate Wishart distribution. The main contribution is the direct derivation 
of the general moment structure of sample covariance.  
 
 
2.  Some Preliminaries  
 
For any nonnegative integer k , the following notations will be used in sequel: 
 

{ } ( 1)( 2) ( 1),ka a a a a k= + + + −               (2.1) 
{ } ( 1) ( 1).ka a a a k= − − +                (2.2) 

 
2 1

2(2 )! 2 ! ( )zz z zπ = Γ +                (2.3) 
 
The modified Bessel function of the second kind admits the following integral representation:  

2
( 1)1 1

2 2
0

( ) ( ) exp
4
yK y y t t dt

t
α α

α

∞
− + ⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

∫                (2.4) 

(Watson, 1993, 183). 
 
The generalized hypergeometric function p qF is defined by  

1 { } 2 { } { }
1 2 1 2 0

1 { } 2 { } { }

( ) ( ) ( )
( , , ; , , ; )

( ) ( ) ( )
k k p k

p q p q k
k k q k

a a a
F a a a b b b z

b b b
∞

=
=∑  

 
(Gradshteyn and Ryzhik, 1994, 1071).  
 
The cumulant generating function ( )r Xκ or simply rκ of a random variable X is the 
coefficient of / !rt r in the Taylor series expansion of   
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1

( )ln ( )
!

r
r

X r

X tM t
r

κ
≥

=∑ . It can be checked that 
2

1 2 2 3 3 4 4 2,  ,  ,  3κ µ κ µ κ µ κ µ µ= = = = −       (2.6) 
 
(Johnson, Kotz and Balakrishnan, 1993, 45). 
 
 
 
3. The Density Function 
 
It is known that the conditional distribution of iY  given 1 2( , , , )NX X X is normal with 

expected value 2 2 1 1( / )( )jXθ ρσ σ θ+ −  and standard deviation 2
2 1σ ρ− . Then the 

conditional distribution of 12 /W a m= ,  given 1 2( , , , )NX X X  is normal with expected value 

22
1

1

( )W SE ρσ
σ

=  and variance 2 2 2
2 1(1 ) /S mρ σ−  where 

2
21

2
1

~ m
mS χ
σ

 (Johnson, Kotz and 

Balakrishnan, v2, p599). Then the conditional distribution of 12Z a= ,  given 1 2( , , , )NX X X  

is normal with expected value 22
1

1

( ) mE Z Sρσ
σ

=  and variance 2 2 2
2 1(1 )m Sρ σ−  where 

2
21

2
1

~ m
mS χ
σ

 (Johnson, Kotz and Balakrishnan, v2, p599).  It follows from the above property 

that 

2 2 2
22
12

2 12 1

2

1
1

2
1 (1 )(

1 1( | ) exp
22 1 )

,f z s
ms

z m
s

s
m ρ σσ ρ

σ
π

ρ
σ

⎡ ⎤⎛ ⎞
⎢ ⎥= − −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦−−

 

 
which implies 

2
2 22

2 1 12 2 220
2 1 12 1

1 1( ) exp ( )
2 (1 )2 (1 )

mf z z s h s
m s ms m m

ρσ
ρ σ σσ π ρ

∞ ⎡ ⎤⎛ ⎞
⎢ ⎥= − −⎜ ⎟−⎢ ⎥− ⎝ ⎠⎣ ⎦

∫  

where 2
1( )h s is the density function of 2

1S  given by 
 

( 2)/22 2
2 1 1
1 /2 2 2 2

1 1 1

1( ) exp
2 ( / 2) 2

m

m

ms ms mh s
m σ σ σ

−
⎛ ⎞ ⎛ ⎞

= −⎜ ⎟ ⎜ ⎟Γ ⎝ ⎠ ⎝ ⎠
. 

 
The integral can be evaluated to be  
 

( 1)/2
2 ( 1)/22 2( 1)/2

1 2 1 21 2
2( 1)/2

| |( ) exp | |
(1 ) (1 )( / 22 )

1
) ( )( 1

m
mmm

z zf z z K
m

ρ
ρ σ σ ρ σ σσ σ π ρ

−+−

−⎡ ⎤ ⎛ ⎞
= ⎜ ⎟⎢ ⎥

− − −Γ ⎣ ⎦ ⎝ ⎠
 
where ( )K xα is the modified Bessel function of the second kind (also called Macdonald 
function) defined in (2.4). 
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Hence, the density function of the covariance /W Z m=  is given by  
 

( 1)/2
( 1)/2

2 ( 1)/22 2
( 1)/2 ( 1)/2 2 1 2 1 2

1 2

| |( ) | | exp  .
(1 ) (1 )2 ( ) (1 )

2

m
m

m
m m

m mw m wf w w K
m

ρ
ρ σ σ ρ σ σσ σ π ρ

+
−

−
− +

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟− −⎛ ⎞ ⎝ ⎠ ⎝ ⎠− Γ⎜ ⎟

⎝ ⎠
            (3.1) 
 
The characteristic function of Z is given by  
 

2 2 2 2 /2
1 2 1 2

/2
1 2 1 2

( ) [1 2 (1 ) ]

(1 ) (1 )           1 2 1 2
2 2

itZ m

m

E e it t

it it

ρσ σ ρ σ σ

σ σ ρ σ σ ρ

−

−

= − + −

⎡ + − ⎤⎛ ⎞⎛ ⎞= − +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

     (3.2) 

so that the distribution of Z is also that of  1 2
1 [(1 ) (1 ) ]
2

U Vρ ρ σ σ+ − −  where U  and V are 

two independent chi-square variables each with m degrees of freedom. The distribution of the 

sample covariance W is the same as that of  1 2[(1 ) (1 ) ]
2
m U Vρ ρ σ σ+ − −  . One can derive 

moments from it (Johnson, Kotz and Balakrishnan). 
 
From the representation  

1 2
1 [(1 ) (1 ) ]
2

Z U Vρ ρ σ σ= + − − ,        (3.3) 

 
 it follows that  

2
1 2

1( ) [(1 ) ( 1) (1 ) ] ( )
2

t
t t t

t t mZκ σ σ ρ ρ κ χ⎛ ⎞= + + − −⎜ ⎟
⎝ ⎠

      (3.4) 

 
 The representation (3.3) clearly shows how the distribution of /W Z m= tends to normality as 
m tends to infinity. 
 
In this paper, we derive the distribution of sample covariance 12( / ) ( / )W Z m a m= = by 
integrating out 11a  and 22a   from the density function (1.1). 
 
Theorem 3.1  Let 12 /w a m= , be the sample covariance. Then the density function of W is 
given by  
 

( )

( 1)/2
( 1)/21 2

1 ( 1)/22 2( 1)/2 2
1 2 1 2

( / ) | |( ) | | exp  ,
(1 ) (1 )2 (1 ) / 2

m
m

mm

m mw m wf w w K
m

σ σ ρ
ρ σ σ ρ σ σπ ρ

+
−

−−

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟− −− Γ ⎝ ⎠ ⎝ ⎠

 

 
Proof. It follows from (1.1) that the density function of 12a Z= is given by 
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2 /2

1 2
2 2

1 2

(1 ) ( )( ) exp  ( , ),
1 (1 )2

2 2

m m

m

zf z I m
m m

ρ σ σ ρ ρ
ρ σ σπ

− − ⎛ ⎞−
= ⎜ ⎟− −⎛ ⎞ ⎛ ⎞ ⎝ ⎠Γ Γ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

   

 
,  2,  1 1z m ρ−∞ < < ∞ > − < <  where 

 

( )
2

( 3)/22
2 2 2 2

1 2

( , ) exp
2(1 ) 2(1 )

m

z xy

x yI m xy z dydxρ
ρ σ ρ σ

−

≤

⎛ ⎞
= − − −⎜ ⎟− −⎝ ⎠
∫∫ . 

 
Letting 2xy z u− = ,  i.e., 2( ) /y z u x= +  with Jacobian ( ) 1/J y u x→ = , we have 

2
( 3)/2

2 2 2 2
1 20 0

1( , ) exp .
2(1 ) 2(1 )

m

x u

x z uI m u dudx
x x

ρ
ρ σ ρ σ

∞ ∞
−

= =

⎛ ⎞+
= − −⎜ ⎟− −⎝ ⎠
∫ ∫  

 
 
Completing the gamma integral in u , we have 
 

2
( 3)/2

2 2
20

2 2 ( 1)/2
2 2

1
2 2

( , ) exp .
2(1 )

   

1 [2(1 ) ]
(1

          
2 )

m m

x

zm xI m x dx
x

ρ
ρ σρ

ρ σ
σ

∞
−

=

−−⎛ ⎛ ⎞
= − −⎜ ⎟−

⎞Γ −⎜ ⎟
⎝ ⎠ ⎠−⎝

∫  

Putting 2 2
12(1 )

x t
ρ σ

=
−

, and evaluating the integrals, we have 

 

( 1)/2 2 ( 1)/2 ( 1)/2
1 2 ( 1)/2 2

1 2

1 | |( , ) 2 [(1 ) ]  | | ,
2 (1

            
)

 

m m m
m

m zI m z Kρ ρ σ σ
ρ σ σ

+ − −
−

⎛ ⎞−⎛ ⎞= Γ − × ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠  

so that he density function of Z  is given by 
 

( 1)/2
( 1)/2 2

( 1)/2 2
2 2

( 1)/2 1
1

2 1 2
2

1( ) exp  
(1 )2 (

| || | .
(1 )) (

2
1 )m

m
m

m

zf z zz K
m

ρ
ρ σ σσ σ ρ ρ σ σπ−

−
−

+

⎛ ⎞
= ⎜ ⎟−⎛ ⎞ ⎝ ⎠Γ⎜

⎛ ⎞
⎜ ⎟−⎝⎟

⎠
⎠

⎝
−

 
Then  the density function of the covariance /W Z m=  is given by  what we have in the 
theorem. 
 
 

Let  2 2
1 2 1 2(1 ) (1 )

z mwυ
ρ σ σ ρ σ σ

= =
− −

 .  Then 2
1 2(1 ) / m wρ σ σ υ =− and ϒ  has the following 

elegant distribution at υ  
 

( )
2 /2

( 1)/2
( 1)/2

( 1)/2
2 | |  | | ,

2
2

)( ) (1 m
m

m
m

e K
m

f ρ υ
π

υυ ρ −
−

− ⎛ ⎞Γ⎜ ⎟
⎝ ⎠

−
=
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which is what was obtained by Springer (1979, 343) by inverse Mellin transform. Some 
interesting forms of the density function o sample covariance is pointed by Press (1967). If 

0ρ = , then the density function of the sample covariance is given by 
 

( )
( 1)/2

( 1)/21 2
4 ( 1)/2( 1)/2

1 2

( / ) | |( ) | |  .
2 / 2

m
m

mm

m m wf w w K
m

σ σ
σ σπ

+
−

−−

⎛ ⎞
= ⎜ ⎟

Γ ⎝ ⎠
 

 
 
4. Moments of  the Sample Covariance 
 
The -tha moment of sample covariance W can be expressed in terms of the moments of sample 
variance and coefficient of correlation. Let 2 2

1 2( , , ) ( ) ( ) ( )cbaE S S Ra b cµ′ ⎡ ⎤= ⎣ ⎦  be the 

( , , )-tha b c moment of 2 2
1 2,S S and R . Then indeed ( ) ( / 2, / 2, )hE W h h hµ′= . It has been 

proved by Joarder (2008) that 2 2
1 2( , , ) ( ) ( ) ( )cbaE S S Ra b cµ′ ⎡ ⎤= ⎣ ⎦ is given by  

 
1 2 ( /2)

1 2

0

2 (1 )( , , ; )
( / 2)

1
(2 ) 2 2 2                    [1 ( 1) ( 1) ]  .

! 2 2
2

a m

k
k

k

b
b

b

a

a

b
a

c

c
m m

k
k m k m

k

a

a
c

cmk

b

b

ρµ ρ σ σ
π

ρ

+ − + +

+

∞

=

−′ =
Γ

+ +⎛ ⎞Γ⎜ ⎟+ + + +⎛ ⎞ ⎛ ⎞ ⎝ ⎠× + − − Γ Γ⎜ ⎟ ⎜ ⎟ + +⎛ ⎞⎝ ⎠ ⎝ ⎠ Γ⎜ ⎟
⎝ ⎠

∑
 

           (4.1) 
where 1 22,  0,  0,  1 1m σ σ ρ> > > − < < . 
 
The moments of sample covariance will involve infinite sum of product of gamma functions. 
To facilitate the calculation we have the following lemmas: 
 

Lemma 4.1 Let (2 ) 2 2( ) .
! 2 2

k k m h c k h dg k
k
ρ + + + + +⎛ ⎞ ⎛ ⎞= Γ Γ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 Then  

 

a. 2 10
(2 ) , ;

2
1
22 2 2j

m c dh h m c dg j F h h∞

=

+⎛ ⎞ ⎛ +
+ +⎞ ⎛ ⎞= Γ + Γ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑  

 

b. 
0 2 1

1 12
2

1 1(2
2

3
2

1) , ;
2 2j

m c dmg j c dh hh hFρ∞

=

+ + +⎛ ⎞ ⎛ + + +
+ + +⎞ ⎛ ⎞= Γ + Γ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑  

where 2 1( , ; ; )F a b c z is the generalized hypergeometric function defined by (2.5). 
 
Proof.   
 
a. By (2.3) we have 
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2 2

0 0

2

0

(2 )
2 2

                 

2
(2 )!

2
2

 
21!

j

j j

j

j

j

m c dg j j h j h

m c dj h

j

j
j

j
h

ρ

ρπ

∞ ∞

= =

∞

=

+⎛ ⎞ ⎛ ⎞= Γ + + Γ + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

+⎛ ⎞ ⎛ ⎞= Γ + + Γ + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎛ ⎞Γ +⎜ ⎟

⎝ ⎠

∑ ∑

∑
 

 
which can be written as 

2

0 0

2 2

2 2(2
1!
2

2
)

2

j

j j

m c dj h j h
g j

j m c dh

mh h
j h

c dρπ∞ ∞

= = +⎛ ⎞ ⎛ ⎞Γ + Γ +⎜ ⎟ ⎜ ⎟
⎝ ⎠

+⎛ ⎞ ⎛ ⎞Γ + + Γ + +
+

⎛

⎜

⎞Γ +

⎛ ⎞ ⎛ ⎞Γ + Γ +⎜ ⎟ ⎜ ⎟
⎝

⎝

⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

⎜ ⎟
⎝

⎠
⎠

⎝
⎠

⎠
∑ ∑  

which can be expressed as what we have in the lemma. 
 
b. By (2.3), we have 
 

2 2

0 0

2

0

(2) ( ) 1 1(2 1)
(2 1) 2 2

(2) ( ) 1 1                       ,

2
(2 )!

1!(
2

2 22 1)

j

j j

j

j

j m c dg j j h j h
j

m c dj h j h
jj

j

j

ρ ρ

ρπ ρ

∞ ∞

= =

∞

=

+ + +⎛ ⎞ ⎛ ⎞+ = Γ + + Γ + +⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠

+ + +⎛ ⎞ ⎛ ⎞= Γ + + Γ + +⎜ ⎟⎛ ⎞Γ +⎜ ⎟
⎝ ⎠

⎜ ⎟
⎝ ⎠ ⎝ ⎠+

∑ ∑

∑
 

 
which can be written as  
 

0

2

0

2

0 1

(2 1)

1 1
2 2

1

3!
2

1
2 1 1

1
2 2

22
! 2 2

1
2

3
2

j

j

j

j

j

g j

m c dj h j h

m c dj

m c
m c d

h j h

j j

d
h h

hj j h

ρρ

ρ

π

π
ρ

∞

=

∞

=

∞

= + + +⎛ ⎞ ⎛ ⎞Γ + Γ +⎜ ⎟ ⎜ ⎟
⎝

+

+ + +⎛ ⎞ ⎛ ⎞= Γ + + Γ + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

+ + +⎛ ⎞ ⎛ ⎞Γ + + Γ
+ + +⎛ ⎞ ⎛ ⎞Γ +

⎛ ⎞Γ +⎜ ⎟
⎝ ⎠

⎛ ⎞Γ

+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ Γ +

+⎜
⎠ ⎝

⎜ ⎟ ⎜ ⎟
⎝

⎠
⎟

⎠
⎠

=

⎝
⎠ ⎝

∑

∑

∑

 

which is equivalent to what we have in lemma. 
 
 
Theorem 4.1 For any real number h , the (2 )-thh  moment is given by   
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( )

2 1 2 2
2

2
2 1

1

( /2)
2

2

2

2

2

2

1
2 (1 )( , , 2 ; )

( / 2)

                      {1 ( 1) }

                    

1 1 1, ; ;
2 2

 {1 ( 1

2 2 2

31 11
2

, 1; ;
22

) }2

h
h

h h m

h

h

h

h

m mh

m m

h F h h

h

m mh h h h

h

F

ρµ ρ

ρ

σ σ
π

ρ

− +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞Γ + Γ + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝

−′ =
Γ

⎡
× + −⎢
⎣ ⎠ ⎝

+ +⎛ ⎞Γ + Γ + +⎜
⎠

⎠

+−
⎝

− ⎟+ 2 .ρ ⎤⎛ ⎞
⎜ ⎟⎥⎝ ⎠⎦

 

 
Proof. From ( 4.1 ), we have 
 

2
2

2 1
2

2 2 ( /2)

1 2
2

0

2 (1 )( , , 2 ; ) [1 ( 1) ( 1) ] ( ) 
( / 2)

h
h

h h
h

m
k

k

h g k
m m

h hh ρµ ρ σ σ
π

− + ∞

=

−′ = + − −
Γ

∑  

 

where (2 2) 2 1( ) .
! 2 2

k k m h kg k
k

hρ + + + +⎛ ⎞ ⎛ ⎞= Γ Γ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
Since 

2 2 2

0 0 0
[1 ( 1) ( 1) ] ( ) [1 ( 1) ] (2 ) [1 ( 1) ] (2 1),k

k j j

h h hg k g j g j
∞ ∞ ∞

= = =

+ − − = + − + − − +∑ ∑ ∑  

 
we have  

2 1 2 2 ( /2)

1 22

0

22

0

2 2

2 (1 )( , , 2 ; )
( / 2)

                     [{1 ( 1) } (2 ) {1 ( 1) } (2 1)].

h h m

j

h

j

h

h

h h

m m

g j g j

h hh ρµ ρ σ σ
π

− +

∞ ∞

= =

−′ =
Γ

× + − + − − +∑ ∑
 

 
Then using Lemma 4.1, we have the theorem. 
 
Corollary 4.1 Let h be an integer. Then the 2 -thh moment of sample covariance is given by  
 

2 2 ( 4 )/2
2 2 2
1 2 2 12

2 (1 ) 1 1 2 1( , , 2 ; ) , ; ; .
2 2 2 2 2( / 2)

h m h
h h

h

m m hh h h h h F h
m m

ρµ ρ σ σ ρ
π

+− +⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ = Γ + Γ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟Γ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 
Proof.  If h is an integer, then 2{1 ( 1) } 2,h+ − =  and 2{1 ( 1) } 0h− − = . Then the corollary follows 
from Theorem 4.1.  
 
Theorem 4.2. Let h be any real number. Then the (2 1)-thh + moment of sample covariance is 
given by  
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2 2 (2 1) ( /2)
2 1 2 1
1 22 1

2 2
2 1

2 2
2 1

1 (

2 1 2 1, , 2 1;
2 2

2 (1 )
( / 2)

1 1[1 ( 1) ] , 1; ;
2 2

2 3 1[1 (

)
2

2 3
2 2

1) ]2 , ; ; .
2 2 2

h h m
h h

h

h

h

m

h h h

m m

h h

mh

mh F h h

mF hh h

µ ρ

ρ σ σ
π

ρ

ρ ρ

+ +
+ +

+

+ +⎛ ⎞′ +⎜ ⎟
⎝ ⎠

−
=

Γ

⎡ +⎛ ⎞× − − + +⎜ ⎟⎢ ⎝ ⎠⎣
⎤+

+⎛ ⎞Γ + Γ⎜ ⎟
⎝ ⎠

+⎛ ⎞ ⎛ ⎞Γ + Γ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞+ + − + +⎜ ⎟⎥⎝ ⎠⎦

 

 
Proof.  
 
 
 

2 2 (2 1) ( /2)
2 1 2 1 2 1
1 22 1

0

, , ;

2 (

2 1
2

2

1 ) [1 ( 1) ( 1) ] ( ) ,
( / 2)

2 1
2

1

h h m
h h k h

h
k

g k
m m

hhhµ ρ

ρ σ σ
π

+ + ∞
+ + +

+
=

+⎛ ⎞′

−
= + −

⎜ ⎟
⎝

−

⎠
+

Γ

+

∑
 

 

where (2 ) 2 1 2 2( )  
! 2 2

k k m h k hg k
k
ρ + + + + +⎛ ⎞ ⎛ ⎞= Γ Γ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
.  

Since 
2 1 2 2

0 0 0
[1 ( 1) ( 1) ] ( ) [1 ( 1) ] (2 ) [1 ( 1) ] (2 1),

                 

k h h h
k j j

g k g j g j∞ ∞ ∞+
= = =

+ − − = − − + + − +∑ ∑ ∑  

we have  
 

2 2 (2 1) ( /2)
2 1 2 1
1 22 1

2 2
0 0

2 (1 ), , ;
( / 2)

                                              [1 ( 1) ] (2 ) [1 ( 1) ] (2 1)

2 1
2

11
2

.

2 2
h h m

h h
h

h h
j j

m
h h

g j

h
m

j g

ρµ ρ σ σ
π

+ +
+ +

+

∞ ∞

= =

−′ =
Γ

⎡ ⎤× + −

+
+

+ −

+⎛ ⎞
⎜ ⎟

⎣ ⎦

⎠

−

⎝

+∑ ∑
 

 
 
Using Lemma 4.1,  we have the theorem. 
 
Corollary 4.2 If h is an integer, then the ( )2 1 -thh + moment of sample covariance is given by  
 

2 2 (2 1) ( /2)
2 1 2 1
1 22 1

2 2
2 1

2 1 2 1 2 (1 ), , 2 1;
2 2 ( / 2)

2 3 1                                            [1 ( 1) ] , ; ; .
2

2 1(2 1)
2 2 2 2

h h m
h h

h

h

h h h
m m

mh F h hmh h

ρµ ρ σ σ
π

ρ ρ

+ +
+ +

+

+⎛ ⎞ ⎛ ⎞Γ

+ + −⎛

+ +

⎞′ + =⎜ ⎟ Γ⎝

Γ +⎜ ⎟ ⎜ ⎟

⎠

⎤+⎛ ⎞× + − + +⎜ ⎟
⎠ ⎝ ⎝ ⎠⎝ ⎥

⎦⎠
 
The following corollary follow from Corollary 4.1 and Corollary 4,2. 
 
Corollary 4.3 The first four moments of sample covariance are given by 
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1 2( ) ( )i E W ρσ σ=  
2 2 2 2

1 2
1( ) ( ) [( 1) 1] .ii E W m
m

ρ σ σ= + +  

3 3 3
1 22

2( 1) 3( 2)( ) ( ) [ ] .mmiii E W
m

ρ σ σρ= +
+

+

4 4 4
1 2

4 2
3

( 2) [( 1)( 3) 6( 3)( ) ( ) .3]m mmiv E mW
m

σρ σρ+
= + + + + +  

      
The centered moments of sample covariance of order a is given by 
 

( ) ,    1, 2, ,a
a E W aµ µ= − =  

 
That is the second, third and fourth order mean corrected moments are given by 
 

2 2
2

3 2 3
3

4 3 2 2 4
4

( ) ,

( ) 3 ( ) 2 ,

( ) 4 ( ) 6 ( ) 3 .

E W

E W E W

E W E W E W

µ µ

µ µ µ

µ µ µ µ

= −

= − +

= − + −

 

 
Corollary 4.4 The first four centered moments of sample covariance are given by 
 

2 2 2
2 1 2

1( ) (1 )i
m

µ ρ σ σ= +  

2 3 3
3 1 22

2( ) (3 ) ,ii
m

µ ρ ρ σ σ= +  

4 2 4 4
4 1 23

3( ) [( 2) (2 12) ( 2)]iii m m m
m

µ ρ ρ σ σ= + + + + +  

which matches with  (32.126b) of Johnson, Balakrishnan and Johnson (1995, 601). 
 
 
The skewness and kurtosis are given by the moment ratios 
 

/2
2

( ) ,  3, 4i
i iW iµα

µ
= = . 

 
That is, they are given by 
 

2

3 2 3/2

2 (3 )( )  ,
(1 )

W
m
ρ ρα

ρ
+

=
+

 and  
2 4

4 2 2

6(1 6 )( ) 3 .
(1 )

W
m

ρ ρα
ρ

+ +
= +

+
 

 
Note that the moment ratios are matching with Johnson, Kotz and Balakrishnan (1995, 601). 
 
If 0,ρ =  then 3( ) 0,Wα = 4 ( ) 3.Wα =  Moreover if m →∞ , then 3( ) 0,Wα = 4 ( ) 3.Wα =  
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Draw skewness as a function of ρ , and study limiting property. 
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