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Notation

T := associative ring;
σ[TM ] := Wisbauer’s category of M -subgenerated T -modules
R := commutative ring;
A, B := R-algebras;

AM (MA) := left (right) A-module;

AMB := (A,B)-bimodule;

AM (MA) := category of left (right) A-modules;

AMB := (A,B)-bimodules;

C := A-coring;
D := B-coring;
MC (CM) := category of right (left) C-comodules;
DMC := category of (D, C)-bicomodules;
ECM := endomorphism ring of M ∈MC;
C
ME := endomorphism ring of M ∈ CM;
DECM := endomorphism ring of M ∈ DMC;
R(C) (Rf.i.(C)) := class of (fully invariant) right C-coideals;
L(C) (Lf.i.(C)) := class of (fully invariant) left C-coideals
Ir(C∗) (It.s.(C∗)) := class of right (two-sided) ideals of C∗;
Il(∗C) (It.s.(∗C)) := class of left (two-sided) ideals of ∗C;
B(C) := class of C-bicoideals;
Bl (Br) := The C-bicoideal B considered in CM (MC);
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Abstract

Prime rings (prime modules) were defined as generalization of simple rings
(simple modules). In this report we introduce and investigate what turns out
to be a suitable generalization of simple corings (simple comodules), namely
fully coprime corings (fully coprime comodules). Moreover, we consider sev-
eral primeness and coprimeness notions for comodules of a given coring and
investigate their relations with the fully coprimeness and the simplicity of
these comodules. These notions are applied then to study primeness and co-
primeness properties of a given coring, considered as an object in its category
of right (left) comodules.

We also introduce and investigate top (bi)comodules of corings, that can
be considered as dual to top (bi)modules of rings. The fully coprime spectrum
of a top (bi)comodule attains a Zariski topology, defined in a way dual to that
of defining the Zariski topology on the prime spectrum of a (commutative)
ring. We restrict our attention here to duo (bi)comodules (satisfying suitable
conditions) and study the interplay between the coalgebraic properties of such
(bi)comodules and the introduced Zariski topology. In particular, we apply
our results to introduce a Zariski topology on the fully coprime spectrum of
a given non-zero coring considered canonically as a duo bicomodule.

2000 Mathematics Subject Classification:
16W30, 16N60, 16A53, 16D80

Keywords:
Fully Coprime (Fully Cosemiprime) Corings, Prime (Semiprime) Cor-

ings, Fully Coprime (Fully Cosemiprime) Comodules, Prime (Semiprime)
Comodules, Fully Coprime Spectrum, Fully Coprime Coradical, Fully Co-
prime (Cosemiprime) Bicomodules, Top (Bi)Comodules, Zariski Topology.
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Introduction

Prime ideals play a central role in the theory of rings. In particular,
localization of commutative rings at prime ideals is a powerful tool in com-
mutative algebra. One goal of this project is to introduce a suitable dual no-
tion of coprimeness for corings over arbitrary (not necessarily commutative)
ground rings as a first step towards developing a theory of (co)localization of
corings, which seems till now to be far from reach.

The classical notion of a prime ring was generalized, in different ways,
to introduce prime objects in the category of modules of a given ring (see
[Wis1996, Section 13]). A main goal of this project is to introduce coprime
comodules (coprime corings), which generalize simple comodules (simple cor-
ings). As there are several primeness properties of modules of a given ring,
we are led as well to several primeness and coprimeness properties of co-
modules of a coring. We investigate these different properties and clarify the
relations between them.

Coprime subcoalgebras (of cocommutative) coalgebras over base fields
were introduced first by M. Takeuchi [Tak1974] and studied recently by R.
Nekooei and L. Torkzadeh in [NT2001] as a generalization of simple coalge-
bras: simple coalgebras are coprime; and finite dimensional coprime coalge-
bras are simple. These coalgebras, which we call here fully coprime, were
defined using the so called wedge product of subcoalgebras and can be seen
as dual to prime algebras: a coalgebra C over a base field is coprime if and
only if its dual algebra C∗ is prime. Coprime coalgebras were considered also
by P. Jara et. al. in their study of representation theory of coalgebras and
path coalgebras [JMNR].

For a coring C over a QF ring A such that AC (CA) is projective, we
observe in Proposition 3.1.12 that if K,L ⊆ C are any A-subbimodules that
are right (left) C-coideals as well and satisfy suitable purity conditions, then
the wedge product K ∧ L, in the sense of [Swe1969], is nothing but their
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internal coproduct (K :Cr L) ((K :Cl L)) in the category of right (left) C-
comodules, in the sense of [RRW2005]. This observation suggests extending
the notion of fully coprime coalgebras over base fields to fully coprime corings
over arbitrary ground rings by replacing the wedge product of subcoalgebras
with the internal coproduct of subbicomodules. We also extend that notion
to fully coprime comodules using the internal coproduct of fully invariant
subcomodules. Using the internal coproduct of a bicoideal of a coring (a fully
invariant subcomodule of a comodule) with itself enables us to introduce fully
cosemiprime corings (fully cosemiprime comodules). Dual to prime radicals
of rings (modules), we introduce and investigate the fully coprime coradicals
of corings (comodules).

Several papers considered the so called top modules, i.e. modules (over
commutative rings) whose spectrum of prime submodules attains a Zariski
topology, e.g. [Lu1999], [MMS1997], [Zha1999]. Dually, we introduce and in-
vestigate top (bi)comodules for corings and study their properties (restricting
our attention here to duo (bi)comodules satisfying suitable conditions). In
particular, we extend results of [NT2001] on the topology defined on the
spectrum of (fully) coprime subcoalgebras of a given coalgebra over a base
field to the general situation of a topology on the fully coprime spectrum of
a given non-zero bicomodule over a given pair of non-zero corings.

Throughout, R is a commutative ring with 1R 6= 0R, A,B are arbitrary
but fixed unital R-algebras, C is a non-zero A-coring and D is a non-zero
B-coring. With MC (resp. CM, DMC) we denote the category of right C-
comodules (resp. left C-comodules, (D, C)-bicomodules). By Cr (Cl) we mean
the coring C, considered as an object in MC (CM). For a right (left) C-
comodule M we denote with ECM := EndC(M)op (CME := CEnd(M)) the ring of
all C-colinear endomorphisms of M with multiplication the opposite (usual)
composition of maps, and call an R-submodule X ⊆ M fully invariant, iff
f(X) ⊆ X for every f ∈ ECM (f ∈ CME).

All rings have unities preserved by morphisms of rings and all modules
are unital. Let T be a ring and denote with TM (MT ) the category of left
(right) T -modules. For a left (right) T -module M, we denote with σ[TM ] ⊆
TM (σ[MT ⊆ MT ]) Wisbauer’s category of M -subgenerated left (right) T -
modules (see [Wis1991] and [Wis1996]). With locally projective modules, we
mean those in the sense of [Z-H1976] (see also [Abu2006]).
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This report is divided as follows: after this introduction, we give a brief
literature review. The first chapter is devoted to preliminaries including some
definitions and results theory of rings and modules as well as from the theory
of corings and comodules that are recalled later.

In Chapter 2, we investigate (Co)Primeness of Comodules for corings. As
a coalgebra C over a base field is fully coprime if and only if its dual algebra
C∗ ' EndC(C)op is prime (see [Tak1974, 1.4.2.] and [NT2001, Proposition
1.2]), we devote Section 2.1 to the study of primeness properties of the ring
of C-colinear endomorphisms ECM := EndC(M)op of a given right C-comodule
M of a coring C. Given a coring C, we say a non-zero right C-comodule
M is E-prime (respectively E-semiprime, completely E-prime, completely
E-semiprime), provided the ring ECM := EndC(M)op is prime (respectively
semiprime, domain, reduced). In case M is self-cogenerator, Theorem 2.1.17
provides sufficient and necessary conditions for M to be E-prime (respec-
tively E-semiprime, completely E-prime, completely E-semiprime). Under
suitable conditions, we clarify in Theorem 2.1.29 the relation between E-
prime and subdirectly irreducible comodules. In Section 2.2 we study fully
coprime (fully cosemiprime) comodules using the internal coproduct of fully
invariant subcomodules. Let C be a coring and M be a non-zero right C-
comodule. A fully invariant non-zero C-subcomodule K ⊆ M will be called
fully M -coprime (fully M -cosemiprime), iff for any (equal) fully invariant
C-subcomodules X, Y ⊆ M with K ⊆ (X :CM Y ), we have K ⊆ X or
K ⊆ Y, where (X :CM Y ) is the internal coproduct of X, Y in the category
of right C-comodules. We call the non-zero right C-comodule M fully co-
prime (fully cosemiprime), iff M is fully M -coprime (fully M -cosemiprime).
The notion of fully coprimeness (fully cosemiprimeness) in the category of
left C-comodules is defined analogously. Theorem 2.2.11 clarifies the rela-
tion between fully coprime (fully cosemiprime) and E-prime (E-semiprime)
comodules under suitable conditions. We define the fully coprime spectrum
of M as the class of all fully M -coprime C-subcomodules of M and the fully
coprime coradical of M as the sum of all fully M -coprime C-subcomodules.
In Proposition 2.2.12 we clarify the relation between the fully coprime corad-
ical of M and the prime radical of ECM , in case M is intrinsically injective
self-cogenerator and ECM is right Noetherian. Fully coprime comodules turn
to be a generalization of simple comodules: simple comodules are trivially
fully coprime; and Theorem 2.2.16 (2) shows that if the ground ring A is
right Artinian and AC is locally projective, then a non-zero finitely generated
self-injective self-cogenerator right C-comodule M is fully coprime if and only
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if M is simple as a (∗C,ECM)-bimodule. Under suitable conditions, we clar-
ify in Theorem 2.2.21 the relation between fully coprime and subdirectly
irreducible comodules. In Section 2.3 we clarify the relations between these
primeness properties and the ring structure of ∗C and ECM .

In Chapter 3, we introduce and study several primeness and coprimeness
properties of a non-zero coring C, considered as an object in the category MC
of right C-comodules and as an object in the category CM of left C-comodules.
We define the internal coproducts of C-bicoideals, i.e. (C, C)-subbicomodules
of C, in MC and in CM and use them to introduce the notions of fully coprime
(fully cosemiprime) C-bicoideals and fully coprime (fully cosemiprime) cor-
ings. Moreover, we introduce and study the fully coprime spectrum and the
fully coprime coradical of C in MC (in CM) and clarify their relations with
the prime spectrum and the prime radical of C∗ (∗C). We investigate several
notions of coprimeness (cosemiprimeness) and primeness (semiprimeness) for
C and clarify their relations with the simplicity (semisimplicity) of the cor-
ing under consideration. In Theorems 3.1.1 we give sufficient and necessary
conditions for the dual ring C∗ (∗C) of C to be prime (respectively semiprime,
domain, reduced). In case the ground ring A is a QF ring, AC, CA are locally
projective and C∗ is right Artinian, ∗C is left Artinian, we show in Theorem
3.2.10 that Cr is fully coprime if and only if C is simple if and only if Cl is
fully coprime.

In Chapter 4, we introduce a Zariski topology for bicomodules, whose
properties turn out to be dual to those of the classical Zariski topology on
the prime spectrum of commutative rings (e.g. [AM1969], [Bou1998]). Let
M be a given non-zero (D, C)-bicomodule and consider the fully coprime
spectrum

CPSpec(M) := {K | K ⊆M is a fully M-coprime (D, C)-subbicomodule}.
For every (D, C)-subbicomodule L ⊆M, set

VL := {K ∈ CPSpec(M) | K ⊆ L} and XL := {K ∈ CPSpec(M) | K " L}.
As in the case of the spectra of prime submodules of modules over (com-
mutative) rings (e.g. [Lu1999], [MMS1997], [Zha1999]), the class of varieties
ξ(M) := {VL | L ⊆ M is a (D, C)-subbicomodule} satisfies all axioms of
closed sets in a topological space with the exception that ξ(M) is not neces-
sarily closed under finite unions. We say M is a top bicomodule, iff ξ(M) is
closed under finite unions, equivalently iff

τM := {XL | L ⊆M is a (D, C)-subbicomodule}
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is a topology (in this case we call ZM := (CPSpec(M), τM) a Zariski topology
of M). We then restrict our attention to the case in which M is a duo bico-
module (i.e. every subbicomodule of M is fully invariant) satisfying suitable
conditions. For such a bicomodule M we study the interplay between the
coalgebraic properties of M and the topological properties of ZM . In Section
4.3, we give some applications and examples (mainly to non-zero corings
which turn out to be duo bicomodules in the canonical way).
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Brief Literature Review

• The notion of a coprime coalgebra is due to M. Takeuchi [Tak1974,
1.4.2.]2 who defined: a subcoalgebra D of a cocommutative coalgebra
C over a base field is coprime, iff for any subcoalgebras X and Y of C,

D ⊆ X ∧ Y ⇒ D ⊆ X or D ⊆ Y,

where

X ∧ Y := Ker(C
∆−→ C ⊗R C

πX⊗RπY−→ C/X ⊗R C/Y )

is the so called wedge product of X and Y. Takeuchi proved also that a
subcoalgebra D ⊆ C is coprime if and only if D⊥ C C∗ is a prime ideal,
where C∗ is the dual algebra of C and D⊥ := {f ∈ C∗ | f(D) = 0}.
The authors of [JMNR] notices also that his proof is actually valid for
non necessarily cocommutative coalgebras.

• In [NT2001]3, the authors studied the notion of coprime (sub)coalgebras
over fields, where the coalgebra C is said to be coprime, iff C is coprime
in C. In Proposition 1.2. of [NT2001] they reproved Takeuchi’s charac-
terization of coprime subcoalgebra (in particular that C is a coprime
coalgebra if and only if C∗ is a prime algebra).

• For a coalgebra C, let X be the set of all coprime subcoalgebras of
C. The authors of [NT2001] proved then that every simple coalgebra is
coprime, and that finite dimensional coprime coalgebras are necessarily
simple.

2this was noticed by P. Jara et al. [JMNR]
3This paper contains several typos and mistakes that we clarified in Remark 4.3.10.
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• In [JMNR], P. Jara et. al. studied coprime subcoalgebras of path coal-
gebras over base fields. After defining the path coalgebra C associated
to a graph, they show in particular that the path coalgebra defined by
a graph (V,E) is coprime if and only if the graph is strongly connected
(Theorem 3.4). The problem of characterizing coprime subcoalgebras
of path coalgebras is reduced then to the case of path coalgebras with
at most two vertices (Theorem 4.3.).

• In [XLZ1992], the authors use the structure of a given coalgebra C over
a base field to describe some properties of the dual algebra C∗. In par-
ticular they gave sufficient and necessary conditions for the dual algebra
of coalgebra to be prime (Theorem 3), domain or reduced (Corollary,
page 509).

• In her Ph.D. thesis, V. Rodrigues studied prime (semiprime) comodules
and prime (semiprime) coalgebras over base fields (the main results are
included in [FR2005]): a right comodule M of a given coalgebra C over
a base filed is said to be prime provided C∗M is a prime module, and
a coalgebra C was said to be prime provided C∗C is a prime module.
Observing that for any comodule of a coalgebra C over a base field,
the algebra is left Artinian, prime (semiprime) comodules were charac-
terized as those that are direct sums of simple (prime) subcomodules.
Investigating prime coalgebras carefully it turned out that these are
just the simple coalgebras (i.e. finite dimensional coprime coalgebras
in the sense of [Tak1974]).

• Given an A-coring C, M. Ferrero and V. Rodrigues studied in [FR2005]
prime and semiprime right C-comodules considered as rational left ∗C-
modules in the canonical way. Although prime coalgebras over perfect
ground commutative rings turned out to be simple, a full description
of the structure of prime (semiprime) right comodules of a left locally
projective coring over a left perfect (right Artinian) ground ring was
obtained.

• A different approach has been taken in the recent work [Wij2006] by
I. Wijayanti, where several primeness and coprimeness conditions are
studied in categories of modules and then applied to categories of co-
modules of locally projective coalgebras over commutative rings.
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Chapter 1

Preliminaries

In this section we introduce some definitions, remarks and lemmas to
which we refer later.

1.1 Prime and coprime modules

Definition 1.1.1. Let T be a ring. A proper ideal P C T is called
prime, iff for any two ideals I, J C T with IJ ⊆ P, either I ⊆ P or

J ⊆ P ;
semiprime, iff for any ideal I C T with I2 ⊆ P, we have I ⊆ P ;
completely prime, iff for any f, g ∈ P with fg ∈ P, either f ∈ P or g ∈ P ;
completely semiprime, iff for any f ∈ T with f 2 ∈ P, we have f ∈ P.
The ring T is called prime (respectively semiprime, domain, reduced),

iff (0T ) C T is prime (respectively semiprime, completely prime, completely
semiprime).

1.1.2. Let T be a ring. With Max(T ) (resp. Maxr(T ), Maxl(T )) we denote
the class of maximal two-sided T -ideals (resp. maximal right T -ideals, max-
imal left T -ideals) and with Sepc(T ) the prime spectrum of T consisting of
all prime ideals of T. The Jacobson radical of T is denoted by Jac(T ) and
the prime radical of T by Prad(T ). Notice that the ring T is semiprime if
and only if Prad(T ) = 0.

Definition 1.1.3. A ring T is called
semiprimitive, iff Jac(T ) = 0;
semiprimary , iff T/Jac(T ) is semisimple and Jac(T ) is nilpotent.
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There are various notions of prime and coprime modules in the literature;
see [Wis1996, Section 13] for more details. In this paper we adopt the notion
of prime modules due to R. Johnson [Joh1953] and its dual notion of coprime
modules considered recently by S. Annin [Ann].

Definition 1.1.4. Let T be a ring. A non-zero T -module M will be called
prime, iff annT (K) = annT (M) for every non-zero T -submodule 0 6= K ⊆

M ;
coprime, iff annT (M/K) = annT (M) for every proper T -submodule K &

M ;
diprime, iff annT (K) = annT (M) or annT (M/K) = annT (M) for every

non-trivial T -submodule 0 6= K & M ;
strongly prime, iff M ∈ σ[K] for every non-zero T -submodule 0 6= K ⊆

M ;
semiprime, iff M/TK(M) ∈ σ[K] for every cyclic T -submodule K ⊆ M,

where

TK(M) :=
∑
{U ⊆M | HomT (U,

̂
EndT (M̂)K = 0}

and M̂ denoted the self-injective hull of M ;
strongly semiprime, iff M/TK(M) ∈ σ[K] for every T -submodule K ⊆M.

It’s well known that for every prime (coprime) T -module M, the associ-
ated quotient ring T := T/annT (M) is prime. In fact we have more:

Proposition 1.1.5. ([Lom2005, Proposition 1.1]) Let T be a ring and M be
a non-zero T -module. Then the following are equivalent:

1. T := T/annT (M) is a prime ring;

2. M is diprime;

3. For every fully invariant T -submodule K ⊆ M that is M-generated as
an EndT (M)-module, annT (K) = annT (M) or annT (M/K) = annT (M).

Remark 1.1.6. Let T be a ring and consider the following conditions for a
non-zero T -module M :

annT (M/K) 6= annT (M) for every non-zero T -submodule 0 6= K ⊆M (*)

annT (K) 6= annT (M) for every proper T -submodule K & M (**).
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We introduce condition (**) as dual to condition (*), which is due to Wis-
bauer [Wis1996, Section 13]. Modules satisfying either of these conditions
allow further conclusions from the primeness (coprimeness) properties: by
Proposition 1.1.5, a T -module M satisfying condition (*) (condition (**)) is
prime (coprime) if and only if T := T/annT (M) is prime.

Proposition 1.1.7. (See [FR2005, Theorem 2.5, Corollary 2.7]) Let T be a
ring and M be a non-zero left (right) T -module, for which the ring T/annT (M)
is left (right) Artinian. Then the following are equivalent:

1. M is a prime T -module;

2. T/annT (M) is simple;

3. M is a strongly prime T -module;

4. M =
⊕
λ∈Λ

Mλ, a direct sum of isomorphic simple T -submodules;

5. M =
∑
λ∈Λ

Mλ, a sum of isomorphic simple T -submodules;

6. M is generated by each of its non-zero T -submodules;

7. M has no non-trivial fully invariant T -submodules;

8. For any pretorsion class T in σ[M ], T (M) = 0 or T (M) = M.

Proposition 1.1.8. (See [FR2005, Theorem 2.9, Corollary 2.10]) Let T be a
ring and M be a non-zero left (right) T -module, for which the quotient ring
T := T/annT (M) is left (right) Artinian. Then the following are equivalent:

1. M is a semiprime T -module;

2. M is a semisimple T -module;

3. M is a strongly semiprime T -module;

4. M =
⊕
λ∈Λ

Mλ, a direct sum of prime T -submodules;

5. M =
∑
λ∈Λ

Mλ, a sum of prime T -submodules;

6. Any semiprime T -submodule of M is a direct summand.

11



1.2 Corings and comodules

In module categories, monomorphisms are injective maps. In comodule cat-
egories this is not the case in general. In fact we have:

Remark 1.2.1. For any coring C over a ground ring A, the module AC is
flat if and only if every monomorphism in MC is injective (e.g. [Abu2003,
Proposition 1.10]). In this case, MC is a Grothendieck category with kernels
formed in the category of right A-modules and given a right C-comodule M,
the intersection

⋂
λ∈ΛMλ ⊆ M of any family {Mλ}Λ of C-subcomodules of

M is again a C-subcomodule.

Definition 1.2.2. Let AC (CA) be flat. We call a non-zero right (left) C-
comodule M

simple, iff M has no non-trivial C-subcomodules;
semisimple, iff M = Soc(M) where

Soc(M) :=
⊕
{K ⊆M | K is a simple C-subcomodule}. (1.1)

The right (left) C-subcomodule Soc(M) ⊆ M defined in (1.1) is called
the socle of M.We call a non-zero right (left) C-subcomodule 0 6= K ⊆ M
essential in M, and write K Ce M, provided K ∩ Soc(M) 6= 0.

Lemma 1.2.3. ([Abu2003, Proposition 1.10]) If AA is injective (cogen-
erator) and N is a right A-module, then the canonical right C-comodule
M := (N ⊗A C, id ⊗A ∆C) is injective (cogenerator) in MC. In particular,
if AA is injective (cogenerator) then C ' A ⊗A C is injective (cogenerator)
in MC.

For anA-coring C, the dual module ∗C := HomA−(C, A) (C∗ := Hom−A(C, A))
of left (right) A-linear maps from C to A is a ring under the so called con-
volution product. We remark here that the multiplications used below are
opposite to those in previous papers of the author, e.g. [Abu2003], and are
consistent with the ones in [BW2003].

1.2.4. Dual rings of corings. Let (C,∆, ε) be an A-coring. Then ∗C :=
HomA−(C, A) (respectively C∗ := Hom−A(C, A)) is an Aop-ring with multipli-
cation

(f ∗l g)(c) =
∑

f(c1g(c2)) (respectively (f ∗r g)(c) =
∑

g(f(c1)c2)

12



and unity ε. The coring C is a (∗C, C∗)-bimodule through the left ∗C-action
(respectively the right C∗-action):

f ⇀ c :=
∑

c1f(c2) for all f ∈ ∗C;

c ↼ g :=
∑

g(c1)c2 for all g ∈ C∗.

1.2.5. Let M be a right (left) C-comodule. Then M is a left ∗C-module (a
right C∗-module) under the left (right) action

f ⇀ m :=
∑

m<0>f(m<1>) for all f ∈ ∗C;

m ↼ g :=
∑

g(m<−1>)m<0> for all g ∈ C∗.

Notice that M is a (∗C,ECM)-bimodule (a (C∗, CME)-bimodule) in the canonical
way. A right (left) C-subcomodule K ⊆ M is said to be fully invariant ,
provided K is a (∗C,ECM)-subbimodule ((C∗, CME)-subbimodule) of M. Since
MC (CM) has cokernels, we conclude that for any f ∈ ECM (any g ∈ CME),
Mf := f(M) ⊆ M (gM := g(M) ⊆ M) is a right (left) C-subcomodule and
that for any right ideal I Cr ECM (left ideal J Cl CME) we have a fully-invariant
right (left) C-subcomodule MI ⊆M (JM ⊆M).

1.2.6. ([Z-H1976]) An A-module W is called locally projective (in the sense
of B. Zimmermann-Huisgen [Z-H1976]), if for every diagram

0 // F

g′◦ι   

ι //W
g

  B
BB

BB
BB

B

g′

��
L π

// N // 0

with exact rows and F f.g.: for every A-linear map g : W → N, there
exists an A-linear map g′ : W → L, such that the entstanding parallelogram
is commutative. Note that every projective A-module is locally projective.
Moreover, every locally projective A-module is flat and A-cogenerated.

Proposition 1.2.7. ([Abu2003, Theorems 2.9, 2.11]) For any A-coring C we
have

1. MC ' σ[C∗Cop ] ' σ[∗CC] if and only if AC is locally projective.

2. CM ' σ[C∗opC] ' σ[CC∗ ] if and only if CA is locally projective.
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Notation. Let M be a right C-comodule. We denote with C(M) (Cf.i.(M))
the class of (fully invariant) C-subcomodules ofM and with Ir(ECM) (It.s.(ECM))
the class of right (two-sided) ideals of ECM . For ∅ 6= K ⊆ M, ∅ 6= I ⊆ ECM
set

An(K) := {f ∈ ECM | f(K) = 0}, Ke(I) :=
⋂
{Ker(f) | f ∈ I}.

The following notions for right C-comodules will be used in the sequel.
The analogous notions for left C-comodules can be defined analogously:

Definition 1.2.8. Let AC be flat. We say a right C-comodule M is
self-injective, iff for every C-subcomodule K ⊆M, every C-colinear mor-

phism f ∈ HomC(K,M) extends to a C-colinear endomorphism f̃ ∈ EndC(M);

semi-injective, iff for every monomorphism 0 −→ N
h−→M in MC, where

N is a factor C-comodule of M, and every f ∈ HomC(N,M), ∃ f̃ ∈ EndC(M)

such that f̃ ◦ h = f ;
self-projective, iff for every C-subcomoduleK ⊆M, and g ∈ HomC(M,M/K),

∃ g̃ ∈ EndC(M) such that πK ◦ g̃ = g;
self-cogenerator, iff M cogenerates all of its factor C-comodules;
self-generator, iff M generates each of its C-subcomodules;
coretractable, iff HomC(M/K,M) 6= 0 for every proper C-subcomodule

K $ M ;
retractable, iff HomC(M,K) 6= 0 for every non-zero C-subcomodule 0 6=

K ⊆M ;
intrinsically injective, iff AnKe(I) = I for every f.g. right ideal I C ECM ;
subdirectly irreducible1, iff M has a unique simple C-subcomodule that is

contained in every C-subcomodule of M (equivalently, iff the intersection of
all non-zero C-subcomodules of M is again non-zero).

The following result follows immediately from ([Wis1991, 31.11, 31.12])
and Proposition 1.2.7:

Proposition 1.2.9. Let AC be locally projective, M be a non-zero right C-
comodule and consider the ring ECM := EndC(M)op = End(∗CM)op.

1. If M is Artinian and self-injective, then ECM is right Noetherian.

1Subdirectly irreducible comodules were called irreducible in [Abu2006]. However, we
observed that such a terminology may cause confusion, so we choose to change it in this
paper to be consistent with the terminology used for modules (e.g. [Wis1991, 9.11., 14.8.]).
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2. If M is Artinian, self-injective and self-projective, then ECM is right
Artinian.

3. If M is semi-injective and satisfies the ascending chain condition for
annihilator C-subcomodules, then ECM is semiprimary.

1.3 Annihilator conditions for comodules

Analogous to the annihilator conditions for modules (e.g. [Wis1991,
28.1]), the following result gives some annihilator conditions for comodules.

1.3.1. Let AC be flat, M be a right C-comodule and consider the order-
reversing mappings

An(−) : C(M)→ Ir(ECM) and Ke(−) : Ir(ECM)→ C(M). (1.2)

1. For every K ∈ Cf.i.(M) (I ∈ It.s.(ECM)), we have An(K) ∈ It.s.(ECM)
(Ke(I) ∈ Cf.i.(M)).Setting

A(ECM) := {An(K)| K ∈ C(M)};
K(M) := {Ke(I)| I ∈ Ir(ECM)};
At.s.(ECM) := {An(K)| K ∈ Cf.i.(M)};
Kf.i.(M) := {Ke(I)| I ∈ It.s.(ECM)},

we see that An(−) and Ke(−) induce bijections

A(ECM)←→ K(M) and At.s.(ECM)←→ Kf.i.(M).

2. For any C-subcomodule K ⊆M we have

KeAn(K) = K if and only if M/K is M -cogenerated.

3. If M is self-injective, then

(a) An(
n⋂
i=1

Ki) =
n∑
i=1

An(Ki) for any finite set of C-subcomodulesK1, ..., Kn ⊆

M.

(b) M is intrinsically injective.
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Remarks 1.3.2. let AC be flat and M be a right C-comodule.

1. If M is self-injective (self-cogenerator), then every fully invariant C-
subcomodule of M is also self-injective (self-cogenerator).

2. If M is self-injective, then M is semi-injective. If M is self-generator
(self-cogenerator), then it is obviously retractable (coretractable).

3. If M is self-cogenerator (M is intrinsically injective and ECM is right
Noetherian), then the mapping

An(−) : C(M)→ Ir(ECM) (Ke(−) : Ir(ECM)→ C(M))

is injective.

4. Let M be self-injective. If H $ K ⊆ M are C-subcomodules with K
coretractable and fully invariant in M, then An(K) $ An(H) : since
M is self-injective and K ⊆ M is fully invariant, we have a surjective
morphism of R-algebras ECM → ECK → 0, f 7→ f|K , which induces a
bijection An(H)/An(K)←→ AnECK

(H) ' HomC(K/H,K) 6= 0.

1.3.3. (e.g. [BW2003, 17.8.]) We have an isomorphism of R-algebras

φr : C∗ → EndC(C)op, f 7→ [c 7→ c ↼ f :=
∑

f(c1)c2]

with inverse map ψr : g 7→ ε ◦ g , and there is a ring morphism ιr : A −→
(C∗)op, a 7→ ε(a−).

Similarly, we have an isomorphism of R-algebras

φl : ∗C → CEnd(C), f 7→ [c 7→ f ⇀ c :=
∑

c1f(c2)]

with inverse map ψl : g 7→ ε◦g, and there is a ring morphism ιl : A −→ (∗C)op,
a 7→ ε(−a).

Definition 1.3.4. 1. We call a right (left) A-submodule K ⊆ C a right
(left) C-coideal, iff K is a right (left) C-subcomodule of C with structure
map the restriction of ∆C to K.

2. We call an (A,A)-subbimodule B ⊆ C a C-bicoideal , iff B is a C-
subbicomodule of C with structure map the restriction of ∆C to B;
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3. We call an (A,A)-subbimodule D ⊆ C an A-subcoring, iff D is an
A-coring with structure maps the restrictions of ∆C and εC to D.

Notation. WithR(C) (Rf.i.(C)) we denote the class of (fully invariant) right
C-coideals and with Ir(C∗) (It.s.(C∗)) the class of right (two-sided) ideals of
C∗. Analogously, we denote with L(C) (Lf.i.(C)) the class of (fully invariant)
left C-coideals and with Il(∗C) (It.s.(∗C)) the class of left (two-sided) ideals
of ∗C. With B(C) we denote the class of C-bicoideals and for each B ∈ B(C)
we write Br (Bl) to indicate that we consider B as an object in the category
of right (left) C-comodules.

Remarks 1.3.5. For ∅ 6= I ⊆ C∗ (∅ 6= I ⊆ ∗C) and ∅ 6= K ⊆ C, set

I⊥(C) :=
⋂
f∈I

{c ∈ C | f(c) = 0}

and

K⊥(∗C) := {f ∈ ∗C | f(K) = 0}; K⊥(C∗) := {f ∈ C∗ | f(K) = 0}.

1. If AC is flat, then a right A-submodule K ⊆ C is a right C-coideal, iff
∆(K) ⊆ K ⊗A C.
If CA is flat, then a left A-submodule K ⊆ C is a left C-coideal, iff
∆(K) ⊆ C ⊗A K.
If AC and CA are flat, then an A-subbimodule B ⊆ C is a C-bicoideal,
iff ∆(B) ⊆ (B ⊗A C) ∩ (C ⊗A B).

If AC and CA are flat, then an A-subbimodule D ⊆ C is a subcoring, iff
∆(D) ⊆ D ⊗A D.

2. Every A-subcoring D ⊆ C is a C-bicoideal in the canonical way.

If B ⊆ C is a C-bicoideal that is pure as a left and as a right A-
submodule, then we have by [BW2003, 40.16]:

∆(B) ⊆ (B ⊗A C) ∩ (C ⊗A B) = B ⊗A B,

i.e. B ⊆ C is an A-subcoring.

3. If CA (respectively AC) is locally projective, then Rf.i.(C) = B(C) (re-
spectively Lf.i.(C) = B(C)): if B ⊆ C is a fully invariant right (left)
C-coideal, then B ⊆ C is a right C∗-submodule (left ∗C-submodule) and
it follows by Proposition 1.2.7 that B ⊆ C is a C-subbicomodule with
structure map the restriction of ∆C to B, i.e. B is a C-bicoideal.
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4. Let CA (AC) be locally projective. If P C C∗ (P C ∗C) is a two-sided
ideal, then the fully invariant right (left) C-coideal B := annC(P ) ⊆ C
is a C-bicoideal.

5. If AC is locally projective and I Cr ∗C is a right ideal, then the left
∗C-submodule I⊥(C) ⊆ C is a right C-coideal.

If CA is locally projective and I Cl C∗ is a left ideal, then the right
C∗-submodule I⊥(C) ⊆ C is a left C-coideal.

6. IfK ⊆ C is a (fully invariant) right C-coideal, thenK⊥(C∗) = annC∗(K) '
AnECC

(K); in particular K⊥(C∗) ⊆ C∗ is a right (two-sided) ideal.

If K ⊆ C is a (fully invariant) left C-coideal, then K⊥(∗C) = ann∗C(K) '
AnC

CE(K); in particular K⊥(∗C) ⊆ ∗C is a left (two-sided) ideal.

7. If AA is an injective cogenerator and AC is flat, then for every right ideal
I Cr C∗ we have annC(I) = I⊥(C) : Write I =

⋃
λ∈Λ

Iλ, where Iλ Cr C∗

is a finitely generated right ideal for each λ ∈ Λ. If annC(Iλ0) & I
⊥(C)
λ0

for some λ0 ∈ Λ, then HomA(C/annC(Iλ0), A) * HomA(C/I⊥(C)
λ0

, A)
(since AA is a cogenerator). Since AA is injective, C is injective in
MC by Lemma 1.2.3 and it follows by 1.3.1 (3-b) and the remarks

above that Iλ0 = annC∗(annC(Iλ0)) = (annC(Iλ0))⊥(C∗) " I
⊥(C)⊥(C∗)
λ0

(a

contradiction). So annC(Iλ) = I
⊥(C)
λ for each λ ∈ Λ and we get

annC(I) =
⋂
λ∈Λ

annC(Iλ) =
⋂
λ∈Λ

I
⊥(C)
λ = (

⋃
λ∈Λ

Iλ)
⊥(C) = I⊥(C).�

1.4 Bicomodules

To the end of this section, C is a non-zero A-coring and D is a non-zero
B-coring with AC,DB flat. Moreover, M is a non-zero (D, C)-bicomodule.

Let M be a non-zero (D, C)-bicomodule. Then M is a (∗C,D∗)-bimodule
with actions

f ⇀ m :=
∑

m<0>f(m<1>) and m ↼ g :=
∑

g(m<−1>)m<0>,

for all f ∈ ∗C, g ∈ D∗, m ∈ M. Moreover, the set DECM := DEndC(M)op

of (D, C)-bicolinear endomorphisms of M is a ring with multiplication the
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opposite composition of maps, so that M is canonically a (∗C⊗RD∗op, DECM)-
bimodule. A (D, C)-subbicomodule L ⊆M is called fully invariant, iff it is a
right DECM -submodule as well. We call M ∈ DMC duo (quasi-duo), iff every
(simple) (D, C)-subbicomodule of M is fully invariant. If AC and DB are
locally projective, then DMC ' DRatC((D∗)opM(∗C)op) = DRatC(∗CMD∗) (the
category of (D, C)-birational (∗C,D∗)-bimodules , e.g. [Abu2003, Theorem
2.17.]).

Notation. Let M be a (D, C)-bicomodule. With L(M) (resp. Lf.i.(M)) we
denote the lattice of (fully invariant) (D, C)-subbicomodules of M and with
Ir(DECM) (resp. I(DECM)) the lattice of right (two-sided) ideals of DECM . With
If.g.r (DECM) ⊆ Ir(DECM) (resp. Lf.g.(M) ⊆ L(M)) we denote the subclass of
finitely generated right ideals of DECM (the subclass of (D, C)-subbicomodules
of M which are finitely generated as (B,A)-bimodules). For ∅ 6= K ⊆ M
and ∅ 6= I ⊆ DECM we set

An(K) := {f ∈ DECM | f(K) = 0} and Ke(I) := {m ∈M | f(m) = 0 ∀ f ∈ I}.

In what follows we introduce some notions for an object in DMC :

Definition 1.4.1. We say that a non-zero (D, C)-bicomodule M is
self-injective, iff for every (D, C)-subbicomodule K ⊆ M, every f ∈

DHomC(K,M) extends to some (D, C)-bicolinear endomorphism f̃ ∈ DECM ;
self-cogenerator, iff M cogenerates M/K in DMC ∀ (D, C)-subbicomodule

K ⊆M ;
intrinsically injective, iff AnKe(I) = I for every finitely generated right

ideal I Cr DECM .
simple, iff M has no non-trivial (D, C)-subbicomodules;
subdirectly irreducible, iffM contains a unique simple (D, C)-subbicomodule

that is contained in every non-zero (D, C)-subbicomodule of M (equivalently,
iff
⋂

06=K∈L(M) 6= 0).

semisimple, iff M = Corad(M), where Corad(M) :=
∑
{K ⊆ M |

K is a simple (D, C)-subbicomodule} (:= 0, if M has no simple (D, C)-
subbicomodules).

Notation. Let M be a non-zero (D, C)-bicomodule. We denote with S(M)
(Sf.i.(M)) the class of simple (D, C)-subbicomodules of M (non-zero fully in-
variant (D, C)-subbicomodules ofM with no non-trivial fully invariant (D, C)-
subbicomodules). Moreover, we denote with Maxr(

DECM) (Max(DECM)) the
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class of maximal right (two-sided) ideals of DECM . The Jacobson radical (prime
radical) of DECM is denoted by Jac(DECM) (Prad(DECM)).

1.4.2. Let M be a non-zero (D, C)-bicomodule. We M has Property S (Sf.i.
, iff S(L) 6= ∅ (Sf.i.(L) 6= ∅) for every (fully invariant) non-zero (D, C)-
subbicomodule 0 6= L ⊆ M. Notice that if M has S, then M is subdi-
rectly irreducible if and only if L1 ∩ L2 6= 0 for any two non-zero (D, C)-
subbicomodules 0 6= L1, L2 ⊆M.

Lemma 1.4.3. Let M be a non-zero (D, C)-bicomodule. If B ⊗R Aop is left
perfect and AC, DB are locally projective, then

1. every finite subset of M is contained in a (D, C)-subbicomodule L ⊆M
that is finitely generated as a (B,A)-bimodule.

2. every non-zero (D, C)-subbicomodule 0 6= L ⊆ M has a simple (D, C)-
subbicomodule, so that M has Property S. If moreover, M is quasi-duo,
then M has Property Sf.i..

3. Corad(M) ⊆e M (an essential (D, C)-subbicomodule).

Proof. 1. It’s enough to show the assertion for a single element m ∈ M.

Let %CM(m) =
n∑
i=1

mi ⊗A ci and %DM(mi) =
ki∑
j=1

di,j ⊗B mij for each i =

1, ..., n. Since AC, DB are locally projective, the (∗C,D∗)-subbimodule
L := ∗C ⇀ m ↼ D∗ ⊆ M is by [Abu2003, Theorem 2.17.] a (D, C)-
subbicomodule. Moreover, {mi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} generates

BLA, since

f ⇀ m ↼ g = [
n∑
i=1

mif(ci)] ↼ g =
n∑
i=1

ki∑
j=1

g(di,j)mi,jf(ci)

for all f ∈ ∗C and g ∈ D∗.

2. Suppose 0 6= L ⊆ M is a (D, C)-subbicomodule with no simple (D, C)-
subbicomodules. By “1”, L contains a non-zero (D, C)-subbicomodule
0 6= L1 $ M that is finitely generated as a (B,A)-bimodule. Since L
contains no simple (D, C)-subbicomodules, for every n ∈ N we can pick
(by induction) a non-zero (D, C)-subbicomodule 0 6= Ln+1 $ Ln that
is finitely generated as a B ⊗R A

op
-module. In this way we obtain an
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infinite chain L1 % L2 % ... % Ln % Ln+1 % .... of finitely generated
B ⊗R A

op
-submodules of L (a contradiction to the assumption that

B ⊗R A
op

is left perfect, see [Fai1976, Theorem 22.29]). Consequently,
L should contain at least one simple (D, C)-subbicomodule. Hence M
has property S. The last statement is obvious.

3. For every non-zero (D, C)-subbicomodule 0 6= L ⊆ M, we have by “1”
L ∩ Corad(M) = Corad(L) 6= 0, hence Corad(M) ⊆e M.�

Given a non-zero (D, C)-bicomodule M, we have the following annihilator
conditions. The proofs are similar to the corresponding results in [Wis1991,
28.1.], hence omitted:

1.4.4. LetM be a non-zero (D, C)-bicomodule and consider the order-reversing
mappings

An(−) : L(M)→ Ir(DECM) and Ke(−) : Ir(DECM)→ L(M). (1.3)

1. An(−) and Ke(−) restrict to order-reversing mappings

An(−) : Lf.i.(M)→ I(DECM) and Ke(−) : I(DECM)→ Lf.i.(M). (1.4)

2. For a (D, C)-subbicomodule K ⊆ M : Ke(An(K)) = K if and only if
M/K is M -cogenerated. So, if M is self-cogenerator, then the map
An(−) in (1.3) and its restriction in (1.4) are injective.

3. If M is self-injective, then

(a) An(
n⋂
i=1

Ki) =
n∑
i=1

An(Ki) for any (D, C)-subbicomodulesK1, ..., Kn ⊆

M (i.e. An(−) in (1.3) and its restriction in (1.4) are lattice anti-
morphisms).

(b) M is intrinsically injective.

Remarks 1.4.5. LetM be a non-zero (D, C)-bicomodule. IfM is self-cogenerator
and DECM is right-duo (i.e. every right ideal is a two-sided ideal), then M is
duo. On the other hand, if M is intrinsically injective and M is duo, then
DECM is right-duo. If M is self-injective and duo, then every fully invariant
(D, C)-subbicomodule of M is also duo.
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Chapter 2

(Co)Prime Comodules

In this chapter we introduce and study several (co)primeness properties
of comodules of corings and investigate their relation with other (co)primeness
conditions in the literature.

2.1 E-prime (E-semiprime) Comodules

In this section we study and characterize non-zero comodules, for which
the ring of colinear endomorphisms is prime (respectively semiprime, domain,
reduced). Throughout, we assume C is a non-zero A-coring with AC flat, M is
a non-zero right C-comodule and ECM := EndC(M)op is the ring of C-colinear
endomorphisms of M with the opposite composition of maps. We remark
that analogous results to those obtained in this section can be obtained for
left C-comodules, by symmetry.

Definition 2.1.1. We define a fully invariant non-zero C-subcomodule 0 6=
K ⊆M to be

E-prime in M, iff An(K) C ECM is prime;
E-semiprime in M, iff An(K) C ECM is semiprime;
completely E-prime in M, iff An(K) C ECM is completely prime;
completely E-semiprime in M , iff An(K) C ECM is completely semiprime.

Definition 2.1.2. We call the right C-comodule M E-prime (respectively
E-semiprime, completely E-prime, completely E-semiprime), provided M
is E-prime in M (respectively E-semiprime in M , completely E-prime in
M , completely E-semiprime in M), equivalently iff R-algebra ECM is prime
(respectively semiprime, domain, reduced).
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Notation. For the right C-comoduleM we denote with EP(M) (resp. ESP(M),
CEP(M), CESP(M)) the class of fully invariant C-subcomodules of M whose
annihilator in ECM is prime (resp. semiprime, completely prime, completely
semiprime).

Example 2.1.3. Let P C ECM be a proper two-sided ideal with P = AnKe(P )
(e.g. M intrinsically injective and PECM

finitely generated) and consider the

fully invariant C-subcomodule 0 6= K := Ke(P ) ⊆ M. Assume P C ECM to
be prime (respectively semiprime, completely prime, completely semiprime).
ThenK ∈ EP(M) (respectivelyK ∈ ESP(M), K ∈ CEP(M), K ∈ CESP(M)).
If moreover M is self-injective, then we have isomorphisms of R-algebras

ECK ' ECM/An(K) = ECM/AnKe(P ) = ECM/P,

hence K is E-prime (respectively E-semiprime, completely E-prime, com-
pletely E-semiprime).

For the right C-comodule M we have

CEP(M) ⊆ EP(M) ⊆ ESP(M) and CEP(M) ⊆ CESP(M) ⊆ ESP(M).
(2.1)

Remark 2.1.4. The idea of Example 2.1.3 can be used to construct counterex-
amples, which show that the inclusions in (2.1) are in general strict.

The E-prime coradical

Definition 2.1.5. We define the E-prime coradical of the right C-comodule
M as

EPcorad(M) =
∑

K∈EP(M)

K.

Proposition 2.1.6. Let M be intrinsically injective. If ECM is right Noethe-
rian, then

Prad(ECM) = An(EPcorad(M)). (2.2)

If moreover M is self-cogenerator, then

EPcorad(M) = Ke(Prad(ECM)). (2.3)
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Proof. If K ∈ EP(M), then An(K) C ECM is a prime ideal (by definition).
On the otherhand, if P C ECM is a prime ideal then P = AnKe(P ) (since PECM
is finitely generated and M is intrinsically injective) and so K := Ke(P ) ∈
EP(M). It follows then that

Prad(ECM) =
⋂
P∈Spec(ECM ) P =

⋂
P∈Spec(ECM ) AnKe(P )

=
⋂
K∈EP(M) AnKeAn(K) =

⋂
K∈EP(M) An(K)

= An(
∑

K∈EP(M) K) = An(EPcorad(M)).

If moreover M is self-cogenerator, then

EPcorad(M) = KeAn(EPcorad(M)) = Ke(Prad(ECM)).�

Corollary 2.1.7. Let M be intrinsically injective self-cogenerator. If ECM is
right Noetherian, then

M = EPcorad(M)⇔M is E-semiprime.

Proof. Under the assumptions and Proposition 2.1.6 we have:

M = EPcorad(M)⇒ Prad(ECM) = An(EPcorad(M)) = An(M) = 0,

i.e. ECM is semiprime; on the otherhand

ECM semiprime⇒ EPcorad(M) = Ke(Prad(ECM)) = Ke(0) = M.�

Remark 2.1.8. Let AC be locally projective and M be right C-comodule. A
sufficient condition for ECM to be right Noetherian, so that the results of
Proposition 2.1.6 and Corollary 2.1.7 follow, is that M is Artinian and self-
injective (see 1.2.9 (1)). We recall here also that in case AA is Artinian, every
finitely generated right C-comodule has finite length by [Abu2003, Corollary
2.25 (4)].

Proposition 2.1.9. Let θ : L→M be an isomorphism of right C-comodules.
Then we have bijections

EP(L) ↔ EP(M), ESP(L) ↔ ESP(M),
CEP(L) ↔ CEP(M), CESP(L) ↔ CESP(M).

(2.4)

In particular
θ(EPcorad(L)) = EPcorad(M). (2.5)
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If moreover L,M are self-injective, then we have bijections between the class
of E-prime (respectively E-semiprime, completely E-prime, completely E-
semiprime) C-subcomodules of L and the class of E-prime (respectively E-
semiprime, completely E-prime, completely E-semiprime) C-subcomodules of
M.

Proof. Sine θ is an isomorphism in MC, we have an isomorphism of R-
algebras

θ̃ : ECM → ECL, f 7→ [θ−1 ◦ f ◦ θ].

The result follows then from the fact that for every fully invariant C-subcomodule
0 6= H ⊆ L (respectively 0 6= K ⊆ M), θ̃ induces an isomorphism of R-
algebras

ECM/An(θ(H)) ' ECL/An(H) (respectively ECL/An(θ−1(K)) ' ECM/An(K)).�

Remark 2.1.10. Let L be a non-zero right C-comodule and θ : L −→ M be
a C-colinear map. If θ is not bijective, then it is NOT evident that we have
the correspondences (2.4).

Despite Remark 2.1.10 we have

Proposition 2.1.11. Let M be self-injective and 0 6= L ⊆ M be a fully
invariant non-zero C-subcomodule. Then

Cf.i.(L) ∩ EP(M) = EP(L) ; Cf.i.(L) ∩ CEP(M) = CEP(L)
Cf.i.(L) ∩ ESP(M) = ESP(L) ; Cf.i.(L) ∩ CESP(M) = CESP(L).

Proof. Assume M to be self-injective (so that L is also self-injective). Let
0 6= K ⊆ L be an arbitrary non-zero fully invariant C-subcomodule (so that
K ⊆ M is also fully invariant). The result follows then directly from the
definitions and the canonical isomorphisms of R-algebras

ECM/AnECM
(K) ' ECK ' ECL/AnECL

(K).�

Corollary 2.1.12. Let M be self-injective and 0 6= L ⊆ M be a non-zero
fully invariant C-subcomodule. Then L ∈ EP(M) (respectively L ∈ ESP(M),
L ∈ CEP(M), L ∈ CESP(M)) if and only if L is E-prime (respectively
E-semiprime, completely E-prime, completely E-semiprime).
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Sufficient and necessary conditions

Given a fully invariant non-zero C-subcomodule K ⊆ M, we give suffi-
cient and necessary conditions for An(K) C ECM to be prime (respectively
semiprime, completely prime, completely semiprime). These generalize the
conditions given in [XLZ1992] for the dual algebras of a coalgebra over a base
field to be prime (respectively semiprime, domain).

Proposition 2.1.13. Let 0 6= K ⊆ M be a non-zero fully invariant C-
subcomodule. A sufficient condition for K to be in EP(M) is that K =
KfECM ∀f ∈ ECM\An(K), where the later is also necessary in case M is
self-cogenerator (or M is self-injective and K is coretractable).

Proof. Let I, J C ECM with IJ ⊆ An(K). Suppose I * An(K) and pick
some f ∈ I\An(K). By assumption K = KfECM and it follows then that
KJ = (KfECM)J ⊆ K(IJ) = 0, i.e. J ⊆ An(K).

On the otherhand, assume M is self-cogenerator ( or M is self-injective
and K is coretractable). Suppose there exists some f ∈ ECM\An(K), such
that H := KfECM $ K 6= 0. Then obviously (ECMfECM)An(H) ⊆ An(K),
whereas our assumptions and Remarks 1.3.2 (3) & (4) imply that ECMfECM *
An(K) and An(H) * An(K) (i.e. An(K) is not prime).�

Proposition 2.1.14. Let 0 6= K ⊆ M be a non-zero fully invariant C-
subcomodule. A sufficient condition for K to be in ESP(M) is that Kf =
KfECMf ∀f ∈ ECM\An(K), where the later is also necessary in case M is
self-cogenerator.

Proof. Let I2 ⊆ An(K) for some I C ECM . Suppose I * An(K) and pick
some f ∈ I\An(K). Then 0 6= Kf 6= KfECMf ⊆ KI2 = 0, a contradiction.
So I ⊆ An(K).

On the otherhand, assume that M is self-cogenerator. Suppose there
exists some f ∈ ECM\An(K) with KfECMf & Kf 6= 0. By assumptions and
Remark 1.3.2 (3), there exists some g ∈ An(KfECMf)\An(Kf) and it follows
then that J := ECM(fg)ECM * An(K) while J2 ⊆ An(K) (i.e. An(K) C ECM
is not semiprime).�

Proposition 2.1.15. Let 0 6= K ⊆ M be a non-zero fully invariant C-
subcomodule. A sufficient condition for K to be in CEP(M) is that K =
Kf ∀f ∈ ECM\An(K), where the later is also necessary in case M is self-
cogenerator (or M is self-injective and K is coretractable).

26



Proof. 1. Let fg ∈ An(K) for some f, g ∈ ECM and suppose f /∈ An(K).
The assumption K = Kf implies then that Kg = (Kf)g = K(fg) =
0, i.e. g ∈ An(K).

On the otherhand, assume M is self-cogenerator ( or M is self-injective
andK is coretractable). SupposeKf & K 6= 0 for some f ∈ ECM\An(K).
By assumptions and Remarks 1.3.2 (3) & (4) there exists some g ∈
An(Kf)\An(K) with fg ∈ An(K) (i.e. An(K) C ECM is not com-
pletely prime).�

Proposition 2.1.16. Let 0 6= K ⊆ M be a non-zero fully invariant C-
subcomodule. A sufficient condition for K to be in CESP(M) is that Kf =
Kf 2 for every f ∈ ECM\An(K), where the later is also necessary in case M
is self-cogenerator.

Proof. Let f ∈ ECM be such that f 2 ∈ An(K). The assumption K = Kf
implies then that Kf = Kf 2 = 0, i.e. f ∈ An(K). On the otherhand,
assume M is self-cogenerator. Suppose that Kf 2 & Kf 6= 0 for some f ∈
ECM\An(K). By assumptions and Remark 1.3.2 (3), there exists some g ∈
An(Kf 2)\An(Kf). Set

h :=

{
fgf, in case fgf /∈ An(K);

fg, otherwise.

So h2 ∈ An(K) while h /∈ An(K) (i.e. An(K) C ECM is not completely
semiprime).�

The proof of the following result can be obtained directly from the
proofs of the previous four propositions by replacing K with M.

Theorem 2.1.17. 1. M is (completely) E-prime, if M = MfECM (M =
Mf) for every 0 6= f ∈ ECM . If M is coretractable, then M is (com-
pletely) E-prime if and only if M = MfECM (M = Mf) for every
0 6= f ∈ ECM .

2. M is (completely) E-semiprime, if Mf = MfECMf (Mf = Mf 2) for
every 0 6= f ∈ ECM . If M is self-cogenerator, then M is (completely)
E-semiprime if and only if Mf = MfECMf (Mf = Mf 2) for every
0 6= f ∈ ECM .
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E-Prime versus simple

In what follows we show that E-prime comodules generalize simple co-
modules.

Theorem 2.1.18. A sufficient condition for ECM to be right simple (a division
ring) is that M is simple, where the later is also necessary in case M is self-
cogenerator.

Proof. If M is simple, then ECM := EndC(M)op is a Division ring by Schur’s
Lemma.

On the otherhand, assume M to be self-cogenerator. Let K ⊆ M be a
C-subcomodule and consider the right ideal An(K) Cr ECM . If ECM is right
simple, then An(K) = (0ECM

) so that K = KeAn(K) = Ke(0ECM
) = M ; or

An(K) = ECM so that K = KeAn(K) = Ke(ECM) = (0M). Consequently M is
simple.�

Theorem 2.1.19. A sufficient condition for ECM to be simple, in case M is
intrinsically injective and ECM is right Noetherian, is to assume that M has no
non-trivial fully invariant C-subcomodules, where the later is also necessary
if M is self-cogenerator.

Proof. The proof is similar to that of Theorem 2.1.18 replacing right ideals
of ECM by two-sided ideals and arbitrary C-subcomodules of M with fully
invariant ones.�

Notation. Consider the non-zero right C-comoduleM.With S(M) (Sf.i.(M))
we denote the class of simple C-subcomodules of M (non-zero fully invariant
C-subcomodules of M with no non-trivial fully invariant C-subcomodules).

Corollary 2.1.20. Let M be self-injective self-cogenerator and 0 6= K ⊆M
be a fully invariant non-zero C-subcomodule. Then

1. K ∈ S(M)⇔ An(K) ∈ Maxr(E
C
M);

2. If ECM is right Noetherian, then K ∈ Sf.i.(M)⇔ An(K) ∈ Max(ECM).

Proof. Recall that, since M is self-injective self-cogenerator and K ⊆ M
is fully invariant, K is also self-injective self-cogenerator. The result fol-
lows then from Theorems 2.1.18 and 2.1.19 applied to the R-algebra ECK '
ECM/An(K).�
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Lemma 2.1.21. Let M be intrinsically injective self-cogenerator and assume
ECM to be right Noetherian. Then the order reversing mappings (1.2) give a
bijection

S(M)←→ Maxr(E
C
M) and Sf.i.(M)←→ Max(ECM). (2.6)

Proof. Let K ∈ S(M) (K ∈ Sf.i.(M)) and consider the proper right ideal
An(K) $ ECM . If An(K) ⊆ I ⊆ ECM , for some right (two-sided) ideal I ⊆ ECM ,
then Ke(I) ⊆ KeAn(K) = K and it follows from the assumption K ∈ S(M)
(K ∈ Sf.i.(M)) that Ke(I) = 0 so that I = AnKe(I) = ECM ; or Ke(I) =
K so that I = AnKe(I) = An(K). This means that An(K) ∈ Maxr(E

C
M)

(An(K) ∈ Max(ECM)).
On the otherhand, let I ∈ Maxr(E

C
M) (I ∈ Max(ECM)) and consider the

non-zero C-subcomodule 0 6= Ke(I) ⊆ M. If K ⊆ Ke(I) for some (fully
invariant) C-subcomodule K ⊆M, then I ⊆ AnKe(I) ⊆ An(K) ⊆ ECM and it
follows by the maximality of I that An(K) = ECM so that K = KeAn(K) = 0;
or An(K) = I so that K = KeAn(K) = Ke(I). Consequently Ke(I) ∈ S(M)
(K ∈ Sf.i.(M)). Since M is intrinsically injective self-cogenerator, Ke(−)
and An(−) are injective by 1.3.1 and we are done.�

Lemma 2.1.22. Let A be left perfect and AC be locally projective.

1. The non-zero right C-comodule contains a simple C-subcomodule.

2. Soc(M) Ce M (an essential C-subcomodule).

Proof. Let AA be perfect and AC be locally projective.

1. By [Abu2003, Corollary 2.25] M satisfies the descending chain condi-
tion on finitely generated non-zero C-subcomodules, which turn out to
be finitely generated right A-modules, hence M contains a non-zero
simple C-subcomodule.

2. Let M be a non-zero right C-comodule. For every C-subcomodule 0 6=
K ⊆M we have K ∩ Soc(M) = Soc(K) 6= 0, by (1).�

Proposition 2.1.23. We have

Jac(ECM) = An(Soc(M)) and Soc(M) = Ke(Jac(ECM)), (2.7)

if any of the following conditions holds:
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1. M is intrinsically injective self-cogenerator with ECM right Noetherian;

2. AC is locally projective and M is Artinian self-injective self cogenerator;

3. A is left perfect, AC is locally projective and M is self-injective self-
cogenerator.

Proof. 1. By Lemma 2.1.21 we have

Jac(ECM) =
⋂
{Q | Q Cr ECM is a maximal right ideal}

=
⋂
{AnKe(Q) | Q Cr ECM is a maximal right ideal}

=
⋂
{AnKe(An(K)) | K ⊆M is a simple C-subcomodule}

=
⋂
{An(K) | K ⊆M is a simple C-subcomodule}

= An(
∑
{K | K ⊆M is a simple C-subcomodule})

= An(Soc(M)).

Since M is self-cogenerator, we have Soc(M) = KeAn(Soc(M)) =
Ke(Jac(ECM)).

2. Since M is Artinian and self-injective in MC = σ[∗CC], we conclude that
ECM := EndC(M)op = End(∗CM) is right Noetherian by Proposition
1.2.9 (2). The result follows then by (1).

3. Since A is left perfect and AC is locally projective, Soc(M) Ce M is
an essential C-subcomodule by Lemma 2.1.22 (2) and it follows then,
since M is self-injective, that

Jac(ECM) = Jac(End(∗CM)op) = Hom∗C(M/Soc(M),M)1

= HomC(M/Soc(M),M) ' An(Soc(M)).

Since M is self-cogenerator, we have moreover

Soc(M) = KeAn(Soc(M)) = Ke(Jac(ECM)).�

Corollary 2.1.24. If any of the three conditions in Proposition 2.1.23 holds,
then we have

M is semisimple⇔ ECM is semiprimitive.

1by [Wis1991, 22.1 (5)]
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Proof. By assumptions and Proposition 2.1.23 we have Jac(ECM) = An(Soc(M))
and Soc(M) = Ke(Jac(ECM)). Hence,

M semisimple⇒ Jac(ECM) = An(Soc(M)) = An(M) = 0,

i.e. ECM is semiprimitive; on the otherhand ECM semiprimitive implies

Soc(M) = Ke(Jac(ECM)) = Ke(0) = M,

i.e. M is semisimple.�

E-Prime versus subdirectly irreducible

In what follows we clarify the relation between E-prime and subdirectly
irreducible comodules.

Remark 2.1.25. Let {Kλ}Λ be a family of non-zero fully invariant C-subcomodules
of M and consider the fully invariant C-subcomodule K :=

∑
λ∈Λ

Kλ ⊆ M. If

Kλ ∈ EP(M) (Kλ ∈ CEP(M)) for every λ ∈ Λ, then An(K) =
⋂
λ∈Λ

An(Kλ) is

an intersection of (completely) prime ideals, hence a (completely) semiprime
ideal, i.e. K ∈ ESP(M) (K ∈ CESP(M)). If M is self-injective, then we
conclude that an arbitrary sum of (completely) E-prime C-subcomodules of
M is in general (completely) E-semiprime.

Despite Remark 2.1.25 we have the following result (which is most
interesting in case K = M):

Proposition 2.1.26. Let {Kλ}Λ be a family of non-zero fully invariant C-
subcomodules of M, such that for any γ, δ ∈ Λ either Kγ ⊆ Kδ or Kδ ⊆ Kγ,
and consider the fully invariant C-subcomodule K :=

∑
λ∈Λ

Kλ =
⋃
λ∈Λ

Kλ ⊆ M.

If Kλ ∈ EP(M) (Kλ ∈ CEP(M)) for every λ ∈ Λ, then K ∈ EP(M) (K ∈
CEP(M)).

Proof. Let I, J C ECM be such that IJ ⊆ An(K) =
⋂
λ∈Λ

An(Kλ) and

suppose I * An(K). Pick some λ0 ∈ Λ with I * An(Kλ0). By assump-
tion An(Kλ0) C ECM is prime and IJ ⊆ An(Kλ0), so J ⊆ An(Kλ0). We
claim that J ⊆

⋂
λ∈Λ

An(Kλ) : Let λ ∈ Λ be arbitrary. If Kλ ⊆ Kλ0 , then

J ⊆ An(Kλ0) ⊆ An(Kλ). On the other hand, if Kλ0 ⊆ Kλ and J * An(Kλ),
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then the primeness of An(Kλ) implies that I ⊆ An(Kλ) ⊆ An(Kλ0), a con-
tradiction. So J ⊆

⋂
λ∈Λ

An(Kλ) = An(K). Consequently An(K) C ECM is a

prime ideal, i.e. K ∈ EP(M).
In case An(Kλ) C ECM is completely prime for every λ ∈ Λ, then replacing

ideals in the argument above with elements yields that An(K) C ECM is a
completely prime ideal, i.e. K ∈ CEP(M).�

Remark 2.1.27. If M is self-injective and the subcomodule Kλ in Proposition
2.1.26 are ( completely) E-prime, then K is ( completely) E-prime (recall that
we have in this case an isomorphism of algebras ECM/Ann(Kλ) ' ECKλ).

Proposition 2.1.28. Let M be self-cogenerator and K ∈ EP(M). Then
K admits no decomposition as an internal direct sum of non-trivial fully
invariant C-subcomodules.

Proof. Let K ⊆ M be a fully invariant C-subcomodule with An(K) C ECM
a prime ideal and suppose K = Kλ0 ⊕

∑
λ 6=λ0

Kλ to be a decomposition of

K as an internal direct sum of non-trivial fully invariant C-subcomodules.
Consider the two-sided ideals I := An(Kλ0), J := An(

∑
λ 6=λ0

Kλ) of ECM , so that

IJ ⊆ An(K). If J ⊆ An(K), then Kλ0 ⊆ K = KeAn(K) ⊆ Ke(J) =
∑
λ 6=λ0

Kλ

(a contradiction). Since An(K) C ECM is prime, I ⊆ An(K) and we conclude
that K = KeAn(K) ⊆ Ke(I) = KeAn(Kλ0) = Kλ0 (a contradiction).�

The following result clarifies, under suitable conditions, the relation be-
tween E-prime and subdirectly irreducible comodules.

Theorem 2.1.29. Assume AC to be locally projective, M to be self-injective
self-cogenerator and EndC(M) to be commutative. If M is E-prime, then M
is subdirectly irreducible.

Proof. If EndC(M = End(∗CM) is commutative, then under the assump-
tions on M, [Wis1991, 48.16] yield that M is a direct sum of subdirectly irre-
ducible fully invariant C-subcomodules. The results follows then by Propo-
sition 2.1.28.�
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2.2 Fully Coprime (fully cosemiprime) comod-

ules

As before, C is a non-zero A-coring with AC flat, M is a non-zero right
C-comodule and ECM := EndC(M)op is the ring of C-colinear endomorphisms
of M with the opposite composition of maps.

2.2.1. For R-submodules X, Y ⊆M, set

(X :CM Y ) :=
⋂
{f−1(Y )| f ∈ EndC(M) and f(X) = 0}.

If Y ⊆ M is a right C-subcomodule, then f−1(Y ) ⊆ M is a C-subcomodule
for each f ∈ ECM , being the kernel of the C-colinear map πY ◦f : M −→M/Y,
and it follows then that (X :CM Y ) ⊆M is a right C-subcomodule, being the
intersection of right C-subcomodules of M. If X ⊆ M is fully invariant, i.e.
f(X) ⊆ X for every f ∈ ECM , then (X :CM Y ) ⊆ M is clearly fully invariant.
If X, Y ⊆M are right C-subcomodules, then the right C-subcomodule (X :CM
Y ) is called the internal coproduct of X and Y in the category MC of right
C-comodules. If CA is flat, then the internal coproduct of C-subcomodules of
left C-comodules can be defined analogously.

Remark 2.2.2. The internal coproduct of submodules of a given module over
a ring was first introduced by Bican et. al. [BJKN1980] to present the no-
tion of coprime modules. The definition was modified in [RRW2005], where
arbitrary submodules are replaced by the fully invariant ones. To avoid any
possible confusion, we refer to coprime modules in the sense of [RRW2005]
as fully coprime modules and transfer that terminology to fully coprime co-
modules .

Definition 2.2.3. A fully invariant C-subcomodule 0 6= K ⊆ M will be
called

fully M-coprime, iff for any two fully invariant C-subcomodules X, Y ⊆
M with K ⊆ (X :CM Y ), we have K ⊆ X or K ⊆ Y ;

fully M-cosemiprime, iff for any fully invariant C-subcomodule X ⊆ M
with K ⊆ (X :CM X), we have K ⊆ X.

We call M fully coprime (fully cosemiprime), iff M is fully M -coprime
(fully M -cosemiprime).
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The fully coprime coradical

Definition 2.2.4. We define the fully coprime spectrum of M as

CPSpec(M) := {K | 0 6= K ⊆M is a fully M -coprime C-subcomodule}.

We define the fully coprime coradical of M as

CPcorad(M) =
∑

K∈CPSpec(M)

K.

Moreover, we set

CSP(M) := {K | 0 6= K ⊆M is an fully M -cosemiprime C-subcomodule}.

The fully coprime spectra (fully coprime coradicals) of comodules are
invariant under isomorphisms of comodules:

Proposition 2.2.5. Let θ : L → M be an isomorphism of C-comodules.
Then we have bijections

CPSpec(L)←→ CPSpec(M) and CSP(L)←→ CSP(M).

In particular
θ(CPcorad(L)) = CPcorad(M). (2.8)

Proof. Let θ : L → M be an isomorphism of right C-comodules. Let
0 6= H ⊆ L be a fully invariant C-subcomodule that is fully L-coprime and
consider the fully invariant C-subcomodule 0 6= θ(H) ⊆M. Let X, Y ⊆M be
two fully invariant C-subcomodules with θ(H) ⊆ (X :CM Y ). Then θ−1(X),
θ−1(Y ) ⊆ L are two fully invariant C-subcomodules and H ⊆ (θ−1(X) :CL
θ−1(Y )). By assumption H is fully L-coprime and we conclude that H ⊆
θ−1(X) so that θ(H) ⊆ X; or H ⊆ θ−1(Y ) so that θ(H) ⊆ Y. Consequently
θ(H) is fully M -coprime. Analogously one can show that for any fully in-
variant fully M -coprime C-subcomodule 0 6= K ⊆ M, the fully invariant
C-subcomodule 0 6= θ−1(K) ⊆ L is fully L-coprime.

Repeating the proof above with Y = X, one can prove that for any fully L-
cosemiprime (fully M -cosemiprime) fully invariant C-subcomodule 0 6= H ⊆
L (resp. 0 6= K ⊆ M), the fully invariant C-subcomodule 0 6= θ(H) ⊆ M
(0 6= θ−1(K) ⊆ L) is fully M -cosemiprime (fully L-cosemiprime).�
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Remark 2.2.6. Let L be a non-zero right C-comodules and θ : L → M be
a C-colinear map. If θ is not bijective, then it is NOT evident that for
K ∈ CPSpec(L) (respectively K ∈ CSP(L)) we have θ(K) ⊆ CPSpec(M)
(respectively θ(K) ∈ CSP(M)).

Despite Remark 2.2.6 we have

Proposition 2.2.7. Let 0 6= L ⊆ M be a non-zero fully invariant C-
subcomodule. Then we have

Mf.i.(L) ∩ CPSpec(M) ⊆ CPSpec(L) and Mf.i.(L) ∩ CSP(M) ⊆ CSP(L),
(2.9)

with equality in case M is self injective.

Proof. Let 0 6= H ⊆ L be a fully invariant C-subcomodule and assume H
to be fully M -coprime (fully M -cosemiprime). Suppose H ⊆ (X :CL Y ) for
two (equal) fully invariant C-subcomodules X, Y ⊆ L. Since L ⊆ M is a
fully invariant C-subcomodule, it follows that X, Y are also fully invariant C-
subcomodules of M and moreover (X :CL Y ) ⊆ (X :CM Y ). By assumption H
is fully M -coprime (fully M -cosemiprime), and so the inclusions H ⊆ (X :CL
Y ) ⊆ (X :CM Y ) imply H ⊆ X or H ⊆ Y. Consequently H is fully L-coprime
(fully L-cosemiprime). Hence the inclusions in (2.9) hold.

Assume now that M is self-injective. Let 0 6= H ⊆ L to be an fully L-
coprime (fully L-cosemiprime) C-subcomodule. Suppose X, Y ⊆ M are two
(equal) fully invariant C-subcomodules with H ⊆ (X :CM Y ) and consider the
fully invariant C-subcomodules X ∩ L, Y ∩ L ⊆ L. Since M is self-injective,
the embedding ι : L/X ∩ L ↪→M/X induces a surjective set map

Φ : HomC(M/X,M)→ HomC(L/X ∩ L,M), f 7→ f|L/X∩L .

Since L ⊆M is fully invariant, Φ induces a surjective set map

Ψ : AnECM
(X)→ AnECL

(X ∩ L), g 7→ g|L , (2.10)

which implies that H ⊆ (X∩L :CL Y ∩L). By assumption H is fully L-coprime,
hence H ⊆ X ∩ L so that H ⊆ X; or H ⊆ Y ∩ L so that H ⊆ Y. Hence H
is fully M -coprime (fully M -cosemiprime). Consequently the inclusions in
(2.9) become equality.�

Remark 2.2.8. Let 0 6= L ⊆M be a non-zero fully invariant C-subcomodule.
By Proposition 2.2.7, a sufficient condition for L to be fully coprime ( fully
cosemiprime) is that L is fully M -coprime ( fully M -cosemiprime), where the
later is also necessary in case M is self-injective.
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Lemma 2.2.9. Let X, Y ⊆M be any R-submodules. Then

(X :CM Y ) ⊆ Ke(An(X) ◦op An(Y )), (2.11)

with equality in case M is self-cogenerator and Y ⊆M is a C-subcomodule.

Proof. Let m ∈ (X :CM Y ) be arbitrary. Then for all f ∈ An(X) we have
f(m) = y for some y ∈ Y and so for each g ∈ An(Y ) we get

(f ◦op g)(m) = (g ◦ f)(m) = g(f(m)) = g(y) = 0,

i.e. (X :CM Y ) ⊆ Ke(An(X) ◦op An(Y )).
Assume now thatM is self-cogenerator and that Y ⊆M is a C-subcomodule

(so that KeAn(Y ) = Y by 1.3.1 (2)). If m ∈ Ke(An(X) ◦op An(Y )) and
f ∈ An(X) are arbitrary, then by our choice

g(f(m)) = (f ◦op g)(m) = 0 for all g ∈ An(Y ),

so f(m) ∈ KeAn(Y ) = Y, i.e. m ∈ (X :CM Y ). Hence, (X :CM Y ) =
Ke(An(X) ◦op An(Y )).�

Proposition 2.2.10. Let M be self-cogenerator. Then

EP(M) ⊆ CPSpec(M) and ESP(M) ⊆ CSP(M)

with equality, if M is intrinsically injective self-cogenerator, whence

EPcorad(M) = CPcorad(M).

Proof. Assume M to be self-cogenerator. Let 0 6= K ⊆ M be a fully
invariant C-subcomodule that is E-prime (E-semiprime) in M, and suppose
X, Y ⊆ M are two (equal) fully invariant C-subcomodules with K ⊆ (X :CM
Y ). Then we have by Lemma 2.2.9 (1)

An(X) ◦op An(Y ) ⊆ AnKe(An(X) ◦op An(Y )) ⊆ An(X :CM Y ) ⊆ An(K).

By assumption An(K) C ECM is prime (semiprime), hence An(X) ⊆ An(K),
so that K = KeAn(K) ⊆ KeAn(X) = X; or An(Y ) ⊆ An(K) so that
K = KeAn(K) ⊆ KeAn(Y ) = Y. Consequently K is fully M -coprime (fully
M -cosemiprime).

Assume now that M is intrinsically injective self-cogenerator. Let 0 6=
K ⊆ M be an fully M -coprime (fully M -cosemiprime) C-subcomodule and
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consider the proper two-sided ideal An(K) C ECM . Suppose I, J C ECM are
two (equal) ideals with I ◦op J ⊆ An(K) and IECM

, JECM
are finitely generated.

Consider the fully invariant C-subcomodules X := Ke(I), Y := Ke(J) of M.
Since M is self-cogenerator, it follows by Lemma 2.2.9 that

K = KeAn(K) ⊆ Ke(I ◦op J) = Ke(An(X) ◦op An(Y )) = (X :CM Y ).

Since K is fully M -coprime (fully M -cosemiprime), we conclude that K ⊆ X
so that I = AnKe(I) = An(X) ⊆ An(K); or K ⊆ Y so that J = AnKe(J) =
An(Y ) ⊆ An(K). Consequently An(K) C ECM is prime (semiprime), i.e. K
is E-prime (E-semiprime) in M.�

Remark 2.2.11. It follows from Proposition 2.2.10 that a sufficient condition
for M to be fully coprime (fully cosemiprime), in case M is self-cogenerator,
is that M is E-prime (E-semiprime), where the later is also necessary in case
M is intrinsically injective self-cogenerator.

As a direct consequence of Propositions 2.1.6, 2.2.10 we have

Proposition 2.2.12. Let M be intrinsically injective self-cogenerator and
ECM be right Noetherian. Then

Prad(ECM) = An(CPcorad(M)) and CPcorad(M) = Ke(Prad(ECM)). (2.12)

Using Proposition 2.2.12, a similar proof to that of Corollary 2.1.7
yields:

Corollary 2.2.13. Let M be intrinsically injective self-cogenerator and ECM
be right Noetherian. Then

M is fully cosemiprime⇔M = CPcorad(M).

Corollary 2.2.14. Let AC be locally projective and M be self injective self-
cogenerator. If M is Artinian (e.g. A is right Artinian and M is finitely
generated), then

1. Prad(ECM) = An(CPcorad(M)) and CPcorad(M) = Ke(Prad(ECM).

2. M is fully cosemiprime ⇔M = CPcorad(M).
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Comodules with rings of colinear endomorphisms right
Artinian

Under the strong assumption ECM := EndC(M)op is right Artinian, several
primeness and coprimeness properties of the non-zero right C-comodule M
coincide and become, in case AC locally projective, equivalent to M being
simple as a (∗C,ECM)-bimodule. This follows from the fact that right Artinian
prime rings are simple.

If M has no non-trivial fully invariant C-subcomodules, then it is
obviously fully coprime. The following result gives a partial converse:

Theorem 2.2.15. Let M be intrinsically injective self-cogenerator and as-
sume ECM to be right Artinian. Then the following are equivalent:

1. M is E-prime (i.e. ECM is a prime ring);

2. ECM is simple;

3. M has no non-trivial fully invariant C-subcomodules;

4. M is fully coprime.

Proof. Let M be intrinsically injective self-cogenerator and assume ECM to
be right Artinian.

(1) ⇒ (2) : Right Artinian prime rings are simple (e.g. [Wis1991, 4.5
(2)]).

(2)⇒ (3) : Since M is self-cogenerator, this follows by Theorem 2.1.19.
(3)⇒ (4) : Trivial.
(4)⇒ (1) : Since M be intrinsically injective self-cogenerator, this follows

by 2.2.11.�

Proposition 2.2.16. Let AC be locally projective and M be self-injective self-
cogenerator. If any of the following additional conditions is satisfied, then M
is fully coprime if and only if M is simple as a (∗C,ECM)-bimodule:

1. M has finite length; or

2. A is right Artinian and MA is finitely generated; or

3. M is Artinian and self-projective.
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Proof. By Theorem 2.2.15, it suffices to show that ECM = End(∗CM)op is
right Artinian under each of the additional conditions.

1. By assumption M is self-injective and Artinian (semi-injective and
Noetherian) and it follows then by Proposition 1.2.9 that ECM is right
Noetherian (semiprimary). Applying Hopkins Theorem (e.g. [Wis1991,
31.4]), we conclude that ECM is right Artinian.

2. If A is right Artinian and AC is locally projective, then every finitely
generated right C-comodule has finite length by [Abu2003, Corollary
2.25].

3. Since M is Artinian, self-injective and self-projective, ECM is right Ar-
tinian by Proposition 1.2.9 (2).�

Fully coprimeness versus irreducibility

In what follows we clarify, under suitable conditions, the relation be-
tween fully coprime and subdirectly irreducible comodules:

Proposition 2.2.17. Let {Kλ}Λ be a family of non-zero fully invariant C-
subcomodules of M, such that for any γ, δ ∈ Λ either Kγ ⊆ Kδ or Kδ ⊆ Kγ,
and consider the fully invariant C-subcomodule K :=

∑
λ∈Λ

Kλ =
⋃
λ∈Λ

Kλ ⊆ M.

If Kλ ∈ CPSpec(M) for all λ ∈ Λ, then K ∈ CPSpec(M).

Proof. Let X, Y ⊆ M be any fully invariant C-subcomodules with K ⊆
(X :CM Y ) and suppose K * X. We claim that K ⊆ Y.

Since K * X, there exists some λ0 ∈ Λ with Kλ0 * X. Since Kλ0 ⊆
(X :CM Y ), it follows from the assumption Kλ0 ∈ CPSpec(M) that Kλ0 ⊆ Y.
Let λ ∈ Λ be arbitrary. If Kλ ⊆ Kλ0 , then Kλ ⊆ Y. If otherwise Kλ0 ⊆ Kλ,
then the inclusion Kλ ⊆ (X :CM Y ) implies Kλ ⊆ Y (since Kλ ⊆ X would
imply Kλ0 ⊆ X, a contradiction). So K :=

⋃
λ∈Λ

Kλ ⊆ Y.�

Corollary 2.2.18. Let M =
∑
λ∈Λ

Mλ, where {Mλ}Λ is a family of non-zero

fully invariant C-subcomodules of M such that for any γ, δ ∈ Λ either Mγ

⊆ Mδ or Mδ ⊆ Mγ. If Mλ ∈ CPSpec(M) for each λ ∈ Λ, then M is fully
coprime.
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Proposition 2.2.19. Let 0 6= K ⊆ M be a non-zero fully invariant C-
subcomodule. If K ∈ CPSpec(M), then K has no decomposition as an inter-
nal direct sum of non-trivial fully invariant C-subcomodules.

Proof. Let K ∈ CPSpec(M) and suppose K := Kλ0 ⊕
∑
λ 6=λ0

Kλ, an internal

direct sum of non-trivial fully invariant C-subcomodules. Then K ⊆ (Kλ0 :CM∑
λ 6=λ0

Kλ) and it follows that K ⊆ Kλ0 or K ⊆
∑
λ 6=λ0

Kλ (contradiction).�

Corollary 2.2.20. If M is fully coprime, then M has no decomposition as
an internal direct sum of non-trivial fully invariant C-subcomodules.

As a direct consequence of Corollary 2.2.20 we get a restatement of The-
orem 2.1.29:

Theorem 2.2.21. Let AC locally projective, M self-injective self-cogenerator
in MC with EndC(M) commutative. If M is fully coprime, then M is subdi-
rectly irreducible.

2.3 Prime and Endo-prime comodules

Every right C-comodule M can be considered as a (∗C,ECM)-bimodule
in the canonical way. Given a non-zero right C-comodule M, we consider in
this section several primeness conditions of M as a left ∗C-module as well
as a right ECM -module. In particular, we clarify the relations between these
primeness properties and the ring structure of ∗C and ECM .

Prime comodules

Given an A-coring C, M. Ferrero and V. Rodrigues studied in [FR2005]
prime and semiprime right C-comodules considered as rational left ∗C-modules
in the canonical way.

Definition 2.3.1. Let AC (CA) be locally projective. A non-zero right (left)
C-comodule M is said to be prime (resp. semiprime, strongly prime, strongly
semiprime), provided the left (right) module ∗CM (MC∗) is prime (resp.
semiprime, strongly prime, strongly semiprime).

Lemma 2.3.2. ([FR2005, Proposition 3.2., Lemma 3.9.]) Let AC be locally
projective and M be a non-zero right C-comodule.
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1. If A is left perfect and M is prime, then ∗C/ann∗C(M) is simple Ar-
tinian.

2. If A is right Artinian and ∗Cm is semiprime for some 0 6= m ∈ M,
then ∗C/ann∗C(

∗Cm) is left Artinian.

Combining Lemma 2.3.2 (1) with Proposition 1.1.7 one obtains

Proposition 2.3.3. ([FR2005, Theorem 3.3., Corollary 3.5.]) Let A be left
perfect, AC be locally projective and M be a non-zero right C-comodule. Then
the following are equivalent:

1. M is prime;

2. ∗C/ann∗C(M) is simple Artinian;

3. M is strongly prime;

4. M =
⊕
λ∈Λ

Mλ, a direct sum of isomorphic simple C-subcomodules;

5. M =
∑
λ∈Λ

Mλ, a sum of isomorphic simple C-subcomodules of M ;

6. M is generated by each of its non-zero C-subcomodules of M ;

7. M has no non-trivial fully invariant C-subcomodules;

8. For any pretorsion class T in σ[M ]C, T (M) = 0 or T (M) = M (where
σ[M ]C ⊆MC is the subcategory of M-subgenerated right C-comodules).

Combining Lemma 2.3.2 (2) with Proposition 1.1.8 one obtains

Proposition 2.3.4. ([FR2005, Theorem 3.10., Corollary 3.11.]) Let A be
right Artinian, AC be locally projective and M be a non-zero right C-comodule.
Then the following are equivalent:

1. M is semiprime;

2. M is semisimple;

3. M is strongly semiprime;

4. M =
⊕
λ∈Λ

Mλ, a direct sum of prime C-subcomodules;
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5. M =
∑
λ∈Λ

Mλ, a sum of prime C-subcomodules;

6. Any semiprime C-subcomodule of M is a direct summand.

Endo-prime (endo-semiprime) comodules

In what follows we consider non-zero right C-comodules M that are
prime (semiprime) as right ECM -modules.

Remark 2.3.5. If M is a non-zero right C-comodule and K ⊆ M is a fully
invariant C-subcomodule, then K and M/K are right ECM -modules in the
canonical way and

annECM
(K) := {f ∈ ECM : Kf = 0} = {f ∈ ECM : f(K) = 0}

= An(K);
annECM

(M/K) := {f ∈ ECM : Mf ⊆ K} = {f ∈ ECM : f(M) ⊆ K}
= HomC(M,K).

The following definition is inspired by [HV2005], in which A. Haghany
and R. Vedadi studied modules that are prime over their endomorphisms
rings (called endo-prime modules).

Definition 2.3.6. We call a non-zero right C-comodule M :
endo-prime, iff annECM

(K) = 0 for all non-zero fully invariant C-subcomodules
0 6= K ⊆M ;

endo-coprime, iff annECM
(M/K) = 0 for all proper fully invariant C-

subcomodules K $ M ;
endo-diprime, iff annECM

(K) = 0 or annECM
(M/K) = 0 for every non-

trivial fully invariant C-subcomodule 0 6= K $ M.
The corresponding notions for a non-zero left C-comodule M can be de-

fined analogously.

Remarks 2.3.7. Let M be a non-zero right C-comodule.

1. IfM is retractable (i.e. HomC(M,K) 6= 0 for every right C-subcomodule
0 6= K ⊆M), then M is endo-diprime if and only if M is endo-prime.

2. IfM is coretractable (i.e. HomC(M/K,M) 6= 0 for every C-subcomodule
K $ M), then M is endo-diprime if and only if M is endo-coprime.
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Lemma 2.3.8. Let M be a non-zero right C-comodule.

1. Let AC be locally projective. Then M is endo-prime if and only if MECM
is prime.

If M is retractable, then M is endo-diprime if and only if MECM
is

prime.

2. M is endo-coprime if and only if MECM
is coprime.

If M is coretractable, then M is endo-diprime if and only if MECM
is

coprime.

3. M is endo-diprime if and only if MECM
is diprime.

If moreover, MECM
satisfies condition (*) (condition (**)), then M is

endo-diprime if and only if MECM
is prime (MECM

is coprime) if and

only if M is endo-prime (endo-coprime).

Proof. 1. Since AC is locally projective, MC = σ[∗CC] and

ECM := EndC(M)op = End(∗CM)op.

Assume M to be endo-prime and let 0 6= N ⊆M be an ECM -submodule.
Then annECM

(N) = annECM
(∗CN) = 0, where the first equality is obvi-

ous and the second follows from the assumption that M is endo-prime
(notice that 0 6= ∗CN ⊆ M is a fully invariant C-subcomodule by
Proposition 1.2.7 (1)). So MECM

is prime. The other implication is
obvious.

If moreover M is retractable, then M is endo-diprime if and only if M
is endo-prime and we are done.

2. Assume M to be endo-coprime and let N $ M be an arbitrary right
ECM -submodule. Then I := annECM

(M/N) ⊆ annECM
(M/MI) = 0,

where the inclusion is obvious and the equality follows from the as-
sumption that M is endo-coprime (notice that MI & M is a fully
invariant C-subcomodule). So MECM

is coprime. The other implication
is obvious.

If M is coretractable, then M is endo-diprime if and only if M is endo-
coprime and we are done.
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3. Assume M to be endo-diprime and let 0 6= N $ M be an arbitrary
right ECM -submodule. If I := annECM

(M/N) 6= 0, then annECM
(N) ⊆

annECM
(MI) = 0, where the equality follows from the assumption that

M is endo-diprime (notice that 0 6= MI & M is a fully invariant C-
subcomodule). So MECM

is diprime. The other implication is obvious.

If moreover, MECM
satisfies condition (*) (condition (**)), then MECM

is

diprime if and only if MECM
is prime (coprime) and we are done.�

The following result is a combinations of Proposition 1.1.5 and Lemma
2.3.8:

Theorem 2.3.9. Let M be a non-zero right C-comodule.

1. The following are equivalent:

(a) M is E-prime (i.e. ECM is prime);

(b) MECM
is diprime;

(c) M is endo-diprime.

2. If M is retractable, then (a)-(c) are equivalent to:

(d) M is endo-prime.

If AC is locally projective and M is retractable, then (a)-(d) above are
equivalent to:

(e) MECM
is prime.

3. If M is coretractable, then (a)-(c) above are equivalent to:

(d′) M is endo-coprime.

(e′) MECM
is coprime.

4. If MECM
satisfies condition (*) (condition (**)), then M is E-prime if

and only if M is endo-prime (M is endo-coprime).

Theorem 2.3.10. Let M be a non-zero right C-comodule with ECM right
Artinian. Then the following are equivalent:

1. M is E-prime (i.e. ECM is prime);

2. MECM
is diprime;
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3. M is endo-diprime.

4. M is endo-prime.

5. ECM is simple;

6. MECM
is prime;

7. MECM
is strongly prime;

8. M =
⊕
λ∈Λ

Mλ, a direct sum of isomorphic simple right ECM -submodules

of M ;

9. M =
∑
λ∈Λ

Mλ, a sum of isomorphic simple ECM -submodules of M ;

10. M is generated by each of its non-zero ECM -submodules.

11. M has no non-trivial fully invariant ECM -submodules.

12. For any pretorsion class T in σ[MECM
], T (M) = 0 or T (M) = M.

Proof. The first three statements are equivalent by Theorem 2.3.9 (1).
(1) ⇔ (5) For right Artinian rings, the equivalence between primeness

and simplicity is folklore (e.g. [Wis1991, 4.4]).
(6)-(12) are equivalent to (5) by Proposition 1.1.7 (notice that MECM

is

faithful).
The remaining implications (4)⇒ (3) and (6)⇒ (4) are trivial.�
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Chapter 3

(Co)Prime Corings

Throughout this chapter (C,∆, ε) is a non-zero coring. We consider in
what follows several coprimeness (cosemiprimeness) and primeness (semiprime-
ness) properties of C, considered as an object in the category MC of right
C-comodules, denoted by Cr, as well as an object in the category CM of left
C-comodules, denoted by Cl. In particular, we clarify the relation between
these properties and the simplicity (semisimplicity) of C.

Several results in this section can be obtained directly from the corre-
sponding ones in the previous chapter. However, we state many of these in
the case A is a QF ring, as in this case C is an injective cogenerator in both
the categories of right and left C-comodules by Lemma 1.2.3.

3.1 Sufficient and necessary conditions

The following result gives sufficient and necessary conditions for the dual
rings of the non-zero coring C to be prime (respectively semiprime, domain,
reduced) generalizing results of [XLZ1992] for coalgebras over base fields.
Several results follow directly from previous sections recalling the isomor-
phism of rings C∗ ' EndC(C)op. Analogous statements can be formulated for
∗C ' CEnd(C).

Theorem 2.1.17 yields directly.

Theorem 3.1.1. Let AC be flat.

1. C∗ is prime (domain), if C = CfC∗ (C = Cf) for all 0 6= f ∈ C∗. If C is
coretractable in MC, then C∗ is prime (domain) if and only if C = CfC∗
(C = Cf) ∀ 0 6= f ∈ C∗.
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2. C∗ is semiprime (reduced), if Cf = CfC∗f (Cf = Cf 2) for all 0 6= f ∈
C∗. If C is self-cogenerator in MC, then C∗ is semiprime (reduced) if
and only if Cf = CfC∗f (Cf = Cf 2) ∀ 0 6= f ∈ C∗.

Proposition 3.1.2. Let AC and CA be flat.

1. Let C be coretractable in MC and CC∗ satisfy condition (** ). If C∗ is
prime (domain), then ∗C is prime (domain).

2. Let C be coretractable in MC, CM and CC∗ ,∗C C satisfy condition (** ).
Then C∗ is prime (domain) if and only if ∗C is prime (domain).

3. Let C be coretractable in MC and AC be locally projective. If C∗ is prime,
then ∗C is prime.

4. Let C be coretractable in MC, CM and AC, CA be locally projective. Then
C∗ is prime if and only if ∗C is prime.

Proof. 1. Let C∗ be prime (domain). If ∗C were not prime (not a domain),
then there exists by an analogous statement of Theorem 3.1.1 some 0 6=
f ∈ ∗C with ∗CfC & C (fC & C). By assumption CC∗ satisfies condition
(**) and so there exists some 0 6= h ∈ C∗ such that (∗CfC)h = 0
((fC)h = 0). But this implies C 6= ChC∗ (C 6= Ch): otherwise fC =
f(ChC∗) = ((fC)h)C∗ = 0 (fC = f(Ch) = (fC)h = 0), which implies
f = 0, a contradiction. Since C is coretractable in MC, Theorem 3.1.1
(1) implies that C∗ is not prime (not a domain), which contradicts our
assumptions.

2. Follows from (1) by symmetry.

3. The proof is similar to that of (1) recalling that, in case AC locally
projective, for any f ∈ ∗C, the left ∗C-submodule ∗CfC ⊆ C is a right
C-subcomodule.

4. Follows from (3) by symmetry.�

E-Prime versus simple

In what follows we show that E-prime corings generalize simple corings.
The results are obtained by direct application of the corresponding results
in the Section 3.

As a direct consequence of Theorems 2.1.18 and 2.1.19 we get
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Theorem 3.1.3. Let A be a QF ring and assume AC to be (locally) projective.

1. Cr is simple if and only if C∗ is right simple.

2. If C∗ is simple, then C is simple (as a (∗C, C∗)-bimodule).

3. Let C∗ be right Noetherian. Then C∗ is simple if and only if C is simple
(as a (∗C, C∗)-bimodule).

Corollary 3.1.4. Let A be a QF ring, AC, CA be locally projective, ∗C be left
Noetherian and C∗ be right Noetherian. Then

C∗ is simple⇔ C is simple (as a (∗C, C∗)-bimodule) ⇔ ∗C is simple.

Proposition 3.1.5. Let A be a QF ring. If AC is (locally) projective, then
we have

Jac(C∗) = annC∗(Soc(Cr)) = Soc(Cr)⊥(C∗) and Soc(Cr) = Jac(C∗)⊥(C).

Proof. The result in (1) follows from Proposition 2.1.23 (3) recalling the
isomorphisms of R-algebras C∗ ' EndC(C)op and Remarks 1.3.5 (6) & (7).�

Corollary 3.1.6. Let A be a QF ring.

1. If AC is (locally) projective, then C is right semisimple if and only if C∗
is semiprimitive.

2. If AC and CA are (locally) projective, then C∗ is semiprimitive if and
only if ∗C is semiprimitive.

The wedge product

The wedge product of subspaces of a given coalgebra C over a base field
was already defined and investigated in [Swe1969, Section 9]. In [NT2001],
the wedge product of subcoalgebras was used to define fully coprime coalge-
bras.

Definition 3.1.7. We define the wedge product of a right A-submodule K ⊆
C and a left A-submodule L ⊆ C as

K∧L := ∆−1(Im(K⊗AC)+Im(C⊗AL)) = Ker((πK⊗πL)◦∆ : C → C/K⊗AC/L).
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Remark 3.1.8. ([Swe1969, Proposition 9.0.0.]) Let C be a coalgebra over
a base field and K,L ⊆ C be any subspaces. Then K ∧ L = (K⊥(C∗) ∗
L⊥(C∗))⊥(C). If moreover K is a left C-coideal and L is a right C-coideal,
then K ∧ L ⊆ C is a subcoalgebra.

Lemma 3.1.9. ([Abu2003, Corollary 2.9.]) Let K,L ⊆ C be A-subbimodules.

1. Consider the canonical A-bilinear map

κl : K⊥(∗C) ⊗A L⊥(∗C) → ∗(C ⊗A C), [f ⊗A g 7→ (c⊗A c′) = g(cf(c′))].

If A is right Noetherian, CA is flat and L⊥(∗C)⊥ ⊆ C is pure as a right
A-module, then

(κl(K
⊥(∗C) ⊗A L⊥(∗C)))⊥(C⊗AC) = L⊥(∗C)⊥ ⊗A C + C ⊗A K⊥(∗C)⊥. (3.1)

2. Consider the canonical A-bilinear map

κr : L⊥(C∗) ⊗A K⊥(C∗) → (C ⊗A C)∗, [g ⊗A f 7→ (c′ ⊗A c) = g(f(c′)c)].

If A is left Noetherian, AC is flat and L⊥(C∗)⊥ ⊆ C is pure as a left
A-module, then

(κr(L⊗A K))⊥(C⊗AC) = K⊥(C∗)⊥ ⊗A C + C ⊗A L⊥(C∗)⊥. (3.2)

Definition 3.1.10. For R-submodules K,L ⊆ C we set

(K :Cr L) :=
⋂
{f−1(Y ) | f ∈ EndC(C)op and f(K) = 0}

=
⋂
{c ∈ C | c ↼ f ∈ L for all f ∈ annC∗(K)}.

and

(K :Cl L) :=
⋂
{f−1(L) | f ∈ CEnd(C) and f(K) = 0}

=
⋂
{c ∈ C | f ⇀ c ∈ L for all f ∈ ann∗C(K)}.

If K,L ⊆ C are right (left) C-coideals, then we call (K :Cr L) ((K :Cl L))
the internal coproduct of X and Y in MC (in CM).

Lemma 3.1.11. Let K,L ⊆ C be C-bicoideals.

1. If AC is flat and C is self-cogenerator in MC, then

(K :Cr L) = annC(annC∗(K) ∗r annC∗(L)).
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2. If CA is flat and C is self-cogenerator in CM, then

(K :Cl L) = annC(ann∗C(K) ∗l ann∗C(L)).

Proof. The proof of (1) is analogous to that of Lemma 2.2.9, while (2) follows
by symmetry.�

The following result clarifies the relation between the wedge product and
the internal coproduct of right (left) C-coideals under suitable purity condi-
tions:

Proposition 3.1.12. Let A be a QF ring, (C,∆, ε) be an A-coring and
K,L ⊆ C be A-subbimodules.

1. Let AC be flat and K,L be right C-coideals. If AL ⊆ AC is pure, then
(K :Cr L) = K ∧ L.

2. Let CA be flat and K,L be left C-coideals. If KA ⊆ CA is pure, then
(K :Cl L) = K ∧ L.

3. Let AC, CA be flat and K,L ⊆ C be C-bicoideals. If AK ⊆ AC and
LA ⊆ CA are pure, then

(K :Cr L) = K ∧ L = (K :Cl L). (3.3)

Proof. 1. Assume AC to be flat and consider the map

κr : L⊥(C∗) ⊗A K⊥(C∗) → (C ⊗A C)∗, [g ⊗A f 7→ (c′ ⊗A c) = g(f(c′)c)].

Then we have

(K :Cr L) = (annC∗(K)∗rannC∗(L))⊥ (3.1.11)
= (K⊥(C∗) ∗r L⊥(C∗))⊥ (X, Y ⊆ C right coideals)
= ((∆∗ ◦ κr)(L⊥(C∗) ⊗A K⊥(C∗)))⊥

= ∆−1((κr(L
⊥(C∗) ⊗A K⊥(C∗)))⊥) ([Abu2006, 1.10 (3-c)])

= ∆−1(K⊥(C∗)⊥ ⊗A C + C ⊗A L⊥(C∗)⊥) ([Abu2006, 2.9])
= ∆−1(K ⊗A C + C ⊗A L) A is cogenerator
= K ∧ L.

2. This follows from (1) by symmetry.

3. This is a combination of (1) and (2).�
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3.2 Fully coprime (fully cosemiprime) corings

In addition to the notions of right (left) fully coprime and right (left)
fully cosemiprime bicoideals, considered as right (left) comodules in the canon-
ical way, we present the notion of a fully coprime (fully cosemiprime) bi-
coideal.

Definition 3.2.1. Let (C,∆, ε) be a non-zero A-coring and assume AC, CA to
be flat. Let 0 6= B ⊆ C be a C-bicomodule and consider the right C-comodule
Br and the left C-comodule Bl. We call B :

fully C-coprime (fully C-cosemiprime), iff both Br and Bl are fully C-
coprime (fully C-cosemiprime);

fully coprime (fully cosemiprime), iff both Br and Bl are fully coprime
(fully cosemiprime).

The fully coprime coradical

The prime spectra and the associated prime radicals for rings play an
important role in the study of structure of rings. Dually, we define the fully
coprime spectra and the fully coprime coradicals for corings.

Definition 3.2.2. Let (C,∆, ε) be a non-zero ring and assume AC to be flat.
We define the fully coprime spectrum of Cr as

CPSpec(Cr) := {0 6= B ∈ B(C) | Br ⊆ Cr is a fully C-coprime}

and the fully coprime coradical of Cr as

CPcorad(Cr) :=
∑

B∈CPSpec(Cr)

B.

Moreover, we set

CSP(Cr) := {0 6= B ∈ B(C) | Br ⊆ Cr is a fully C-cosemiprime}.

In case CA is flat, one defines analogously CPSpec(Cl), CPcorad(Cl) and
CSP(Cl).

As a direct consequence of Remark 2.2.11 we get:

Theorem 3.2.3. Let A be a QF ring and AC be flat. Then C∗ is prime
(semiprime) if and only if Cr is fully coprime (fully cosemiprime).
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The following result shows that fully coprime spectrum (fully coprime
coradical) of corings is invariant under isomorphisms of corings. The proof
is analogous to that of Proposition 2.2.5.

Proposition 3.2.4. Let θ : C → D be an isomorphism of A-corings and
assume AC, AD to be flat. Then we have bijections

CPSpec(Cr)←→ CPSpec(Dr) and CSP(Cr)←→ CSP(Dr).
In particular, θ(CPcorad(Cr)) = CPcorad(Dr).
Remark 3.2.5. If θ : C → D is a morphism of A-corings, then it is NOT
evident that θ maps fully C-coprime (fully C-cosemiprime) C-bicoideals into
fully D-coprime (fully D-cosemiprime) D-bicoideals, contrary to what was
mentioned in [NT2001, Theorem 2.4(i)].

The following example, given by Chen Hui-Xiang in his review of [NT2001]
(Zbl 1012.16041), shows moreover that a homomorphic image of a fully co-
prime coalgebra need not be fully coprime:

Example 3.2.6. Let A := Mn(F ) be the algebra of all n × n matrices over
a field F, B := Tn(F ) be the subalgebra of upper-triangular n × n matrices
over F where n > 1. Consider the dual coalgebras A∗, B∗. The embedding

of F -algebras ι : B ↪→ A induces a surjective map of F -coalgebras A∗
ι∗−→

B∗ −→ 0. However, A is prime while B is not, i.e. A∗ is a fully coprime
F -coalgebra, while B∗ is not (see Theorem 3.2.3).

As a direct consequence of Proposition 2.2.12 we have

Proposition 3.2.7. Let A be a QF ring. If AC is flat and C∗ is right Noethe-
rian, then

Prad(C∗) = CPcorad(Cr)⊥(C∗) and CPcorad(Cr) = Prad(C∗)⊥(C).

Making use of Proposition 3.2.7, a similar proof to that of Corollary
2.1.7 yields:

Corollary 3.2.8. Let A be a QF ring. If AC is flat and C∗ is Noetherian,
then

Cr is fully cosemiprime⇔ C = CPcorad(Cr).
Corollary 3.2.9. Let A be a QF ring. If AC is (locally) projective and Cr is
Artinian (e.g. CA is finitely generated), then

1. Prad(C∗) = CPcorad(Cr)⊥(C∗) and CPcorad(Cr) = Prad(C∗)⊥(C).

2. Cr is fully cosemiprime if and only if C = CPcorad(Cr).
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Corings with Artinian dual rings

For corings over QF ground rings several primeness and coprimeness
properties become equivalent. As a direct consequence Theorems 2.2.15,
3.2.3 and [FR2005, Theorem 2.9, Corollary 2.10] we get the following charac-
terizations of fully coprime locally projective corings over QF ground rings:

Theorem 3.2.10. Let A be a QF ring and AC, CA be projective and assume
C∗ is right Artinian and ∗C is left Artinian. Then the following statements
are equivalent:

1. C∗ (or ∗C) is prime;

2. CC∗ (or ∗CC) is diprime;

3. CC∗ (or ∗CC) is prime;

4. C∗ (or ∗C) is simple Artinian;

5. CC∗ (or ∗CC) is strongly prime;

6. Cr (or Cl) is fully coprime;

7. C has non-trivial fully invariant right (left) C-coideals;

8. C is simple.

As a direct consequence of Theorem 2.2.21 we get

Theorem 3.2.11. Let C be a locally projective cocommutative R-coalgebra
and assume C to be self-injective self-cogenerator in MC. If C is fully coprime,
then C is subdirectly irreducible.

3.3 Examples and Counterexamples

In what follows we give some examples of fully coprime corings (coalgebras)
over arbitrary (commutative) ground rings. An important class of fully co-
prime path coalgebras over fields is considered by Prof. Jara et. al. in
[JMNR]. For other examples of fully coprime coalgebras over fields, the
reader is referred to [NT2001].

We begin with a counterexample to a conjecture in [NT2001], communi-
cated to the author by Ch. Lomp, which shows that the converse of Theorem
3.2.11 is not true in general:
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Counterexample 3.3.1. Let C be a C-vector space spanned by g and an infinite
family of elements {xλ}Λ where Λ is a non-empty set. Define a coalgebra
structure on C by

∆(g) = g ⊗ g, ε(g) = 1;
∆(xλ) = g ⊗ xλ + xλ ⊗ g, ε(xλ) = 0.

(3.4)

Then C is a cocommutative coalgebra with unique simple (1-dimensional)
subcoalgebra C0 = Cg. Let V (Λ) be the C-vector space of families {bλ}Λ,
where bλ ∈ C and consider the trivial extension

C n V (Λ) =

{(
a w
0 a

)
| a ∈ C and w ∈ V (Λ)

}
, (3.5)

which is a ring under the ordinary matrix multiplication and addition. Then
there exists a ring isomorphism

C∗ ' C n V (Λ), f 7→
(
f(g) (f(xλ))Λ

0 f(g)

)
for all f ∈ C∗. (3.6)

Since

Jac(C∗) ' Jac(C n V (Λ)) =

(
0 V (Λ)
0 0

)
, (3.7)

we have (Jac(C∗))2 = 0, which means that C∗ is not semiprime. So C is an
infinite dimensional subdirectly irreducible cocommutative coalgebra, which
is not fully coprime (even not fully cosemiprime).

3.3.2. (The comatrix coring [E-GT2003]) Let A,B be R-algebras, Q a
(B,A)-bimodule and assume QA to be finitely generated projective with dual
basis {(ei, πi)}ni=1 ⊂ Q × Q∗. By [E-GT2003], C := Q∗ ⊗ Q is an A-coring
(called the comatrix coring) with coproduct and counit given by

∆C(f ⊗B q) :=
n∑
i=1

(f ⊗B ei)⊗A (πi ⊗B q) and εC(f ⊗B q) := f(q).

Notice that we have R-algebra isomorphisms

C∗ := Hom−A(Q∗ ⊗B Q,A) ' Hom−B(Q∗,Hom−A(Q,A)) = End−B(Q∗);

and

∗C := HomA−(Q∗ ⊗B Q,A) ' HomB−(Q,HomA−(Q∗, A))op ' EndB−(Q)op.
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Example 3.3.3. Consider the (A,A)-bimodule Q = An and the corresponding
comatrix A-coring C := Q∗ ⊗A Q (called also the matrix coalgebra in case
A = R, a commutative ring). Then we have isomorphisms of rings

C∗ ' End−A((An)∗) ' End−A((A∗)n)
' Mn(End−A(A∗)) ' Mn(End−A(A))
' Mn(A),

and
∗C ' EndA−(An)op 'Mn(EndA−(A))op 'Mn(Aop)op.

Let A be prime. Then C∗ ' Mn(A) and ∗C ' Mn(Aop)op are prime (e.g.
[AF1974, Proposition 13.2]). If moreover AA (AA) is a cogenerator, then
Cr (Cl) is self-cogenerator and it follows by Remark 2.2.11 that Cr is fully
coprime (Cl is fully coprime).

Example 3.3.4. Let A → B be a ring homomorphism and assume BA to
finitely generated and projective. Then the A-comatrix coring C := B∗ ⊗B
B ' B∗, is called the dual A-coring of the A-ring B as its coring structure
can also be obtained from the the A-ring structure of B (see [Swe1975, 3.7.]).
If B is a prime ring, then ∗C := ∗(B∗) ' B is prime. If moreover, B∗A is flat
and self-cogenerator, then it follows by analogy to Remark 2.2.11 that lC is
fully coprime.

Example 3.3.5. Let R be Noetherian, A a non-zero R-algebra for which the
finite dual A◦ ⊂ RA is a pure submodule (e.g. R is a Dedekind domain) and
assume RA

◦ to be a self-cogenerator. By [AG-TW2000], A◦ is an R-coalgebra.
If the R-algebra A◦∗ is prime, then A◦ is a fully coprime R-coalgebra. If A is
a reflexive R-algebra (i.e. A ' A◦∗ canonically), then A is prime if and only
if A◦ is fully coprime.

Example 3.3.6. Let A be a prime R-algebra and assume RA to be finitely
generated projective. Then C := A∗ is an R-coalgebra (with no assumption
on the commutative ground ring R) and C∗ := A∗∗ ' A. If RA

∗ is self-
cogenerator (e.g. RR is a cogenerator), then A is a prime R-algebra if and
only if C is a fully coprime R-coalgebra.

Example 3.3.7. Let R be a integral domain and C := R[x] be the R-coalgebra
with coproduct and counit defined on the generators by

∆(xn) :=
n∑
j=0

xj ⊗R xn−j and ε(xn) := δn,0 for all n ≥ 0.
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Then C∗ ' R[[x]], the power series ring, is an integral domain. If moreover,

RC is self-cogenerator (e.g. RR is a cogenerator), then C is fully coprime.
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Chapter 4

Zariski-Topologies for Corings
and Bicomodules

All rings and their modules in this paper are assumed to be unital. For
a ring T, we denote with Z(T ) the center of T and with T op the opposite
ring of T. We denote by C = (C,∆C, εC) a non-zero A-coring with AC flat
and by D = (D,∆D, εD) a non-zero B-coring with DB flat, so that the
categories DMC of (D, C)-bicomodules, MC of right C-comodules and DM of
left D-comodules are Grothendieck.

4.1 Fully coprime (fully cosemiprime) bico-

modules

4.1.1. Let M be a non-zero (D, C)-bicomodule. For any R-submodules
X, Y ⊆M we set

(X
(D,C)
:M Y ) :=

⋂
{f−1(Y ) | f ∈ AnDECM

(X)}
=

⋂
f∈An(X)

{Ker(πY ◦ f : M →M/Y )}.

If Y ⊆ M is a (D, C)-subbicomodule (and f(X) ⊆ X for all f ∈ DECM),

then (X
(D,C)
:M Y ) ⊆M is a (fully invariant) (D, C)-subbicomodule. If X, Y ⊆

M are (D, C)-subbicomodules, then we call (X
(D,C)
:M Y ) ⊆ M the internal

coproduct of X and Y in M.
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Lemma 4.1.2. Let X, Y ⊆M be any R-submodules. Then

(X :CM Y ) ⊆ Ke(An(X) ◦op An(Y )), (4.1)

with equality in case M is self-cogenerator and Y ⊆M is a (D, C)-subbicomodule.

Definition 4.1.3. Let M be a non-zero (D, C)-bicomodule. We call a non-
zero fully invariant (D, C)-subbicomodule 0 6= K ⊆M :

fully M-coprime, iff for any fully invariant (D, C)-subbicomodules X, Y ⊆
M with K ⊆ (X

(D,C)
:M Y ), we have K ⊆ X or K ⊆ Y ;

fully M-cosemiprime, iff for any fully invariant (D, C)-subbicomodule

X ⊆M with K ⊆ (X
(D,C)
:M X), we have K ⊆ X;

In particular, we call M fully coprime (fully cosemiprime), iff M is fully
M -coprime (fully M -cosemiprime).

The fully coprime coradical

The prime spectra and the associated prime radicals for rings play an
important role in the study of structure of rings. Dually, we define the fully
coprime spectra and the fully coprime coradicals for bicomodules.

Definition 4.1.4. Let M be a non-zero (D, C)-bicomodule. We define the
fully coprime spectrum of M as

CPSpec(M) := {0 6= K | K ⊆M is a fully M -coprime (D, C)-subbicomodule}

and the fully coprime coradical of M as CPcorad(M) :=
∑

K∈CPSpec(M)

K (:= 0,

in case CPSpec(M) = ∅). Moreover, we set

CSP(M) := {K | K ⊆M is a fully M -cosemiprime (D, C)-subbicomodule}.

Remark 4.1.5. We should mention here that the definition of fully coprime
(bi)comodules we present is motivated by the modified version of the def-
inition of coprime modules (in the sense of Bican et. al. [BJKN1980]) as
presented in [RRW2005]. (Fully) coprime coalgebras over base fields were in-
troduced first in [NT2001] and considered in [JMNR] using the wedge product
of subcoalgebras.
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4.1.6. Let M be a non-zero (D, C)-bicomodule and L ⊆M a fully invariant
non-zero (D, C)-subbicomodule. Then L is called E-prime (E-semiprime), iff
An(K) C DECM is prime (semiprime). With EP(M) (ESP(M)) we denote the
class of E-prime (E-semiprime) (D, C)-subbicomodules of M.

The results of [Abu2006] on comodules can be reformulated (with slight
modifications of the proofs) for bicomodules. We state only two of them that
are needed in the sequel.

Proposition 4.1.7. Let M be a non-zero (D, C)-bicomodule. If M is self-
cogenerator, then EP(M) ⊆ CPSpec(M) and ESP(M) ⊆ CSP(M), with
equality if M is intrinsically injective. If moreover DECM is right Noetherian,
then

Prad(DECM) = An(CPcorad(M)) and CPcorad(M) = Ke(Prad(DECM));

in particular, M is fully cosemiprime if and only if M = CPcorad(M).

Proposition 4.1.8. Let M be a non-zero (D, C)-bicomodule and 0 6= L ⊆M
a fully invariant (D, C)-subbicomodule. If M is self-injective, then

CPSpec(L) =Mf.i.(L) ∩ CPSpec(M) and CSP(L) =Mf.i.(L) ∩ CSP(M);
(4.2)

hence CPcorad(L) := L ∩ CPcorad(M).

Remark 4.1.9. Let M be a non-zero (D, C)-bicomodule. Then every L ∈
Sf.i.(M) is trivially a fully coprime (D, C)-bicomodule. If M is self-injective,
then Sf.i.(M) ⊆ CPSpec(M) by Proposition 4.1.8; hence if M has Prop-
erty Sf.i., then every fully invariant non-zero (D, C)-subbicomodule L ⊆ M
contains a fully M -coprime (D, C)-subbicomodule K ⊆ L (in particular,
∅ 6= CPSpec(L) ⊆ CPSpec(M) 6= ∅).

4.2 Top Bicomodules

In what follows we introduce top (bi)comodules, which can be con-
sidered (in some sense) as dual to top (bi)modules, [Lu1999], [MMS1997],
[Zha1999]. We define a Zariski topology on the fully coprime spectrum of
such (bi)comodules in a way dual to that of defining the classical Zariski
topology on the prime spectrum of (commutative) rings. A reference for the
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topological terminology and other results we use could be any standard book
in general topology (notice that in our case, a compact space is not necessar-
ily Hausdorff; such spaces are called quasi-compacttopological space by some
authors, e.g. [Bou1966, I.9.1.]).

Notation. For every (D, C)-subbicomodule L ⊆M set

VL := {K ∈ CPSpec(M) | K ⊆ L}, XL := {K ∈ CPSpec(M) | K " L}.

Moreover, we set

ξ(M) := {VL | L ∈ L(M)}; ξf.i.(M) := {VL | L ∈ Lf.i.(M)};
τM := {XL | L ∈ L(M)}; τ f.i.M := {XL | L ∈ Lf.i.(M)}.
ZM := (CPSpec(M), τM); Zf.i.

M := (CPSpec(M), τ f.i.M ).

Lemma 4.2.1. 1. XM = ∅ and X{0} = CPSpec(M).

2. If {Lλ}Λ ⊆ L(M), then X∑
Λ
Lλ ⊆

⋂
Λ

XLλ ⊆
⋃
Λ

XLλ = X⋂
Λ
Lλ .

3. For any L1, L2 ∈ Lf.i.(M), we have XL1+L2 = XL1 ∩ XL2 = X
(L1

(D,C)
:M L2)

.

Proof. Notice that “1” and “2” and the inclusion XL1+L2 ⊆ XL1 ∩XL2 in (3)
are obvious. If K ∈ XL1 ∩XL2 , and K /∈ X

(L1
(D,C)
:M L2)

, then K ⊆ L1 or K ∈ L2

since K is fully M -coprime, hence K /∈ XL1 or K /∈ XL2 (a contradiction,
hence XL1 ∩ XL2 ⊆ X

(L1
(D,C)
:M L2)

). Since L2 ⊆ M is a fully invariant, we have

L1 + L2 ⊆ (L1

(D,C)
:M L2), hence X

(L1
(D,C)
:M L2)

⊆ XL1+L2 and we are done.�

Remark 4.2.2. Let L1, L2 ⊆M be arbitrary (D, C)-subbicomodules. If L1, L2 ⊆
M are not fully invariant, then it is not evident that there exists a (D, C)-
subbicomodule L ⊆ M such that XL1 ∩ XL2 = XL. So, for an arbitrary
(D, C)-bicomodule M, the set ξ(M) is not necessarily closed under finite
unions.

The remark above motivates the following

Definition 4.2.3. We call M a top bicomodule, iff ξ(M) is closed under
finite unions.

As a direct consequence of Lemma 4.2.1 we get
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Theorem 4.2.4. Zf.i.
M := (CPSpec(M), τ f.i.M ) is a topological space (which we

call the Zariski-topology for M). In particular, if M is duo, then M is a top
(D, C)-bicomodule (i.e. ZM := (CPSpec(M), τM) is a topological space).

To the end of this section,

M is duo, self-injective and has Property S,

so that ∅ 6= S(L) = Sf.i.(L) ⊆ CPSpec(M) for every non-zero (D, C)-
subbicomodule 0 6= L ⊆ M (by Remark 4.1.9), and hence a top (D, C)-
bicomodule.

Remarks 4.2.5. Consider the Zariski topology ZM := (CPSpec(M), τM).

1. ZM is a T0 (Kolmogorov) space.

2. B := {XL | L ∈ Lf.g.(M)} is a basis of open sets for the Zariski
topology ZM : any K ∈ CPSpec(M) is contained in some XL for some
L ∈ Lf.g.(M) (e.g. L = 0); and if L1, L2 ∈ Lf.g.(M) and K ∈ XL1∩XL2 ,
then setting L := L1 + L2 ∈ Lf.g.(M), we have K ∈ XL ⊆ XL1 ∩ XL2 .

3. Let L ⊆M be a (D, C)-subbicomodule.

(a) L is simple if and only if L is fully M -coprime and VL = {L}.
(b) Assume L ∈ CPSpec(M). Then {L} = VL; in particular, L is

simple if and only if {L} is closed in ZM .

(c) XL = CPSpec(M) if and only if L = 0.

(d) If XL = ∅, then Corad(M) ⊆ L.

4. Let 0 6= L
θ
↪→ M be a non-zero (D, C)-bicomodule and consider the

embedding CPSpec(L)
θ̃
↪→ CPSpec(M) (compare Proposition 4.1.8).

Since θ−1(VN) = VN∩L for every N ∈ L(M), the induced map θ :
ZL → ZM , K 7→ θ(K) is continuous.

5. Let M
θ' N be an isomorphism of non-zero (D, C)-bicomodules. Then

we have bijections CPSpec(M) ←→ CPSpec(N) and CSP(M) ←→
CSP(N); in particular, θ(CPcorad(M)) = CPcorad(N).Moreover, ZM ≈
ZN are homeomorphic spaces.
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Theorem 4.2.6. The following are equivalent:

1. CPSpec(M) = S(M);

2. ZM is discrete;

3. ZM is a T2 (Hausdorff space);

4. ZM is a T1 (Fréchet space).

Proof. (1)⇒ (2). For every K ∈ CPSpec(M) = S(M), we have {K} = XYK
whence open, where YK :=

∑
{L ∈ CPSpec(M) | K " L}.

(2)⇒ (3) & (3)⇒ (4) : Every discrete topological space is T2 and every
T2 space is T1.

(4) ⇒ (1) Let ZM be T1 and suppose K ∈ CPSpec(M)\S(M), so that
{K} = VL for some L ∈ L(M). Since K is not simple, there exists by
assumptions and Remark 4.1.9 K1 ∈ S(K) ⊆ CPSpec(M) with K1 $ K,
i.e. {K1, K} $ VL = {K}, a contradiction. Consequently, CPSpec(M) =
S(M).�

Proposition 4.2.7. Let M be self-cogenerator and DECM be Noetherian with
every prime ideal maximal (e.g. a biregular ring1).

1. S(M) = CPSpec(M) (so M is subdirectly irreducible⇔ |CPSpec(M)| =
1).

2. If L ⊆ M is a (D, C)-subbicomodule, then XL = ∅ if and only if
Corad(M) ⊆ L.

Proof. 1. Notice that S(M) ⊆ CPSpec(M) by Remark 4.1.9. If K ∈
CPSpec(M), then An(K) C DECM is prime by Proposition 2.2.10, whence
maximal by assumption and it follows then that K = Ke(An(K)) is
simple (if 0 6= K1 $ K, for some K1 ∈ L(M), then An(K) $ An(K1) $
DECM since Ke(−) is injective, a contradiction).

2. If L ⊆ M is a (D, C)-subbicomodule, then it follows from “1” that
XL = ∅ if and only if Corad(M) = CPcorad(M) ⊆ L.�

1a ring in which every two-sided ideal is generated by a central idempotent (see
[Wis1991, 3.18(6,7)]).
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Remark 4.2.8. Proposition 4.2.7 corrects [NT2001, Lemma 2.6.], which is
absurd since it assumes C∗ PID, while C is not (fully) coprime (but C∗

domain implies C is (fully) coprime!!).

Theorem 4.2.9. If |S(M)| is countable (finite), then ZM is Lindelöf (com-
pact). The converse holds, if S(M) = CPSpec(M).

Proof. Assume S(M) = {Sλk}k≥1 is countable (finite). Let {XLα}α∈I be
an open cover of CPSpec(M) (i.e. CPSpec(M) ⊆

⋃
α∈I
XLα). Since S(M) ⊆

CPSpec(M) we can pick for each k ≥ 1, some αk ∈ I such that Sλk " Lαk . If⋂
k≥1

Lαk 6= 0, then it contains by Property S a simple (D, C)-subbicomodule

0 6= S ⊆
⋂
k≥1

Lαk , (a contradiction, since S = Sλk " Lαk for some k ≥ 1).

Hence
⋂
k≥1

Lαk = 0 and we conclude that CPSpec(M) = X ⋂
k≥1

Lαk
=
⋃
k≥1

XLαk
(i.e. {XLαk | k ≥ 1} ⊆ {XLα}α∈I is a countable (finite) subcover). Notice
that if S(M) = CPSpec(M), then ZM is discrete by Theorem 4.2.6 and so
ZM is Lindelöf (compact) if and only if CPSpec(M) is countable (finite).�

Definition 4.2.10. A collection G of subsets of a topological space X is
locally finite, iff every point of X has a neighbourhood that intersects only
finitely many elements of G.

Proposition 4.2.11. Let K = {Kλ}Λ ⊆ S(M) be a non-empty family of
simple (D, C)-subbicomodules. If |S(L)| < ∞ for every L ∈ CPSpec(M),
then K is locally finite.

Proof. Let L ∈ CPSpec(M) and set F :=
∑
{K ∈ K | K " L}. Since

|S(L)| < ∞, there exists a finite number of simple (D, C)-subbicomodules

{Sλ1 , .., Sλn} = K ∩ VL. If L ⊆ F, then 0 6= L ⊆
n∑
i=1

Sλi ⊆ (Sλ1 :
(D,C)
M

n∑
i=2

Sλi) and it follows by induction that 0 6= L $ Sλi for some 1 ≤ i ≤ n

(a contradiction, since Sλi is simple), whence L ∈ XF . It is clear then that
K ∩ XF = {Kλ1 , .., Kλn} and we are done.�

Definition 4.2.12. ([Bou1966], [Bou1998]) A topological space X is said to
be irreducible (connected), iff X is not the (disjoint) union of two proper
closed subsets; equivalently, iff the intersection of any two non-empty open
subsets is non-empty (the only subsets of X that are open and closed are
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∅ and X). A maximal irreducible subspace of X is called an irreducible
component.

Proposition 4.2.13. CPSpec(M) is irreducible if and only if CPcorad(M)
is fully M-coprime.

Proof. Let CPSpec(M) be irreducible. By Remark 4.1.9, CPcorad(M) 6=
0. Suppose that CPcorad(M) is not fully M -coprime, so that there exist

(D, C)-subbicomodules X, Y ⊆ M with CPcorad(M) ⊆ (X :
(D,C)
M Y ) but

CPcorad(M) " X and CPcorad(M) " Y. It follows then that CPSpec(M) =
V

(X:
(D,C)
M Y )

= VX ∪ VY a union of proper closed subsets, a contradiction.

Consequently, CPcorad(M) is fully M -coprime.
On the other hand, assume CPcorad(M) ∈ CPSpec(M) and suppose

that CPSpec(M) = VL1 ∪ VL2 = V
(L1:

(D,C)
M L2)

for some (D, C)-subbicomodules

L1, L2 ⊆M. It follows then that CPcorad(M) ⊆ L1, so that VL1 = CPSpec(M);
or CPcorad(M) ⊆ L2, so that VL2 = CPSpec(M). Consequently CPSpec(M)
is not the union of two proper closed subsets, i.e. it is irreducible.�

Lemma 4.2.14. 1. M is subdirectly irreducible if and only if the intersec-
tion of any two non-empty closed subsets of CPSpec(M) is non-empty.

2. If M is subdirectly irreducible, then CPSpec(M) is connected. If CPSpec(M)
is connected and CPSpec(M) = S(M), then M is subdirectly irre-
ducible.

Proof. 1. Assume M is subdirectly irreducible with unique simple (D, C)-
subbicomodule 0 6= S ⊆M. If VL1 , VL2 ⊆ CPSpec(M) are any two non-
empty closed subsets, then L1 6= 0 6= L2 and so VL1∩VL2 = VL1∩L2 6= ∅,
since S ⊆ L1∩L2 6= 0. On the other hand, assume that the intersection
of any two non-empty closed subsets of CPSpec(M) is non-empty. Let
0 6= L1, L2 ⊆M be any non-zero (D, C)-subbicomodules, so that VL1 6=
∅ 6= VL2 . By assumption VL1∩L2 = VL1 ∩ VL2 6= ∅, hence L1 ∩ L2 6= 0
and it follows by 1.4.2 that M is subdirectly irreducible.

2. If M is subdirectly irreducible, then CPSpec(M) is connected by “1”.
On the other hand, if CPSpec(M) = S(M), then ZM is discrete by
Theorem 4.2.6 and so M is subdirectly irreducible (since a discrete
topological space is connected if and only if it has only one point).�
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Proposition 4.2.15. 1. If K ∈ CPSpec(M), then VK ⊆ CPSpec(M) is
irreducible.

2. If VL is an irreducible component of ZM , then L is a maximal fully
M-coprime (D, C)-subbicomodule.

Proof. 1. Let K ∈ CPSpec(M) and suppose VK = A∪B = (VK ∩VX)∪
(VK∩VY ) for two (D, C)-subbicomodules X, Y ⊆M (so that A,B ⊆ VK
are closed subsets w.r.t. the relative topology on VK ↪→ CPSpec(M)).
It follows then that VK = (VK∩X) ∪ (VK∩Y ) = V

(K∩X:
(D,C)
M K∩Y )

and so

K ⊆ (K ∩X :
(D,C)
M K ∩ Y ), hence K ⊆ X so that VK = A; or K ⊆ Y,

so that VK = B. Consequently VK is irreducible.

2. Assume VL is an irreducible component of CPSpec(M) for some 0 6=
L ∈ L(M). If L ⊆ K for some K ∈ CPSpec(M), then VL ⊆ VK and
it follows then that L = K (since VK ⊆ CPSpec(M) is irreducible by
“1”). We conclude then that L is fully M -coprime and is moreover
maximal in CPSpec(M).�

Lemma 4.2.16. If n ≥ 2 and A = {K1, ..., Kn} ⊆ CPSpec(M) is a con-
nected subset, then for every i ∈ {1, ..., n}, there exists j ∈ {1, ..., n}\{i} such
that Ki ⊆ Kj or Kj ⊆ Ki.

Proof. Without loss of generality, suppose K1 " Kj and Kj " K1 for all

2 ≤ j ≤ n and set F :=
n∑
i=2

Ki, W1 := A ∩ XK1 = {K2, ..., Kn and W2 :=

A ∩ XF = {K1} (if n = 2, then clearly W2 = {K1}; if n > 2 and K1 /∈ W2,

then K1 ⊆
n∑
i=2

Ki ⊆ (K2 :
(D,C)
M

n∑
i=3

Ki) and it follows that K1 ⊆
n∑
i=3

Ki; by

induction one shows that K1 ⊆ Kn, a contradiction). So A = W1 ∪W2, a
disjoint union of proper non-empty open subsets (a contradiction).�

Notation. For A ⊆ CPSpec(M) set ϕ(A) :=
∑

K∈AK (:= 0, iff A = ∅).
Moreover, set

CL(ZM) := {A ⊆ CPSpec(M) | A = A};
E(M) := {L ∈ L(M) | CPcorad(L) = L}.

Lemma 4.2.17. The closure of any subset A ⊆ CPSpec(M) is A = Vϕ(A).
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Proof. Let A ⊆ CPSpec(M). Since A ⊆ Vϕ(A) and Vϕ(A) is a closed set, we
have A ⊆ Vϕ(A). On the other hand, suppose H ∈ Vϕ(A)\A and let XL be a
neighbourhood of H, so that H " L. Then there exists W ∈ A with W " L
(otherwise H ⊆ ϕ(A) ⊆ L, a contradiction), i.e. W ∈ XL ∩ (A\{H}) 6= ∅
and so K is a cluster point of A. Consequently, A = Vϕ(A).�

Theorem 4.2.18. We have a bijection

CL(ZM)←→ E(M).

If M is self-cogenerator and DECM is right Noetherian, then there is a bijection

CL(ZM)\{∅} ←→ CSPSpec(M).

Proof. For L ∈ E(M), set ψ(L) := VL. Then for L ∈ E(M) andA ∈ CL(ZM)
we have ϕ(ψ(L)) = ϕ(VL) = L ∩ CPcorad(M) = CPcorad(L) = L and
ψ(ϕ(A)) = Vϕ(A) = A = A. If M is self-cogenerator and DECM is right
Noetherian, then CSPSpec(M) = E(M)\{0} by Proposition 4.1.7 and we
are done.�

4.3 Applications and Examples

In this section we give some applications and examples. First of all we
remark that taking D := R (C := R), considered with the trivial coring struc-
ture, our results on the Zariski topology for bicomodules in the third section
can be reformulated for Zariski topology on the fully coprime spectrum of
right C-comodules (left D-comodules). However, our main application will
be to the Zariski topology on the fully coprime spectrum of non-zero corings,
considered as duo bicomodules in the canonical way.

Throughout this section, C is a non-zero A-coring with AC and CA flat.

4.3.1. The (A,A)-bimodule ∗C∗ := Hom(A,A)(C, A) := ∗C ∩ C∗ is an Aop-ring
with multiplication (f ∗ g)(c) =

∑
f(c1)g(c2) for all f, g ∈ ∗C∗ and unit εC;

hence every (C, C)-bicomodule M is a (∗C∗,∗ C∗)-bimodule and the centralizer

C(M) := {f ∈ ∗C∗ | f ⇀ m = m ↼ f for all m ∈M}

is an R-algebra. If M is faithful as a left (right) ∗C∗-module, then C(M) ⊆
Z(∗C∗).
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4.3.2. Considering C as a (C, C)-bicomodule in the natural way, C is a (∗C∗,∗ C∗)-
bimodule that is faithful as a left (right) ∗C∗-module, hence the centralizer

C(C) := {f ∈ ∗C∗ | f ⇀ c = c ↼ f for every c ∈ C}

embeds in the center of ∗C∗ as an R-subalgebra, i.e. C(C) ↪→ Z(∗C∗). If ac =
ca for all a ∈ A, then we have a morphism of R-algebras η : Z(A) → C(C),
a 7→ [εC(a−) = εC(−a)].

Remark 4.3.3. Notice that C(C) ⊆ Z(∗C) ⊆ Z(∗C∗) and C(C) ⊆ Z(C∗) ⊆
Z(∗C∗) (compare [BW2003, 17.8. (4)]). If AC (CA) is A-cogenerated, then it
follows by [BW2003, 19.10 (3)] that Z(∗C) = C(C) ⊆ Z(C∗) (Z(C∗) = C(C) ⊆
Z(∗C)). If ACA is A-cogenerated, then Z(∗C∗) ⊆ C(C) (e.g. [BW2003, 19.10
(4)]), whence Z(∗C) = Z(∗C∗) = Z(C∗).

Lemma 4.3.4. For every (C, C)-bicomodule M we have a morphism of R-
algebras

φM : C(M)→ CEndC(M)op, f 7→ [m 7→ f ⇀ m = m ↼ f ]. (4.3)

Moreover, Im(φM) ⊆ Z(CECM).

Proof. First of all we prove that φM is well-defined: for f ∈ C(M) and
m ∈M we have∑

(φM(f)(m))<0> ⊗A (φM(f)(m))<1> =
∑

(m ↼ f)<0> ⊗A (m ↼ f)<1>

=
∑
f(m<−1>)m<0><0> ⊗A m<0><1>

=
∑
f(m<0><−1>)m<0><0> ⊗A m<1>

=
∑

(m<0> ↼ f)⊗A m<1>

=
∑
φM(f)(m<0>)⊗A m<1>,

and∑
(φM(f)(m))<−1> ⊗A (φM(f)(m))<0> =

∑
(f ⇀ m)<−1> ⊗A (f ⇀ m)<0>

=
∑
m<0><−1> ⊗A m<0><0>f(m<1>)

=
∑
m<−1> ⊗A m<0><0>f(m<0><1>)

=
∑
m<−1> ⊗A (f ⇀ m<0>)

=
∑
m<−1> ⊗A φM(f)(m<0>),

i.e. φM(f) : M → M is (C, C)-bicolinear. Obviously, φM(f ∗ g) = φM(f) ◦op
φM(g) for all f, g ∈ C(M), i.e. φM is a morphism of R-algebras. Moreover,
since every g ∈ CECM is (∗C∗,∗ C∗)-bilinear, we have g(f ⇀ m) = f ⇀ g(m)
for every f ∈ ∗C∗ and m ∈M, i.e. Im(φM) ⊆ Z(CECM).�
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Lemma 4.3.5. We have an isomorphism of R-algebras C(C)
φC' CEndC(C),

with inverse ψC : g 7→ εC ◦ g. In particular, (CEndC(C), ◦) is commutative and
C ∈ CMC is duo.

Proof. First of all we prove that ψ is well-defined: for g ∈ CEndC(C) and
c ∈ C we have

ψC(g) ⇀ c =
∑
c1ψ(g)(c2) =

∑
c1εC(g(c2)) =

∑
g(c)1εC(g(c)2)

= g(c) =
∑
εC(g(c)1)g(c)2 =

∑
εC(g(c1))c2

=
∑
ψ(g)(c1)c2 = c ↼ ψ(g),

i.e. ψC(g) ∈ C(C). For any f ∈ C(C), g ∈ CEndC(C) and c ∈ C we have
((ψC ◦ φC)(f))(c) = εC(φC(f)(c)) = εC(f ⇀ c) = f(c) and ((φC ◦ψC)(g))(c) =∑
c1ψC(g)(c2) =

∑
c1εC(g(c2)) =

∑
g(c)1εC(g(c)2) = g(c).�

Zariski topologies for corings

Notation. With B(C) we denote the class of C-bicoideals and with L(Cr)
(resp. L(Cl)) the class of right (left) C-coideals. For a C-bicoideal K ∈ B(C),
Kr (K l) indicates that we consider K as a right (left) C-comodule, rather
than a (C, C)-bicomodule. We also set

CPSpec(C) := {K ∈ B(C) | K is fully C-coprime};
CPSpec(Cr) := {K ∈ B(C) | Kr is fully Cr-coprime};
CPSpec(Cl) := {K ∈ B(C) | K l is fully Cl-coprime};

and
τC := {XL | L ∈ B(C)};
τCr := {XL | L ∈ L(Cr)};
τCl := {XL | L ∈ L(Cl)}.

In what follows we announce only the main result on the Zariski topologies
for corings, leaving to the interested reader the restatement of the other
results of the third section.

Theorem 4.3.6. 1. ZC := (CPSpec(C), τC) is a topological space (which
we call the Zariski topology for C)..

2. Zf.i.
Cr := (CPSpec(Cr), τ f.i.Cr ) and Zf.i.

Cl := (CPSpec(C l), τ f.i.Cl ) are topolog-
ical spaces.

68



Proposition 4.3.7. Let θ : C → C ′ be a morphism of non-zero A-corings with

AC, AC ′ flat, Cr intrinsically injective self-cogenerator and C ′r self-cogenerator.

1. If θ is injective and C ′r is self-injective, or if C∗ is right-duo, then
we have a map θ̃ : CPSpec(Cr) → CPSpec(C ′r), K 7→ θ(K) (and so
θ(CPcorad(Cr)) ⊆ CPcorad(C ′r)).

2. If Cr, C ′r are duo, then the induced map θ : ZCr → ZC′r is continuous.

3. If every K ∈ CPSpec(Cr) is inverse image of a K ′ ∈ CPSpec(C ′r), then

θ̃ is injective.

4. If θ is injective and C ′r is self-injective, then θ : Zf.i.
Cr → Zf.i.

C′r is contin-

uous. If moreover, θ̃ : CPSpec(Cr) → CPSpec(C ′r) is surjective, then
θ is open and closed.

5. If C θ' C ′, then Zf.i.
Cr

θ
≈ Zf.i.

C′r (homeomorphic spaces).

Proof. First of all notice for every K ∈ L(Cr) (K ∈ B(C)), we have θ(K) ∈
L(C ′r) (θ(K) ∈ B(C ′)) and for every K ′ ∈ L(C ′r) (K ′ ∈ B(C ′)), θ−1(K ′) ∈
L(Cr) (θ−1(K ′) ∈ B(C)).

1. If θ is injective and C ′r is self-injective, then CPSpec(Cr) = B(C) ∩
CPSpec(C ′r) by [Abu2006, Proposition 4.7.]. Assume now that C∗ is
right-duo. Since θ is a morphism of A-corings, the canonical map
θ∗ : C ′∗ → C∗ is a morphism of Aop-rings. If K ∈ CPSpec(Cr),
then annC∗(K) C C∗ is a prime ideal by [Abu2006, Proposition 4.10.],
whence completely prime since C∗ is right-duo. It follows then that
annC′∗(θ(K)) = θ(K)⊥C

′∗
= (θ∗)−1(K⊥C

∗
) = (θ∗)−1(annC∗(K)) is a

prime ideal, whence θ(K) ∈ CPSpec(C ′r) by [Abu2006, Proposition
4.10.]. It is obvious then that θ(CPcorad(Cr)) ⊆ CPcorad(C ′r).

2. Since Cr ∈ MC, C ′r ∈ MC′ are duo, ZCr := Zf.i.
Cr and ZC′r := Zf.i.

C′r are
topological spaces. Since Cr is intrinsically injective, C∗ is right-due and
by “1” θ̃ : CPSpec(Cr)→ CPSpec(C ′r) is well-defined. For L′ ∈ L(C ′r),
θ̃
−1

(XL′) = Xθ−1(L′), i.e. θ is continuous.

3. Suppose θ̃(K1) = θ̃(K2) for some K1, K2 ∈ CPSpec(Cr) with K1 =
θ−1(K ′1), K2 = θ−1(K ′2) where K ′1, K

′
2 ∈ CPSpec(C ′r). Then K1 =

θ−1(K ′1) = θ−1(θ(θ−1(K ′1))) = θ−1(θ(θ−1(K ′1))) = θ−1(θ(θ−1(K ′2))) =
θ−1(K ′2) = K2.
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4. By [Abu2006, Proposition 4.7.] CPSpec(Cr) = B(Cr) ∩ CPSpec(C ′r),
hence for L ∈ L(Cr) and L′ ∈ L(C ′r) we have θ−1(VL′) = Vθ−1(L′),
θ(VL) = Vθ(L) and θ(XL) = Xθ(L).

5. Since θ is an isomorphism, θ̃ is bijective by [Abu2006, Proposition 4.5.].
In this case θ and θ−1 are obviously continuous (see “4”).�

Example 4.3.8. ([NT2001, Example 1.1.]) Let k be a field and C := k[X] be
the cocommutative k-coalgebra with ∆(Xn) := Xn ⊗k Xn and ε(Xn) := 1
for all n ≥ 0. For each n ≥ 0, set Cn := kXn. Then CPSpec(C) = S(C) =
{Cn | n ≥ 0}. Notice that

1. ZC is discrete by Theorem 4.2.6, hence ZC is Lindelöf (but not compact)
by Theorem 4.2.9.

2. CPSpec(C) is not connected: CPSpec(C) = {Cn | n ≥ 1} ∪ {C0} =
X{k}∪X<X,X2,...> (notice that CPSpec(C) is not subdirectly irreducible,
compare with Lemma 4.2.14.

Example 4.3.9. ([NT2001, Example 1.2.]) Let k be a field and C := k[X]
be the cocommutative k-coalgebra with ∆(Xn) :=

∑n
j=1X

j ⊗k Xn−j and
ε(Xn) := δn,0 for all n ≥ 0. For each n ≥ 0 set Cn :=< 1, ..., Xn > . For each
n ≥ 1, Cn ⊆ (Cn−1 :C< kXn >), hence not fully C-coprime and it follows
that CPSpec(C) = {k, C} (since k is simple, whence fully C-coprime and
C∗ ' k[[X]] is an integral domain, whence C is fully coprime). Notice that

1. C is subdirectly irreducible with unique simple subcoalgebra C0 = k;

2. the converse of Remark 4.2.5 “3(d)” does not hold in general: Corad(C) =
k ⊆ C1 while XC1 = {C} 6= ∅ (compare Proposition 4.2.7 “2”).

3. CPSpec(C) is connected, although S(C) $ CPSpec(C) (see Lemma
4.2.14 “2”).

4. ZC is not T1 by Theorem 4.2.6, since C ∈ CPSpec(C)\S(C) : in fact, if
C ∈ XL1 and C0 ∈ XL2 for some C-subcoalgebras L1, L2 ⊆ C, then L2 =
0 (since C is subdirectly irreducible with unique simple subcoalgebra
C0); hence XL2 = {C0, C} = CPSpec(C) and XL1 ∩ XL2 = XL1 6= ∅.
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Remark 4.3.10. As this paper extends results of [NT2001], several proofs and
ideas are along the lines of the original ones. However, our results are much
more general (as [NT2001] is restricted to coalgebras over fields). Moreover,
we should warn the reader that in addition to the fact that several results in
that paper are redundant or repeated, several other results are even absurd,
e.g. Proposition 2.8., Corollary 2.4. and Theorem 2.4. (as noticed by Chen
Hui-Xiang in his review; Zbl 1012.16041) in addition to [NT2001, Lemma
2.6.] as we clarified in Remark 4.2.8. We corrected the statement of some
of these results (e.g. Proposition 4.2.7 corrects [NT2001, Lemma 2.6.]; while
Proposition 4.3.7 suggests a correction of [NT2001, Theorem 2.4.] which
does not hold in general as the counterexample [Abu2006, 5.20.] shows).
Moreover, we improved some other results (e.g. applying Theorem 4.2.6
to coalgebras over base fields improves and puts together several scattered
results of [NT2001]).
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Future Research

The main results in this report were published in two papers [Abu2006]
and [Abu2008]. Moreover, the investigations carried out during this project
inspired several new approaches in research. In what follows I list some of
the ideas suggested by such investigations2:

• The notions of endo-prime (endo-semiprime) comodules and the dual
notions of endo-coprime (endo-cosemiprime) comodules for corings will
be studied and investigated in [Abu-a] (where some unpublished partial
results of Section 2.3 will be included).

• Different notions of primeness and coprimeness in this report can be in-
vestigated in categories of modules and bimodules over (commutative)
rings. Some generalizations will be carried out in [Abu-b].

• Different Zariski-like topologies can be introduced and investigated for
modules and bimodules over (commutative) rings. This will be done in
[Abu-c].

• Most of the results in this paper can be transformed to investigate the
notion of coprimeness in the sense of Annin [Ann2002] in categories of
(bi)comodules and define a Zariski topology on the spectrum of coprime
sub(bi)comodules of a given (bi)comodule.

• More generally, such (co)primeness notions can be developed in more
general Abelian categories. These and other applications will be con-
sidered in forthcoming papers.

2Some of these were suggested by referees of the two published papers mentioned above.
I do thank the anonymous referees for their useful suggestions.
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Open Problems

One of the goals of this project was to shed more light on the (co)localization
problem for corings and comodules. Although we were successful in at least
introducing candidates of what plays the rule of a prime ideal in the clas-
sical localization of rings and modules (namely coprime bicoideals), we are
more convinced than before that a well-established theory of colocalization
for corings and comodules is still far from being achieved.

Given a coalgebra C (over a base filed), it’s not clear how to choose a good
“localizing set” S to define a new coalgebra C[S]. In what follows we provide
some references with different approaches to handle the (co)localization of
coalgebras and comodules:

• One approach suggested by M. Takeuchi [Tak1985] was to work in the
category of topological coalgebras. In [FS1998]3, M. Farinati and A.
Solotar followed this approach and considered the localizing sets as
multiplicatively closed subsets of the center of the topological dual al-
gebra. Such localizations were used then to study cohomology theories
for topological coalgebras.

• In [NT1996] C. Nastasescu and B. Torrecillas applied results on colocal-
izations for general Grothendieck categories to study colocalizing full
subcategories of the category of right C-comodules of a given coalgebra
C over a base field.

• Several papers addressing the colocalization of coalgebras appeared re-
cently (e.g. [G-TNT2007] , [JMNR2006], [JMN2007], [Sim2007]). The
methods applied in most of these papers depend heavily of the assump-
tion that the ground ring is a base field.

• In [Wij2006], I. Wijayanti applied techniques of colocalization in Wis-
bauer categories of type σ[M ] to categories of comodules MC ' σ[C∗C]
of a coalgebra C over a commutative ring R with RC locally projective.
This approach will be followed in [Abu-d] to handle the colocalization
in categories of comodules over corings.

3In his review # MR1655467 of this paper, M. Takeuchi notices there are several gaps
in this paper and that several results could be incorrect.
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Marcel Dekker (2001).

[E-GT2003] L. El Kaoutit and J. Gómez-Torrecillas, Comatrix corings:
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