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Abstract. Bene�t, premium, and risk in insurance have tradi-
tionally been calculated based on �xed interest rates. When invest-
ment rates are not �xed and/or future rates are unknown, several
researchers have suggested modeling of these rates prior to actu-
arial present value calculations. Among these are methods that
assume auto-regressive models and likely scenarios for interest or
investment rates. In this article, on the other hand, we explore
these calculations from the perspective of nonparametric permuta-
tion of investment yields. Results, advantages, and disadvantages
of this method are outlined in this article.

1. Introduction

Insurance valuation has traditionally been done based on �xed inter-
est rates. Present value and future value formula in Actuarial literature
assume interest rates that are �xed (see for example Bowers et. al.[1]).
If interest rates are not �xed and/or future rates are not known, several
researchers have suggested alternative methods for Actuarial present
value calculations where rates are treated as random. For investments
especially, return rates are not �xed and future return rates are not yet
known.
When rates are not �xed, Bowers et. al.[1] suggested calculating ac-

tuarial present values for each of k judgment-based likely scenarios of
periodic interest pro�les and averaging across these. Boyle[3] instead
used auto-regressive models of order 1 to model interest rates and Pan-
jer and Bellhouse[8] and Bellhouse and Panjer[4] use similar models
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to calculate moments of insurance and annuity functions. Wilkie[10]
used Gaussian random walk to model random interest rates. Waters[9]
calculated actuarial functions with interest rates that were assumed
to independently come from identical Gaussian distributions and then
approximated limiting distibutions of insurance policies with Pearson's
curves. Dhaene[5] used ARIMA(p,d,q) process to model the force of
interest. Hoedemakers, Darkiewicz, and Goovaerts[7] used the theory
of comonotonic risks developed by Dhaene et. al.[6] to obtain reliable
approximations of the underlying distribution functions for accurate
estimates of upper quantiles and stop-loss premiums.
All these methods provide a rich ensemble of alternatives to stochas-

tic valuation of investment rates for the purpose of assessing actuarial
functions. However, each method has its own assumptions that must be
met for its accurate use. Autoregressive approaches to interest-rates
assume a dependence structure among past periodic interest pro�le
holds in future periods and this model can be used to derive actuarial
present values. Auto-regressive models also rely on the availability of
large time series data for stability of the model. Judgment-based likely
scenarios, on the other hand, assumes each of k competing scenarios of
periodic interest rate pro�les are the only possible pro�les and are as
likely as the other. Thus, calculations are performed for each interest
rate pro�le and the resulting average is used as the actuarial present
value.
In this paper, we suggest another alternative method: a method

based on permutations of an investment return pro�le. This method
neither assume the availability of large time-series data for investment
rates nor restrict assessment to only a handful of investment pro�les.
It, however, uses the investment pro�le from the previous k periods as
the basis of the permutated investment returns for the future k years
from which actuarial present values are assessed.
In section 2, we will review the classical method of present value

calculations and provide explicit formulas for present value calculations
under non-�xed investment returns. In section 3, we will introduce an
alternative permutation-based calculation of actuarial present values.
In the conclusion section, limitations and strengths of this new method
will be addressed.

2. Classical Method of Present Value Calculations

In this section, although we consider life insurance contracts, the
discussion also applies to other kinds of insurance such as pension,
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property, or casualty insurance. We will assume without loss of gener-
ality an n-year term insurance with bene�ts payable to the bene�ciary
upon death of the insured. For this type of insurance, the following the-
orem from Bowers et. al.[1] provides a classical method of the actuarial
present value calculations when the interest rate is �xed.

Theorem 1. For an n-year term insurance payable to the bene�ciary
at the end of the year of death, with �xed investment return ri = r
(i � 1) taking e�ect over the insurance contract period, the actuarial
present value is given as

(2.1) Ab
x:nj

= b

n�1X
k=0

(kpxqx+k)�
k+1

where

kpx =probability of a person age x surviving k years
qx+k =probability of dying after surviving x+k years
b =bene�t amounts
� =a discount factor 1=(1 + r) and
r =�xed interest rate.

Some may argue that this �xed interest rate, r, is defensible and is
based on the geometric mean of a pro�le of past interest rates and can
actually be used in lieu of future interest rates. This argument may
be tenable for very stable investments. However, unlike most interest
rates, investment returns may be variable from one period to the next.
Thus, often an investment rate may not be �xed from one period to
the next. For example, the following table from Broverman[2] provides
investment returns for AltaMira Investment company in Canada from
year 1998 to 2002.

Table 1. Yearly Returns for AltaMira Investment Co.
Year Investment Return
1998 7.8%
1999 -3.0%
2000 9.4%
2001 6.4%
2002 6.9%

For this, the geometric mean of investment returns can be calculated
to be 5

p
(1 + r1)(1 + r2):::(1 + r5) � 1 which is equal to an r = 0:054:

However, if the geometric mean r is far away from the actual investment
returns, the long run use of this index as a basis for a �xed rate actuarial
present value calculations may lead to some inaccurate results. Thus,
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a more general discounting factor based on variable rate investment
returns is given by the following lemma.

Lemma 1. For an investment with return rates ri; i � 1, the discount-
ing factor for the kth year is given as

�k =
1

(1 + r1)(1 + r2):::(1 + rk)
=

kQ
i=1

1

(1 + ri)
where ro = 0:

In many textbooks, actuarial present values (APV) are calculated on
the basis of a simplifying assumption that investment rates are �xed.
However, in this paper, we will consider the same calculations when
investment rates are variable to reect the true nature of uncertainty
in actuarial work.
The APV based on non-constant investment returns can be given by

the following theorem.

Theorem 2. For an n-year term insurance payable to the bene�ciary
at the end of the year of death, with variable investment returns ri
(i � 1) taking e�ect over the insurance contract period, the actuarial
present value is given as

(2.2) Ab
x:nj

= b
n�1X
k=0

kQ
j=0

�j+1(kpxqx+k)

where kpx =probability of a person age x surviving k years
qx+k =probability of dying after surviving x+ k years
b =premium bene�ts
�j =a discount factor 1=(1 + rj) for time period j and
rj =a variable investment return rate for time period j:

Remark 1. Equation (2.2) reduces to equation (2.1) when ri = r for
all i:

Equation (2.2) in the Theorem can be used as a basis of calculation
with any non-�xed investment return pro�le. If the investment return
rates follows an auto-regressive (AR) model, then equation (2.2) can
be used with investment rates rj following this model.

Theorem 3. For an n-year term insurance payable to the bene�ciary at
the end of the year of death, with variable investment returns ri (i � 1)
taking e�ect over the insurance contract period, the second moment of
the actuarial present value is given as

(2.3) 2Ab
x:nj

= b2
n�1X
k=0

kQ
j=0

(�j+1)
2 (kpxqx+k)
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and the variance of the actuarial present value, V ar(Z), is given as
(2.4)

V (Z) = b2

0@n�1X
k=0

kQ
j=0

(�j+1)
2 (kpxqx+k)�

 
n�1X
k=0

kQ
j=0

�j+1(kpxqx+k)

!21A
where kpx =probability of a person age x surviving k years
qx+k =probability of dying after surviving x+k years
b =premium bene�ts
�j =a discount factor 1=(1 + rj) for time period j and
rj =a variable investment return rate for time period j:

Proof. 2Ab
x:nj

= E[Z2] =
n�1P
k=0

kQ
j=0

(b�j+1)
2 (kpxqx+k)

which can be expressed as equation (2.3). For the variance of Z, V (Z) =

2Ab
x:nj
�
�
Ab
x:nj

�2
= b2

n�1P
k=0

kQ
j=0

(�j+1)
2 (kpxqx+k)�

 
b
n�1P
k=0

kQ
j=0

�j+1(kpxqx+k)

!2

= b2
n�1P
k=0

kQ
j=0

(�j+1)
2 (kpxqx+k)� b2

 
n�1P
k=0

kQ
j=0

�j+1(kpxqx+k)

!2
which can be expressed as equation (2.4). �

Remark 2. When ri = r for all i; equations (2.3) and (2.4) reduce
to their �xed rate analogues discussed in numerous actuarial modeling
textbooks such as on page 110 of Bowers et. al.[1].

3. Permutation-Based Method of Present Value Calculations

In this section, we provide an alternative method for assessing actuar-
ial present values. But we will �rst provide some results for investment
discount factors on the basis of permutation.

Theorem 4. For an investment with return rates ri; i � 1, the dis-
counting factor for the kth year in the sth permutation

(3.1) �s;k 6= �k

where �k =
kQ
i=1

1

(1 + ri)
and rs;o = 0:
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Proof. �s;k =
1

(1 + rs;1)(1 + rs;2):::(1 + rs;k)
=

kQ
j=1

1

(1 + rs;j)
:

But �k =
kQ
j=1

1

(1 + rj)
:

Because in general rs;j 6= rj; then �s;k 6= �k:
Remark 3. Generally �s;k 6= �k since there are exactly Cnk ways k rates
taking e�ects over the �rst k investment years can be obtained from n
distinct rates. However, the following corollary provides an exception
to the theorem as there is exactly Cnn = 1 way n rates can be chosen
from n distinct rates.

Corollary 1. For an investment with return rates ri; i � 1, the dis-
counting factor for the nth year in the sth permutation

�s;n = �n

where �k =
kQ
i=1

1

(1 + ri)
and rs;o = 0:

�
We now turn to the actuarial present value calculations based on

permutations of investment return rates.

Theorem 5. For an n-year term insurance payable to the bene�ciary at
the end of the year of death, with variable investment return ri (i � 1)
taking e�ect over the insurance contract period, the actuarial present
value on the basis of permutations of investment return yields is given
as

(3.2) E[Z] =
b

n!

n!X
s=1

n�1X
k=0

(kpxqx+k)
kQ
j=0

1

(1 + rsj)j+1

where rsj = the s
th permutated investment rate at time j:

Proof. The sth permutation of interest return yield produces a n �
1 vector with elements (rs;k): Because there are n time periods with
investment returns rs;k (k = 1; ::::n), the number of permutations of
the n � 1 vector of investment returns is equal to n!. Calculating
actuarial present value for each permutation s and averaging across
permutations yield equation (3.2).

Remark 4. The theorem provides the average of the actuarial present
values across all permutations. Equation (3.2) is more general than
calculating APV with judgement-based likely scenarios of investment
pro�les as it includes all permutations of investment pro�les rather
than just a handful of pro�les judged to be likely.
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�

Corollary 2. For an n-term life insurance with �xed investment return
r, the actuarial present value on the basis of permutation of investment
return yields is given as

(3.3) E[Z] =

n�1X
k=0

(kpxqx+k)bk

�
1

(1 + r)

�k+1
Proof. Because all investment return rates are equal to r, there is ex-
actly only 1 permutation. Thus, equation (3.2) reduces to equation
(3.3) in the corollary, which coincides with the formula in equation
(2.1) for the well known case with �xed r. �

Now, we are also interested in the second moment and variability
measures of the actuarial present values on the basis of permutations.

Theorem 6. For an n-year term insurance payable to the bene�ciary
at the end of the year of death, with investment returns ri (i � 1)
taking e�ect over the insurance contract period, the second moment of
the actuarial present value is given as

(3.4) E[Z2] =
b2

n!

n!X
s=1

n�1X
k=0

kQ
j=0

1

(1 + rsj)2(j+1)
(kpxqx+k)

and the variance of the actuarial present value, V (Z), is given as
(3.5)

V (Z) =
b2

n!
(
n!X
s=1

n�1X
k=0

kQ
j=0

�2s;j+1(kpxqx+k)�
1

n!

 
n!X
s=1

n�1X
k=0

(kpxqx+k)
kQ
j=0

�2s;j+1

!2
)

Proof. E[Z2] =
1

n!

n!P
k=1

n�1P
k=0

kQ
j=0

(b�s;j+1)
2 (kpxqx+k)

which can be expressed as equation (3.4). For the variance of Z,
V (Z) = E[Z2]� (E[Z])2

=
b2

n!

n!P
s=1

n�1P
k=0

kQ
j=0

�2j+1(kpxqx+k)�
 
b

n!

n!P
s=1

n�1P
k=0

(kpxqx+k)
kQ
j=0

�j+1

!2

=
b2

n!

n!P
s=1

n�1P
k=0

kQ
j=0

�2j+1(kpxqx+k)�
�
b

n!

�2 n!P
s=1

n�1P
k=0

(kpxqx+k)
kQ
j=0

�j+1

!2
which can be expressed as equation (3.5). �

Corollary 3. For an n-year term insurance payable to the bene�ciary
at the end of the year of death, with �xed investment return r, the
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second moment of the actuarial present value is given as

(3.6) E[Z2] = b2
n�1X
k=0

1

(1 + r)2(k+1)
(kpxqx+k)

and the variance of the actuarial present value is given as

(3.7) V (Z) = b2
n�1X
k=0

�
1

(1 + r)2(k+1)
(kpxqx+k)

�
Proof. Since n � 1 vector of investment returns with �xed rate r can
only have n = 1 permutation, the results in the Corollary are clear by
substituting n!=1 in the theorem. �

The corollary coincides with known results in actuarial modeling
textbooks. Interested readers can refer to Bowers et. al.[1] for example.

4. Conclusion

Results in this paper can be used for insurance contracts with in-
vestment rates that are not necessarily �xed. The derivation of the
permutation-based actuarial present values are nonparametric in na-
ture and do not assume any particular model of future investment
rates. Since the calculations are done over all permutations of an in-
vestment yield pro�le, the method actually assumes any permutation of
an investment rate pro�le is equally likely to occur in the future. This
is in contrast to judgemental-based likely scenario of investment rates
which restricts attention to just a handful of investment rate pro�les.
Since this is one of the �rst papers to deal with permutations of in-

vestment yields as a basis for insurance calculation, no work has been
done on comparing this method with other methods such as those based
on autoregressive models. The empirical utility of this method over
the autoregressive model has yet to be determined. Nevertheless, the
nonparametric nature of the method clearly o�ers a logical alterna-
tive when parametric-based modeling of investment rates such as the
autoregressive method do not hold.
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