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Abstract

In this paper we consider a one-dimensional linear thermoelastic system of
Timoshenko type, where the heat conduction is given by Green and Naghdi
theories. We prove the exponential stability by using the energy method.
Keywords : exponential decay, Timoshenko, thermoelasticity type III.

AMS Classification : 35B37, 35L55, 74D05, 93D15, 93D20

1. Introduction

In 1921, Timoshenko [28] gave the following system of coupled hyperbolic equa-
tions

ρutt = (K(ux − ϕ))x, in (0, L)× (0,+∞)
Iρϕtt = (EIϕx)x +K(ut − ϕ), in (0, L)× (0,+∞), (1.1)

together with boundary conditions of the form

EIϕx|x=Lx=0 = 0, (ux − ϕ)|x=Lx=0 = 0,

as a simple model describing the transverse vibrations of a beam. Here t denotes the
time variable and x is the space variable along the beam of length L, in its equilibrium
configuration, u is the transverse displacement of the beam and ϕ is the rotation angle
of the filament of the beam. The coefficients ρ, Iρ, E, I and K are respectively the
density (the mass per unit length), the polar moment of inertia of a cross section,
Young’s modulus of elasticity, the moment of inertia of a cross section, and the shear
modulus.



Kim and Renardy [11] considered (1.1) together with two boundary controls of
the form

Kϕ(L, t)−K ∂u

∂x
(L, t) = α

∂u

∂t
(L, t) ∀t ≥ 0

EI
∂ϕ

∂x
(L, t) = −β∂ϕ

∂t
(L, t) ∀t ≥ 0

and used the multiplier techniques to establish an exponential decay result for the
natural energy of (1.1). They also provided numerical estimates to the eigenvalues
of the operator associated with the system. An analogous result was also established
by Feng et al. [6], where the stabilization of vibrations in a Timoshenko system was
studied. Raposo et al. [23] studied (1.1) with homogeneous Dirichlet boundary con-
ditions and two linear frictional dampings. Precisely, they looked into the following
system

ρ1utt −K(ux − ϕ) + ut = 0, in (0, L)× (0,+∞)
ρ2ϕtt − bϕxx +K(ux − ϕ) + ϕt = 0, in (0, L)× (0,+∞)
u(0, t) = u(L, t) = ϕ(0, t) = ϕ(L, t) = 0, t > 0

(1.2)

and proved that the energy associated with (1.2) decays exponentially. Soufyane and
Wehbe [26] showed that it is possible to stabilize uniformly (1.1) by using a unique
locally distributed feedback. They considered

ρutt = (K(ux − ϕ))x, in (0, L)× (0,+∞)
Iρϕtt = (EIϕx)x +K(ux − ϕ)− bϕt, in (0, L)× (0,+∞)
u(0, t) = u(L, t) = ϕ(0, t) = ϕ(L, t) = 0, t > 0,

(1.3)

where b is a positive and continuous function, which satisfies

b(x) ≥ b0 > 0, ∀ x ∈ [a0, a1] ⊂ [0, L].
In fact, they proved that the uniform stability of (1.3) holds if and only if the wave

speeds are equal K
ρ
= EI

Iρ
; otherwise only the asymptotic stability has been proved.

This result improves earlier ones by Soufyane [27], where an exponential decay of the
solution energy of (1.1), together with two locally distributed feedbacks, had been
proved. Rivera and Racke [15] obtained a similar result in a work, where the damping
function b = b(x) is allowed to change sign. Also, Rivera and Racke [14] treated a
nonlinear Timoshenko-type system of the form

ρ1ϕtt − σ1(ϕx,ψ)x = 0
ρ2ψtt − χ(ψx)x + σ2(ϕx,ψ) + dψt = 0

in a one-dimensional bounded domain. The dissipation here is through frictional
damping which is only in the equation for the rotation angle. The authors gave
an alternative proof for a sufficient and necessary condition for exponential stability
in the linear case and then proved a polynomial stability in general. Moreover,
they investigated the global existence of small smooth solutions and exponential
stability in the nonlinear case. Xu and Yung [29] studied a system of Timoshenko
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beams with pointwise feedback controls, sought information about the eigenvalues
and eigenfunctions of the system, and used this information to examine the stability
of the system.
The nonuniform Timoshenko beam has also been studied by Ammar-Khodja et

al. [2] and a similar result to that in [26] has been established. Also, Ammar-Khodja
et al. [1] considered a linear Timoshenko-type system with memory of the form

ρ1ϕtt −K(ϕx + ψ)x = 0

ρ2ψtt − bψxx + t

0
g(t− s)ψxx(s)ds+K(ϕx + ψ) = 0

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x)
ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x)
ϕ(0, t) = ϕ(1, t) = ψ(0, t) = ψ(1, t) = 0,

(1.4)

in (0, L) × (0,+∞), and proved, using the multiplier techniques, that the system is

uniformly stable if and only if the wave speeds are equal K
ρ1
= b

ρ2
and g decays

uniformly. Precisely, they proved an exponential decay if g decays in an exponential
rate and polynomially if g decays in a polynomial rate. They also required some
extra technical conditions on both g� and g�� to obtain their results. This result has
been later improved by Guesmia et al. [10], where the technical conditions on g�� have
been removed and those on g have been weakened.
The feedback of memory type has also been used by Santos [25]. He considered a

Timoshenko system and showed that the presence of two feedbacks of memory type at
a portion of the boundary stabilizes the system uniformly. He also obtained the rate
of decay of the energy, which is exactly the rate of decay of the relaxation functions.
This last result has been improved and generalized by Messaoudi and Soufyane [12].
For Timenshinko systems in classical thermoelasticity, Rivera and Racke [13] con-

sidered

ρ1ϕtt − σ(ϕx,ψ)x = 0 in (0,∞)× (0, L)
ρ2ψtt − bψxx + k (ϕx + ψ) + γθx = 0 in (0,∞)× (0, L)
ρ3θt − kθxx + γψtx = 0 in (0,∞)× (0, L) ,

(1.5)

where ϕ,ψ, and θ are functions of (x, t) which model the transverse displacement of
the beam, the rotation angle of the filament, and the difference temperature respec-
tively. Under appropriate conditions of σ, ρi, b, k, γ, they proved several exponential
decay results for the linearized system and non exponential stability result for the
case of different wave speeds.
In the above system, the heat flux is given by Fourier’s law. As a result, this theory

predicts an infinite speed of heat propagation. That is any thermal disturbance at
one point has an instantaneous effect elsewhere in the body. Experiments showed
that heat conduction in some dielectric crystals at low temperatures is free of this
paradox and disturbances, which are almost entirely thermal, propagate in a finite
speed. This phenomenon in dielectric crystals is called second sound. To overcome
this physical paradox, many theories have merged such as thermoelastcity by second
sound or thermoelasticity type III.

3



By the end of the last century, Green and Naghdi [7-9] introduced three types
of thermoelastic theories based on an entropy equality instead of the usual entropy
inequality. In each of these theories, the heat flux is given by a different constitutive
assumption. As a results, three theories are obtained and were called thermoelasticity
type I, type II, and type III respectively. This theory is developed in a rational way
in order to obtain a fully consistent explanation, which will incorporate thermal
pulse transmission in a very logical manner and elevate the unphysical infinite speed
of heat propagation induced by the classical theory of heat conduction. When the
theory of type I is linearized the parabolic equation of the heat conduction arises.
Whereas the theory of type II does not admit dissipation of energy and it is known
as thermoelasticity without dissipation. It is a limiting case of thermoelasticity type
III. See in this regard [3-5], [18] , and [20] for more details.
To understand these new theories and their application, several mathematical and

physical contributions have been made; see for example [3-5], [16-22] and [24]. In par-
ticular, we must mention the survey paper of Chandrasekharaiah [5], in which the
author has focussed attention on the work done during the last 10 or 12 years. He
reviewed the theory of thermoelasticity with thermal relaxation and the temperature-
rate dependent thermoelasticity. He also described the thermoelasticity without dissi-
pation and clarified its properties. By the end of his paper, he made a brief discussion
to the new theories, including what is called dual-phase-lag effects.
Zhang and Zuazua [30] analyzed the long time behavior of the solution of the

system

utt − µ∆u− (µ+ λ)∇(div u) +∇θ = 0 in (0,∞)×Ω
θtt −∆θ −∆θt + div utt = 0 in (0,∞)×Ω

u(., 0) = u0, ut(., 0) = u1, θ(., 0) = θ0, θt(., 0) = θ1, x ∈ Ω
u = θ = 0, on (0,∞)× Γ

and concluded the following: For most domains, the energy of the system does not
decay uniformly. But under suitable conditions on the domain, which might be
described in terms of geometric optics, the energy of the system decays exponentially.
For most domains in two space dimension, the energy of smooth solutions decays in
a polynomial rate.
In [21] , Quintanilla and Racke considered a system similar to (1.1) and used the

spectral analysis method and the energy method to obtain the exponential stability
in one dimension for different boundary conditions; (Dirichlet- Dirichlet or Dirichlet-
Neuman). They also proved a decay of energy result for the radially symmetric
situations in multi- dimensional case (n = 2, 3) .
We also recall the contribution of Quintanilla [20] , in which he proved that solu-

tions of thermoelasticity of type III converge to solutions of the classical thermoelas-
ticity as well as to the solution of thermoelasticity without energy dissipation and
Quintanilla [18], in which he established a structural stability result on the coupling
coefficients and continuous dependence on the external data in thermoelasticity type
III.
In the present work we consider the following system
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ρ1ϕtt −K (ϕx + ψ)x = 0 in (0,∞)× (0, 1) ,
ρ2ψtt − bψxx +K (ϕx + ψ) + βθx = 0 in (0,∞)× (0, 1) ,
ρ3θtt − δθxx + γψttx − kθtxx = 0 in (0,∞)× (0, 1)
ϕ (., 0) = ϕ0, ϕt (., 0) = ϕ1, ψ (t., 0) = ψ0, ψ1 (., 0) = ψ1,
θ (., 0) = θ0, θt (., 0) = θ1
ϕ (0, t) = ϕ (1, t) = ψ (0, t) = ψ (1, t) = θ (0, t) = θ (1, t) .

(1.6)

and prove an exponential decay similar to the one in [13]. This system models the
transverse vibration of a thick beam, taking in account the heat conduction given by
Green and Naghdi’ s theory

2. Main result

In this section, we state and prove our main decay result. In order to exhibit the
dissipative nature of system (1.6) , we introduce the new variables φ = ϕt andΨ = ψt,
So, problem (1.6) takes the form

ρ1φtt −K (φx +Ψ)x = 0 in (0,∞)× (0, 1)
ρ2Ψtt − bΨxx +K (φx +Ψ) + βθtx = 0 in (0,∞)× (0, 1)
ρ3θtt − δθxx + γΨtx − kθtxx = 0 in (0,∞)× (0, 1)
φ (., 0) = φ0, φt (., 0) = φ1, Ψ (., 0) = Ψ0, Ψt (., 0) = Ψ1

θ (., 0) = θ0, θt (., 0) = θ1
φ (0, t) = φ (1, t) = Ψ (0, t) = Ψ (1, t) = θx (0, t) = θx (1, t) = 0.

(2.1)

In order to be able to use Poincaré’s inequallity for θ, let

θ (x, t) = θ (x, t)− t
1

0

θ1 (x) dx−
1

0

θ0 (x) dx

Then by (2.1)3 we have
1

0

θ (x, t) dx = 0, ∀t ≥ 0. (2.2)

In this case, Poincaré’s inequality is applicable for θ and on the other hand it is easy
to check that φ,Ψ, θ satisfies the same equations and boundary conditions in (2.1).
Remark 2.1. We can also do this by the same way as in [30] by putting : φ =
ϕ,Ψ = ψ, and

Θ(x, t) =
t

0

θ (x, s) ds + χ (x) ,

where χ (x) ∈ H1
0 (0, 1) solves

χxx = ρ3θ1 − kθ0xx + γψ1x, in (0, 1)
χ = 0, x = 0, 1

.
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In the sequel we will work with θ but for convenience, we write θ instead of θ.
Therefore, the associated energy is given by

E (t) =
γ

2

1

0

ρ1φ
2
t + ρ2Ψ

2
t +K |φx +Ψ|2 + bΨ2

x dx+
β

2

1

0

ρ3θ
2
t + δθ2x dx. (2.3)

Theorem 2.1 Suppose that
ρ1
K
=

ρ2
b

(2.4)

and
φ0,Ψ0, θ0 ∈ H1

0 (0, 1) , φ1,Ψ1, θ1 ∈ L2 (0, 1) .
Then the energy E (t) decays exponentially as time tends to infinity; that is, there
exist two positive constants C and ξ independent of the initial data, such that

E (t) ≤ CE (0) e−ξt, ∀t > 0. (2.5)

The proof of our result will be established through several lemmas.
Lemma 2.1 Let (φ,Ψ, θ) be a solution of (2.1) . Then, we have

E� (t) = −βk
1

0

θ2txdx. (2.6)

Proof.
Multiplying equation (2.1)1 by γφt, (2.1)2 by γΨt and (2.1)3 by βθt, integrating

over (0, 1) and summing up to obtain (2.6) .

As in [13], let

I1 :=
1

0

(ρ2ΨtΨ+ ρ1φtω) dx. (2.7)

where ω is the solution of

−ωxx = Ψx, ω (0) = ω (1) = 0, (2.8)

Lemma 2.2 Let (φ,Ψ, θ) be a solution of (2.1) . Then we have, ∀ε1 > 0,

I1 ≤ −
b

2

1

0

Ψ2xdx+ ε1ρ1

1

0

φ2tdx+ ρ2 +
ρ1
4ε1

1

0

Ψ2
tdx+

β2

2b

1

0

θ2txdx. (2.9)

Proof.

By taking a derivative of (2.7) and using equations (2.1) we conclude

I1 = −b
1

0

Ψ2
xdx+ ρ2

1

0

Ψ2
tdx−K

1

0

Ψ2dx− β
1

0

Ψθtxdx

+K
1

0

ω2xdx+ ρ1

1

0

φtωtdx.
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By using the inequalities

1

0

ω2xdx ≤
1

0

Ψ2dx ≤
1

0

Ψ2
xdx

1

0

ω2tdx ≤
1

0

ω2txdx ≤
1

0

Ψ2
tdx,

and Youmg’s inequality, we find that

I1 ≤ −b
1

0

Ψ2
xdx+ ε1ρ1

1

0

φ2tdx+ ρ2 +
ρ1
4ε1

1

0

Ψ2
tdx

+
β2

2b

1

0

θ2txdx+
b

2

1

0

Ψ2
xdx.

Next, we set

I2 := ρ2ρ3

1

0

x

0

θt (t, y) dyΨt (t, x) dx− δ
1

0

θxΨdx. (2.10)

Lemma 2.3 Let (φ,Ψ, θ) be a solution of (2.1) . Then we have, ∀ε2 > 0,

I2 ≤ −
γρ2
2

1

0

Ψ2
tdx+ ε2

1

0

Ψ2
xdx+ ε2

1

0

φ2xdx+ C (ε2)
1

0

θ2txdx. (2.11)

Proof.
Using equations (2.1) and (2.10) we get

ρ2ρ3
d

dt

1

0

x

0

θt (t, y) dyΨt (t, x) dx

=
1

0

x

0

(δθxx − γΨtx + kθtxx) dyρ2Ψtdx

+
1

0

x

0

ρ3θt (t, y) dy (bΨxx −K (φx +Ψ)− βθtx) dx

=
1

0

(δθx − γΨt + kθtx) ρ2Ψtdx−K
1

0

x

0

θt (t, y) dyΨdx

−ρ3b
1

0

θtΨxdx− ρ3K
1

0

θtφdx+ βρ3

1

0

θ2tdx

+ ρ3

x

0

θt (t, y) dy (bΨx −Kφ− βθt)
x=1

x=0

.

By using (2.1)1 , (2.1)6 and keeping in mind that θ stands for θ, we easily see that

1

0

θt (y, t) dy =
d

dt

1

0

θ (y, t) dy = 0.
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Consequently, we get

ρ3

x

0

θt (t, y) dy (bΨx −Kφ− βθt)
x=1

x=0

= 0.

Thus,

I2 = −γρ2
1

0

Ψ2
tdx− δρ2

1

0

θΨtxdx+ kρ2

1

0

θtxΨtdx

−Kρ2

1

0

x

0

θt (t, y) dyΨdx− ρ3b
1

0

θtΨxdx

−ρ2K
1

0

θtφdx+ βρ3

1

0

θ2tdx.

The assertion of the lemma then fallows, using Young’s and Poincaré’s inequalities.

Next we introduce the functional

J (t) := ρ2

1

0

Ψt (φx +Ψ) dx+ ρ2

1

0

Ψxφtdx. (2.12)

Lemma 2.4 Let (φ,Ψ, θ) be a solution of (2.1) . Assume that (2.4) holds. Then we
have

J � (t) ≤ [bφxΨx]x=1x=0 −
K

2

1

0

(φx +Ψ)2 dx+ ρ2

1

0

Ψ2
tdx+

β2

2K

1

0

θ2txdx. (2.13)

Proof.
A differentiation of (2.12) gives

J � (t) =
1

0

ρ2Ψtt (φx +Ψ) dx+
1

0

ρ2Ψt (φx +Ψ)t dx+ρ2

1

0

Ψxφttdx+ρ2

1

0

Ψtxφtdx,

Then use of equations (2.1) yields

J � (t) = [bφxΨx]
x=1
x=0 −K

1

0

(φx +Ψ)2 dx− β
1

0

(φx +Ψ) θtxdx+ ρ2

1

0

Ψ2
tdx

Consequently, (2.13) follows by Young’s inequality.
Next, in order to absorbe the boundary terms, appearing in (2.13), we exploit, as

in [13], the function
q (x) = 2− 4x, x ∈ (0, 1) .

Lemma 2.5 Let (φ,Ψ, θ) be a solution of (2.1) . Then we have, ∀ε3 > 0,

[bφxΨx]
x=1
x=0 ≤ −ε3

K

d

dt

1

0

qφtφxdx−
bρ2
4ε3

d

dt

1

0

qΨtΨxdx (2.14)

+3ε3

1

0

φ2xdx+ ε3 +
3b2

4ε3
+
b2

4ε33

1

0

Ψ2
xdx+

2ρ1ε3
K

1

0

φ2tdx

+
ρ2b

2ε3

1

0

Ψ2
tdx+

K2

4
ε3

1

0

(φx +Ψ)2 dx+
β2

4ε3

1

0

θ2txdx.
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Proof.
By using Young’s inequality, we easily see that, ∀ ε3 > 0,

[bφxΨx]
x=1
x=0 ≤ ε3 φ2x (1) + φ2x (0) +

b2

4ε3
Ψ2
x (1) +Ψ2x (0) . (2.15)

Also,

d

dt

1

0

bρ2qΨtΨxdx =
b2

2
qΨ2

x
x=1

x=0
− b

2

2

1

0

qxΨ
2
xdx−

ρ2b

2

1

0

qxΨ
2
tdx

−Kb
1

0

qΨx (φx +Ψ) dx− βb
1

0

qΨxθtxdx,

then

d

dt

1

0

bρ2qΨtΨxdx ≤ −b2 Ψ2
x (1) +Ψ2

x (0) + 3b
2

1

0

Ψ2
xdx

+2ρ2b
1

0

Ψ2
tdx+ ε23K

2
1

0

(φx +Ψ)2 dx (2.16)

+
b2

ε23

1

0

Ψ2
xdx+ β2

1

0

θ2txdx.

Similarly, we arrive at

d

dt

1

0

ρ1qφtφxdx ≤ −K φ2x (1) + φ2x (0) (2.17)

+3K
1

0

φ2xdx+K
1

0

Ψ2
xdx+ 2ρ1

1

0

φ2tdx.

Hence the assertion of the lemma follows, combining (2.15)− (2.17) .
Let’s introduce the functional

K (t) := −ρ1
1

0

φtφdx− ρ2

1

0

ΨtΨdx.

It easily follows, by using
1

0
Ψ2dx ≤ 1

0
Ψ2
xdx and equations (2.1) that

K� (t) ≤ −ρ1
1

0

φ2tdx− ρ2

1

0

Ψ2
tdx+ b+

1

2

1

0

Ψ2
xdx

+K
1

0

(φx +Ψ)2 dx+
β2

2

1

0

θ2txdx. (2.18)

Finally let

Θ (t) :=
1

0

ρ3θtθ +
k

2
θ2x + γΨxθ dx,

Lemma 2.6 Let (φ,Ψ, θ) be a solution of (2.1) . Then we have, ∀ε2 > 0

Θ� (t) ≤ −δ
1

0

θ2xdx+ ρ3 +
γ2

4ε2

1

0

θ2tdx+ ε2
1

0

Ψ2
xdx. (2.19)
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Proof.
A simple differentiation leads to

Θ� (t) = ρ3

1

0

θ2tdx+ ρ3

1

0

θttθdx+ k
1

0

θxθtxdx

+γ
1

0

Ψtxθdx+ γ
1

0

Ψxθtdx.

By using equation (2.1)3, we arrive at

Θ� (t) = ρ3

1

0

θ2tdx− δ
1

0

θ2xdx+ γ
1

0

Ψxθtdx

Finally, by Young’s inequality, (2.19) is proved.
To finalize the proof of Theorem 2.1, we define the Lyapunov functional L as

follows

L (t) : = NE (t) +N1I1 +N2I2 + J (t) +
ε3
K

1

0

ρ1qφtφxdx

+
ρ2b

4ε3

1

0

qΨtΨxdx+ µK (t) +Θ (t) . (2.20)

A combination of (2.6) , (2.9) , (2.11) , (2.13) , (2.14) , (2.18), (2.19) , and use of

1

0

θ2tdx ≤
1

0

θ2txdx

and
1

0

φ2xdx ≤ 2
1

0

(φx +Ψ)2 dx+ 2
1

0

Ψ2
xdx,

give

L� (t) ≤ −βkN +N1β
2

2b
+N2C (ε2) +

β2

2K
+

β2

4ε3
+
µβ2

2
+ ρ3 +

γ2

4ε2

1

0

θ2txdx

+ −N1b
2
+ 3ε2N2 + 7ε3 +

3b2

4ε3
+
b2

4ε33
+ µ

1

2
+ b + ε2

1

0

Ψ2
xdx

+ρ1 N1ε1 +
2ε3
K
− µ

1

0

φ2tdx− δ
1

0

θ2xdx (2.21)

+ N1 ρ2 +
ρ1
4ε1

− ρ2
N2γ

2
− 1− 1

2ε3
+ µ

1

0

Ψ2
tdx

+ −K
2
+

K2

4
+ 6 ε3 + ε2N2 + µK

1

0

(φx +Ψ)2 dx.

At this point, we have to choose our constants very carefully. First, let’s take µ = 1
16

and choose ε3 = min
µK
4
, 1
2

7K

16 K2

4
+6

. Now select N1 large enough such that

N1b

4
− 7ε3 +

3b2

4ε3
+
b2

4ε33
+ µ

1

2
+ b > 0
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then pick ε1 so small that

N1ε1 +
2ε3
K
− µ ≤ N1ε1 − µ

2
≤ −µ

4

That is ε1 <
µ
4N1
.We then choose N2 large enough so that

ρ2
N2γ

2
− 1− b

2ε3
+ µ −N1 ρ2 +

ρ1
4ε1

≥ ρ2N2γ

4
.

That is

N2 ≥ 4

ρ2γ
N1 ρ2 +

ρ1
4ε1

− µ + 1 + b

2ε3

Next, we choose ε2 so small that

ε2 < min
7K

64N2
,

N1b

4(3N2 + 1)
.

Finally, we choose N large enough so that (2.21) becomes

L� (t) ≤ −η
1

0

θ2t + θ2xt +Ψ2
x +Ψ2

t + φ2t + (φx +Ψ)2 dx ≤ −CE (t) (2.22)

for some positive constants η, C. Moreover, we may choose N even larger (if needed)
so that

β1E (t) ≤ L (t) ≤ β2E (t) , ∀t ≥ 0, (2.23)

for some positive constants β1,β2 > 0. Combining (2.22), (2.23), we conclude

L� (t) ≤ −ξL (t) , ∀t ≥ 0. (2.24)

A simple integration of (2.24) leads to

L (t) ≤ L (0) e−ξt, ∀t ≥ 0. (2.25)

Again, the use of (2.23) and (2.25) yields the desired result (2.5).
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