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Abstract  A discrete distribution involving product of two gamma functions has been 
proposed. It arises naturally in connection with the distribution of sample variances and 
correlation coefficient based on a bivariate normal population. The first four raw moments of 
the distribution, corrected moments, coefficient of skewness and kurtosis have been derived. 
Some illustrations have been provided to show how the product moments of sample variances 
and correlation can be derived by exploiting the new distribution. These moments are 
important for correlation analysis, covariance analysis, intra-sire regression and inference in 
bivariate normal population. 
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1. Introduction 
 
Fisher (1915) derived the distribution of sum of squares and mean-centered sum of products 
to study the distribution of correlation coefficient from a normal sample. Let 

1 2, , , ( 2)NX X X N >  be a two-dimensional independent random vectors where 

1 2( , )j j jX X X ′= , 1, 2, ,j N=  is distributed as bivariate normal distribution denoted by 

2 ( , )N θ Σ  with  1 2( , )θ θ θ ′=  and a 2 2×  covariance matrix ( )ikσΣ = , 1, 2;  1, 2i k= = . The 
true correlation coefficient ( )ρ between 1X and 2X  is given by 12 1 2σ ρσ σ=  where 

2 2
11 1 22 2, .σ σ σ σ= =  The sample mean-centered sums of squares and sums of products are 

given by 2 ,  ii ia mS=  1, ( 1,2)m N i= − =  and 12 1 2a mRS S=  respectively.   
 
The quantity R is the sample product moment correlation coefficient. The distribution of 

11 22,a a  and 12a  was derived by Fisher (1915) and may be called the bivariate Wishart 
distribution after Wishart (1928) who obtained the distribution of -variatep  Wishart matrix 
as the joint distribution of sample variances and covariances from multivariate normal 
population. Obviously 11 11/a σ  has a chi-square distribution with  m  degrees of freedom.  

 
It may be mentioned that the joint distribution of 2 2

1 1/U mS σ=  and 2 2
2 2/V mS σ=  is called 

the bivariate chi-square distribution (Joarder, 2007). 
 
In this paper we introduce a discrete distribution based on the density identity of the product 
moment correlation coefficient. The distribution is then used to derive product moments of 
sample variances and coefficient of correlation.  
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In what follows, for any nonnegative integer k , we will use the notation 
 

{ } ( 1) ( 1).ak k k k a= − − + .                                        (1.1) 
 
The duplication formula for gamma function is given by 

2 1 1(2 ) 2 ( )
2

zz z zπ − ⎛ ⎞Γ = Γ Γ +⎜ ⎟
⎝ ⎠

                 (1.2) 

 
Multiplying both sides by 2z we have 
 

( )2 1
2(2 )! 2 !zz z zπ = Γ +                   (1.3) 

 
The hypergeometric function is defined by 
 

1 2 1 2

1

1 2 1 2

0 1 2 1 2

( , , , ; , , , ; )

( ) ( )( ) ( ) ( ) ( ) .
( ) ( ) ( ) ( ) ( ) ( ) !

p q p q

k
p q

k p q

F a a a b b b z

a k b ka k a k b k b k z
a a a b b b k

−
∞

=

⎛ ⎞Γ + Γ +Γ + Γ + Γ + Γ +
= ⎜ ⎟⎜ ⎟Γ Γ Γ Γ Γ Γ⎝ ⎠
∑

           (1.4) 

 
In particular, 
 
1 0 ( ; ) (1 ) .aF a z z −= −                                        (1.5) 
 
Note that 2 1( , ; ; )F a b c z  can be transformed as 
 
2 1 2 1( , ; ; ) (1 ) ( , ; ; )c a bF a b c z z F c a c b c z− −= − − −                (1.6) 
 
(Gradshtyen and Ryzhik, 1992, 1069). 
 
In Section 2, we derive a mass function from the density function of the product moment 
correlation coefficient.  In Section 3, we study some properties of the distribution. In section 
4, we demonstrate how some of the product moments of the bivariate Wishart distribution, 
the bivariate chi-square distribution and the product moment correlation coefficient 
distribution can be derived through the new mass function. These product moments have 
found applications in statistical inference for parameters of bivariate normal distribution 
(Sunthornworasiri, Tienswan and Sinha, 2006), intra-sire regression (Prabhakaran, Mahajan 
and Uma, 1991) and  radar systems (Lawson and Uhlenbeck, 1950). 
 
2. The Probability Mass Function  
 
The density function of the bivariate Wishart distribution was originally derived by Fisher 
(1915). The density function ( )h r of R  can be obtained from the Wishart distribution (see 
e.g. Anderson 2203, 123).  The density identity is based on the following equation: 
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1

1

( ) 1h r dr
−

=∫                                                          

Theorem 2.1 Let  ,
1 ( 1) 2 1 

2 ! 2 2

k k

k m
k m k

k
γ + − + +⎛ ⎞ ⎛ ⎞= Γ Γ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 . Then the density identity based 

on the distribution of product is given by 
 

, 2 / 2
0

 ( / 2) ,   2,  1 1.
(1 )

                 

k
k m m

k

m mπρ γ ρ
ρ

∞

=

Γ
= > − < <

−∑      (2.2) 

Proof.  The distribution of the product moment correlation is given by  
 

2 2 / 2
2 ( 3) / 2 2

0

2 (1 ) (2 )( ) (1 )  
 ( 1) ! 2

m m k
m

k

r m kh r r
m k
ρ ρ

π

− ∞
−

=

− +⎛ ⎞= − Γ ⎜ ⎟Γ − ⎝ ⎠
∑  

(Anderson, 1984, 113). Then the density identity is given by  
 
1 2 2 / 2

2 ( 3) / 2 2

01

2 (1 ) (2 ) (1 )  1.
 ( 1) ! 2

m m k
m

k

r m kr dr
m k
ρ ρ

π

− ∞
−

=−

− +⎛ ⎞− Γ =⎜ ⎟Γ − ⎝ ⎠
∑∫  

 
By integrating the density function with the substitution 2r y= we have 
 

2 2 / 2

0

2 (1 ) 1 1 ( 1) (2 ) 1  1
 ( 1) 2 2 ! 2 2

                 

m m k k

k

m m k k
m k
ρ ρ

π

− ∞

=

− − + − + +⎛ ⎞ ⎛ ⎞ ⎛ ⎞Γ Γ Γ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟Γ − ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑  

which can be rewritten as 
 

2 / 220

1 ( 1) (2 ) 1    .
2 ! 2 2 (1 )

              

( 1)
1

 
2

  

2

k k

mk m

m mk k
k m
ρ π

ρ

∞

−=

Γ+ − + +⎛ ⎞ ⎛ ⎞Γ Γ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝

−
−⎛ ⎞Γ⎜ ⎟

⎝
⎠ −

⎠

∑
 

By the use of duplication formula of gamma function (1.2), we have 
 

2 / 2
0

1 ( 1) (2 ) 1  ( / 2)  
2 ! 2 2 (1 )

                 

k k

m
k

r m k k m
k
ρ π

ρ

∞

=

+ − + + Γ⎛ ⎞ ⎛ ⎞Γ Γ =⎜ ⎟ ⎜ ⎟ −⎝ ⎠ ⎝ ⎠
∑  

Note that there is a misprint in the definition of ,k mγ  in Joarder (2006). We define the mass 
function of the distribution as 
 

2 / 2(1 ) (2 ) 1 ( ; , ) [1 ( 1) ] ,   0,1,2,
! 2 22  ( / 2)

                 

m k
k k m kf k m k

km
ρ ρρ

π
− + +⎛ ⎞ ⎛ ⎞= + − Γ Γ =⎜ ⎟ ⎜ ⎟Γ ⎝ ⎠ ⎝ ⎠        (2.3) 

2,  1 1m ρ> − < < , which can be simply written as 
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2 / 2

,
(1 ) ( ; , )  , 0,1,2,

 ( / 2)
                 

m
k

k mf k m k
m

ρρ ρ γ
π
−

= =
Γ  

2,  1 1m ρ> − < < , where ,k mγ  is defined in Theorem 2.1.  
A graph of the probability mass function of k is provided in Figure 1 below for various values 
of ρ and when m = 4. 
 

  
ρ = 0.90 (*), ρ = 0.80 ( ), and ρ = 0.50 ( ) 

Figure 1. Probability mass function of k when m =4 at different values of ρ . 
 
 
3. Moments of the K-Distribution 
 
Theorem 3.1 The first four factorial moments are given by 
 
(i) 2 2 1( ) (1 )E K mρ ρ −= − , 
(ii) ( ){2} 4 2 2 2[ ( 1) ](1 )E K m m mρ ρ ρ −= + + −  

(iii) ( ){3} 6 4 2 3[ ( 1)( 2) 3 ( 2) ](1 ) ,E K m m m m mρ ρ ρ −= + + + + −   

(iv) ( ){4} 8 6 4 2 4( 1)( 2)( 3) 6 ( 2)( 3) 3 ( 2) (1 ) .E K m m m m m m m m mρ ρ ρ ρ −⎡ ⎤= + + + + + + + + −⎣ ⎦  
    
Proof.  The -tha factorial moment of K is given by 
 

2 / 2
{ } { }

0

(1 ) 2 1 ( ) [1 ( 1) ]
! 2 22  ( / 2)

                 

m k k
a a k

k

k m kE K k
km

ρ ρ
π

∞

=

− + +⎛ ⎞ ⎛ ⎞= + − Γ Γ⎜ ⎟ ⎜ ⎟Γ ⎝ ⎠ ⎝ ⎠
∑ , 

which can be written as 
2 / 2 2

} { }

0

2
{ 2 2 1 .

(2
(1 ) 2 ( ) (2 )

2 ( / 2)
         

)!
 

22
       

m k
a a

k

k k mE K k
m

k
k
ρ

π
ρ ∞

=

− +⎛ ⎞= Γ⎜ ⎟Γ ⎝
+⎛ ⎞Γ⎜ ⎟

⎝⎠ ⎠
∑  
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Hence by (1.3), we have  
 

{
2 / 2 2

{ }

0

}(2 )(1 ) ( )
( / 2) 2

                 
!

m
a

k
a

k

mE K kk
km

ρ ρ∞

=

− ⎛ ⎞= Γ +⎜ ⎟Γ ⎝ ⎠
∑ .     (3.1) 

From (3.1), the first factorial moment of -distributionK is given by 
 

2 / 2 2
{1}

0

2 / 2 2
2

0

2 / 2
2 2

1 0

2(1 ) ( )
( / 2) 2

2(1 )              1
( / 2) 2

2(1 )              1 1 ;
( / 2) 2 2

            

[( 1)!]

     

!

m k

k

m j

j

m

mE K k k
m

mj
m

m mF
m

k k

j

ρ ρ

ρ ρρ

ρ ρ ρ

∞

=

∞

=

− ⎛ ⎞= Γ +⎜ ⎟Γ ⎝ ⎠
⎡ ⎤− ⎛ ⎞= Γ + +⎢ ⎥⎜ ⎟Γ ⎝ ⎠⎣ ⎦
⎡ ⎤− ⎛ ⎞ ⎛ ⎞= Γ + +⎜ ⎟ ⎜ ⎟⎢ ⎥Γ ⎝ ⎠ ⎝ ⎠

−

⎣ ⎦

∑

∑  

where we have used the generalized hypergeometric function defined by (1.4). Hence by 
(1.5), we have {1} 2 2 1( ) (1 )E K mρ ρ −= − . 
 
Since {2} {2}(2 ) 4 2 ,k k k= +  the second factorial moment is given by 
 

2 / 2 2
{2}

0

{2}[(1 )( ) ,
( / 2) 2

             

2
!

4 ]
m k

k k
mE K

m
k k kρ ρ∞

=

− ⎛ ⎞= Γ+ +⎜ ⎟Γ ⎝ ⎠
∑  

which, by virtue of (1.4), can be simplified as 
 

2 / 2 2
{2} 4

2
1

0

2 / 2 2
2

0

2 / 2
4

2

0

4

2

(1 )( ) 2
( / 2) 2

(1 )             1
( / 2) 2

(1 )            4

(1 )

2
( / 2)

            

!

!

2 ;
22

m j

j

m j

j

m

m

mE K j
m

mj

m
m

m

j

j

mF

ρ ρρ

ρ ρ

ρ

ρ

ρ

ρ

ρ

∞

=

∞

=

⎡ ⎤− ⎛ ⎞= Γ + +⎢ ⎥⎜ ⎟Γ ⎝ ⎠⎣ ⎦
⎡ ⎤− ⎛ ⎞+ Γ + +⎢ ⎥⎜ ⎟Γ ⎝

⎛ ⎞+⎜ ⎟
⎝ ⎠

⎛ ⎞Γ +⎜ ⎟Γ

⎠⎣ ⎦
⎡ ⎤−

⎝ ⎠
= ⎢ ⎥

⎣ ⎦
−

+

∑

∑

/ 2
2 2

1 02 1 ; 1 .
( / 2) 2 2

m mF
m

ρ ρ⎡ ⎤⎛ ⎞ ⎛ ⎞+ Γ +⎜ ⎟ ⎜ ⎟⎢ ⎥Γ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 

 
Hence  by virtue of  (1.5), we have 
 

2 2 ( / 2
2 / 2 2 / 2

{2} 4 2 2 2) 1 ( / )(1(1 ) (1 )( ) 4 2 (1 ) ,
( / 2) (2

)
2

1
2 / 2)

m m
m mmE K

m
m

m
mρ ρρ ρρ ρ −− − −⎡ ⎛ ⎞+⎜

⎤− − ⎡ ⎤= +− −⎢ ⎥ ⎢ ⎥Γ Γ ⎣ ⎦⎣
⎟
⎠ ⎦⎝

 

 
which simplifies to what we have in (ii) of the theorem. 
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Since  {3} {3} {2}(2 ) 8 12 ,k k k= +  from (3.1), the third factorial moment of -distributionK is 
given by 
 

2 / 2 2
{3}

0

2 / 2 2( )

0

2 / 2 2( 2

{3}

)

0

2 / 2

3

{2}(1 ) ( ) [8 12
( / 2) 2

(1 )             
( / 2) 2

(1 )             2
( / 2) 2

(1 )  

]

8

12

!

!

!

          
( /

3

m k

k

m j

j

m j

j

m

mE K k
m

mj
m

m

k

j

j

k k

j
m

m

ρ ρ

ρ ρ

ρ ρ

ρ

∞

=

+∞

=

+∞

=

− ⎛ ⎞= Γ +⎜ ⎟Γ ⎝ ⎠
− ⎛ ⎞= Γ + +⎜ ⎟Γ ⎝ ⎠

− ⎛ ⎞+ Γ + +⎜ ⎟Γ ⎝ ⎠

−

+

=
Γ

∑

∑

∑

2 2
1 0

2 / 2
2 2

1 0

3

2

;
2)

(1 )            ; ,
(

3 3

2
/ 2)

             

8

12 2

2

 
2

   

2

2

m

m mF

m mF
m

ρ ρ

ρ ρ ρ

×

×

⎛ ⎞ ⎛ ⎞+ Γ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

− ⎛ ⎞ ⎛ ⎞+ + Γ +⎜ ⎟ ⎜ ⎟Γ ⎝ ⎠ ⎝ ⎠

 

where we have used the generalized hypergeometric function defined by (1.4). Hence, by 
(1.5), we have 
 

3
3

2

3

{3} 2 / 2 2 2 3 ( / 2)

2 / 2 2 2 2 2 ( / 2)

2 2 3 2 2
3 2

2 2

( ) ( 2)( 4)(1 ) (1 )

             ( 2)(1 ) (1 )

             ( 2)( 4) (1 ) ( 2)

8

1
2

2

2 2

2

1 (1 ,2 )8

m m

m m

E K m m m

m m

m m m m m

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ ρ

× − −

× − −

× − × −

= + + − −

+ + − −

= + + − + + −

 

 
which simplifies to (iii) of the theorem. 
 
Since {4} 4 3 2 {4} {3} {2}(2 ) 16 48 44 12 16 48 12 ,k k k k k k k k= − + − = + +  from (3.1), we have the 
fourth factorial moment of the -distributionK  
 

4)

2 / 2 2
{4}

0

2 / 2 2
2

{4}

(

0

2 / 2 2(

{3} {2}

)
2 3)(

0

[16 48 12 ]

1

(1 ) ( )
( / 2) 2

(1 )             
( / 2) 2

(1 )            
( / 2) 2

(            

6

3

!

!
8

4

!

4

m k

k

m j

j

m j

j

mE kK k
m

mj
m

m

k

j

j

k k

j
m

ρ ρ

ρ ρρ

ρ ρρ

∞

=

∞

=

∞

=

− ⎛ ⎞= Γ +⎜ ⎟Γ ⎝ ⎠
− ⎛ ⎞= Γ + +⎜ ⎟Γ ⎝ ⎠

− ⎛ ⎞+ Γ + +⎜

+

⎟Γ ⎝ ⎠

+

+∑

∑

∑
2 / 2 2( )

2(2

0

)1 ) ,
( / 2) 2

                 

21
!

2m j

j

mj
jm

ρ ρρ
∞

=

− ⎛ ⎞Γ + +⎜ ⎟Γ ⎝ ⎠
∑

 

 
Then by virtue of (1.4), we have  
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4)

)

2 / 2
{4} 2( 2

1 0

2 / 2
2(3 2

1 0

2 / 2
2(2 2

0
)

1

(1 )( ) ;
( / 2) 2 2

(1 )            ;
( /

4 4

3
2) 2 2

(1 )            ; .
( /

16

48

12 2
2

3

2
) 2 2

m

m

m

m mE K F
m

m mF
m

m mF
m

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

− ⎛ ⎞ ⎛ ⎞= + Γ +⎜ ⎟ ⎜ ⎟Γ ⎝ ⎠ ⎝ ⎠
− ⎛ ⎞ ⎛ ⎞+ + Γ +⎜ ⎟ ⎜ ⎟Γ ⎝ ⎠ ⎝ ⎠
− ⎛ ⎞ ⎛ ⎞+ + Γ +⎜ ⎟ ⎜ ⎟Γ ⎝ ⎠ ⎝ ⎠

 

 
Hence by virtue of (1.5), we have  
 

{4} 2 / 2 2(4 2 ( / 2)

2 / 2 2 2 ( / 2)

2 / 2 2 2 ( /

)

2

4

(3) 3

(2) 2 )

2( ) (1 ) (1 )
( / 2)

2             (1 ) (1 )
( / 2)

2         

4

3

2
    (1 )

16

48

(1 )2 ,
( / 2)

1

m m

m m

m m

m

E K
m

m

m
m

m

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

− −

− −

− −

⎛ ⎞Γ +⎜ ⎟
⎝ ⎠= − −
Γ

⎛ ⎞Γ +⎜ ⎟
⎝ ⎠+ − −
Γ

⎛ ⎞Γ +⎜ ⎟
⎝ ⎠+ − −
Γ

 

 
which simplifies to what we have in (iv) of the theorem. 
 
 
 
Theorem 3.2 The first four moments of the distribution are given by 
 

2 2 1( ) ( ) (1 ) ,i E K mρ ρ −= −  
2 2 4 2 2 2( ) ( ) ( 2 )(1 ) ,ii E K m mρ ρ ρ −= + −  
3 2 2 4 3 6 2 3( ) ( ) [(4 (6 4 ) ](1 ) ,iii E K m m m mρ ρ ρ ρ −= + + + −
4 4 8 3 2 6 2 4 2 2 4( ) ( ) (12 16 8 ) (28 32 ) 8 (1 ) .iv E K m m m m m m mρ ρ ρ ρ ρ −⎡ ⎤= + + + + + + −⎣ ⎦  

Proof. Since 

2 {2}

3 {3} {2}

4 {4} {3} {2}

,
3 ,
6 7 ,

K K K
K K K K
K K K K K

= +

= + +

= + + +

  

the moments follow from Theorem 3.1.  
 
Theorem 3.3 The mean corrected moment of order 2, 3 and 4 of the -DistributionK  are 
respectively given by 
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2

2 2 2

2 ,
(1 )

mρµ
ρ

=
−

 

 
2 2

3 2 3

4 (1 )
(1 )

mρ ρµ
ρ
+

=
−

 and  

 
2 2 4

4 2 4

4 [2 (3 8) 2 ] .
(1 )

m mρ ρ ρµ
ρ

+ + +
=

−
 

 
Proof.  The mean corrected moments are given by  
 

( ) ,    1, 2, ,a
a E K aµ µ= − =  

 
That is, the second, the third and the fourth order mean corrected moments are 

2 2
2

3 2 3
3

4 3 2 2 4
4

( ) ,

( ) 3 ( ) 2 ,

( ) 4 ( ) 6 ( ) 3 .

E K

E K E K

E K E K E K

µ µ

µ µ µ

µ µ µ µ

= −

= − +

= − + −

 

 
Routine algebraic simplifications lead to the theorem. 
 
The coefficient of skewness and kurtosis of the -DistributionK are given by the following 
moment ratios: 
 

/ 2
2

( ) ,  3, 4.i
i iK iµα

µ
= =  

 
The coefficient of skewness and kurtosis of the distribution simplify to  

2

3
2(1 )( )  K

m
ρα
ρ
+

=    and  

2 4

4 2

2 (3 8) 2( ) .mK
m

ρ ρα
ρ

+ + +
=  

 
Note that as 3,  ( ) 0m Kα→∞ → and 4,  ( ) 3m Kα→∞ → coinciding with that of the 
univariate normal distribution. 
 
 
4. Some Applications of the Distribution 
 
The mass function is used to derive the product moments of the bivariate Wishart 
distribution, the bivariate chi-square distribution and the product moment correlation 
distribution. Product moments of bivariate Wishart distribution were derived by Joarder 
(2006). It has been noticed that there are some mistakes in the paper which can be corrected 
as follows:  
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There should be a term [1 ( 1) ]k l++ −  inserted at the beginning of the summand in Theorem 2.1 
( Joarder, 2006),  in the line 3 from the bottom of page 236 and in the line 2 of page 237. The 
heading of Section 3 should end with 1 2( , , ; )l l lµ ρ′ . Moreover, the quantity ,k mb  in Theorem 

3.1 (Joarder, 2006) should be defined as ,
2 1[1 ( 1) ]

! 2 2

k
k l

k m
k k mb

k
+ + +⎛ ⎞ ⎛ ⎞= + − Γ Γ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 for any 

integer l . The rest of the Theorem 3.1 remains intact. For clarity, we correct the Thorem 2.1 
(Joarder, 2006) and label it below as Theorem 4.1: 
 
Theorem 4.1 For finite ,a ,b and c , the product moments 2 2

1 2( )a b cE S S R  denoted by 
( , , ; )a b cµ ρ′  are given by 

                
1 2 ( / 2)

2 2
1 2

0

2 (1 )( , , ; )
( / 2)

1
(2 ) 2                    [1 ( 1) ]  ,

! 2 2
2

a b a b m
a b

a b

k
k c

k

a b c
m m

k c
k m k ma b

k m ck

ρµ ρ σ σ
π

ρ

+ − + +

+

∞
+

=

−′ =
Γ

+ +⎛ ⎞Γ⎜ ⎟+ +⎛ ⎞ ⎛ ⎞ ⎝ ⎠× + − Γ + Γ +⎜ ⎟ ⎜ ⎟ + +⎛ ⎞⎝ ⎠ ⎝ ⎠ Γ⎜ ⎟
⎝ ⎠

∑
  (4.1) 

where 1 22,  0,  0,m σ σ> > >  and 1 1ρ− < < . 
 
Now we demonstrate how the moments of the -DistributionK can be exploited to derive 
closed form expressions of the above product moment. 
 
(i) To derive 2

1( ) (1,0,0; )E S µ ρ′= , put 1a = , 0b =  and 0c = . It can be checked from (4.1) 
that  

2 2
1

1(1,0,0; ) (1 )  [ ( ) ]E K m
m

µ ρ ρ σ′ = − +  

where K has the mass function given by (2.4). By the use of Theorem 3.1(i), we have 
2
1(1,0,0; )µ ρ σ′ =  . 

 
(ii) To calculate 2 2

1 2( ) ( ,1,0; )1E S S µ ρ′=  , put 1a = , 1b =  and 0c = . The resulting expression 
can further be simplified to  
 

2 2 2 2 2 ( / 2)
1 2

2

2

0

(1 ) (1 )( ,1,0; )
2 ( / 2)
(2 ) 1                    [1 ( 1) ]  .

!

1

( )
2 2

m

k
k

k

m m

k k m km
k

ρ σ σ ρµ ρ
π
ρ∞

=

− −′ =
Γ

+ +⎛ ⎞ ⎛ ⎞× + − Γ Γ⎜ ⎟+ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑
 

 
Since K has the mass function by (2.4), we have 

2 2 2 2
21 2

2

(1 )(1,1,0; ) ( )E K m
m

ρ σ σµ ρ −′ = + . 
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By the use of Theorem 3.1(i) and (ii) in 2 2 2( ) ( ) 2 ( )E K m E K mE K m+ = + + , we have  
2 2

1 2
1(1,1,0; ) ( ) ( 2 ).m
m

µ ρ σ σ ρ′ = +  

 
The product moment ( )E UV of the bivariate chi-square distribution can be derived from the 
above since  2 2

1 1/U mS σ=  and 2 2
2 2/V mS σ= . 

 
 (iii) To calculate 4 4

1 2( ) (2,2,0; )E S S µ ρ′=  , put 2a = , 2b =  and 0c = . The resulting 
expression can further be simplified to  
 

2 ( 4) / 2
2 2 4 4

1 2 , 43 4
0 2

2 (1 )(2,2,0; ) (1 ) ( 2)( ) .
( )

m

k mm
k

m k m k m
m

ρµ ρ ρ σ σ γ
π

+∞

++
=

+ −′ = − + + +
Γ

∑  

 
That is 

2 2 4 4
1 23

2(2,2,0; ) (1 ) [( 2)( )]m E K m K m
m

µ ρ ρ σ σ+′ = − + + +  

where K has the mass function given by (2.4). By the use of Theorem 3.1(i) and (ii) in  
[( 2)( )]E K m K m+ + + , we have 

2 2 4 4 2
1 23

4 2

2

4
1 23

2(2,2,0; ) (1 ) [ (2 2) ]

2                  [8 8( 2) ( 2)]( ) .

( ) ( )m m m
m

m m m

E

m

K

m

E Kµ ρ ρ σ σ

ρ ρ σ σ

+′ = − + + +

+
= + + + +

 

 
The product moment 2 2( )E U V of bivariate chi-square distribution can be derived from the 
above since  2 2

1 1/U mS σ=  and 2 2
2 2/V mS σ= . 

  
(iv)  To calculate (2, 2,2; )µ ρ′  , put 2a = , 2b =  and 2c = . The resulting expression can 
further be simplified to  

2 ( 4) / 2
2 2 4 4

1 2 , 43
0

2 (1 )(2,2,2; ) (1 )  
(

( 1)
( 4) / 2)

( 2)
)

m

k m
k

m
m m

kk m ρµ ρ ρ σ σ γ
π

+∞

+
=

++
+ −′ = −

Γ +
+∑ . 

Since K has the mass function given by (2.4), we have 
2 2 4 4

1 23

2(2,2,2; ) (1 )  [( 2)( 1)].m E K m K
m

µ ρ ρ σ σ+′ = − + + +  

Then by the use of Theorem 3.1, we have  
 

2

2 4 2 2 2 12 2

( )
[( 4) 2

( )
( 4) (1

[( 2)( 1)]
( 3) ( 2)

( 3) ( 2),( 4) ](1 ))

E K m K
mE K

m mmm
m

m
E K

ρ ρ ρ ρρ − −+ + +

+ + +

= + + + +

= + ++ ++ − −

 

 
so that 

4 4 4 2 2
1 23

2(2,2,2; ) [(2 6) ( 7 16) ( 2)]m m m m m
m

µ ρ σ σ ρ ρ+′ = + + + + + +  
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(cf. Joarder , 2006).  
 
 (v) To derive ( ),E R  we proceed as follows: 

2 / 2
1 2

0

2
(1 ) (2 ) 2(0,0,1; ) [1 ( 1) ]  .

1! 22 ( / 2)
2

m k
k

k

k
k m

k mkm
ρ ρµ ρ

π

∞
+

=

+⎛ ⎞Γ⎜ ⎟− +⎛ ⎞ ⎝ ⎠′ = + − Γ ⎜ ⎟ + +⎛ ⎞Γ ⎝ ⎠ Γ⎜ ⎟
⎝ ⎠

∑  

By the use of (1.3), it can be checked that  
 

2 / 2
2

0

2(1 ) 1 1(0,0,1; )  .
2!( / 2) 2

2

m

k

k mk
mm kk

ρ ρ ρµ ρ
∞

=

− +⎛ ⎞′ = Γ +⎜ ⎟ +Γ ⎛ ⎞⎝ ⎠ Γ +⎜ ⎟
⎝ ⎠

∑  

Then by using (1.4) and (1.6), we have 

2

2 / 2
2

2 1

2 / 2 2
2 1

2

2

(1 ) 1 1 2(0,0,1; ) , ; ;
( / 2) 2 2 2

1 1 2 

2
2

1
2

1
2                2(1 )   , ; ; ,

2 2
2

2

m

m

m

m

m

mm

m m mF
m

mF

ρ ρµ ρ ρ

ρ ρ ρ−

+⎛ ⎞Γ⎜ ⎟
⎝ ⎠

⎛ ⎞Γ ⎜

+⎛
−

⎞Γ ⎜ ⎟
⎝ ⎠

+⎛ ⎞Γ ⎜ ⎟
⎝

+ + +⎛ ⎞′ = ⎜ ⎟Γ ⎝ ⎠

+⎛ ⎞= − ⎜ ⎟
⎝

⎟
⎝

⎠
⎠

⎠

 

 
which is the same as obtained by Ghosh (1966). 
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