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Distributions of the sum, difference, product and ratio of two chi-squares variables are well 
known if the variables are independent.  In this paper we derive distributions of some of the 
above quantities when the variables are correlated through a bivariate chi-square distribution 
and provided graphs of their density functions. Results match with the independent case when 
the variables are uncorrelated. An application of the ratio of two correlated chi-squares is 
referred. 

 
1. Introduction 
Fisher (1915) derived the distribution of the bivariate matrix A  in order to study the 
distribution of correlation coefficient for a bivariate normal sample. Wishart (1928) obtained 
the distribution of p-dimensional matrix A  as the joint distribution of sample variances and 
covariances from multivariate normal population. The bivariate matrix A  is said to have a 
Wishart distribution with parameters 1 2m N= − >  and (2 2) 0Σ × > , written as 

2~ ( , )A W m Σ .  The joint density function of the elements of A  can be written as 

( )
2 / 2 ( 3) / 221 2

11 22 12 11 22 12

11 22 12
2 2 2 2 2

1 2 1 2

(1 ) ( )( , , )  
2 ( / 2) (( 1) / 2)

                       exp
2(1 ) 2(1 ) (1 )
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− − −−
= −
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⎛ ⎞
× − − +⎜ ⎟− − −⎝ ⎠

                                (1.1) 

11 22 11 22 12 11 220,  0,  ,  2a a a a a a a m> > − < < >  (Anderson, 2003, 123). The quantity ρ  
( 1 1)ρ− < <  is  the product moment correlation coefficient between 1X  and 2X .  

 
For the estimation of correlation coefficient by modern techniques, we refer to Ahmed (1992).  
The joint density function of 2 2

1 1/U mS σ=  and 2 2
2 2/V mS σ= , called the bivarite chi-square 

distribution,  was derived by Joarder (2007) in the spirit of Krishnaiah, Hagis and Steinberg 
(1963) who studied the bivariate chi-distribution. The product moment correlation coefficient 
between  U and V can be calculated to be 2.ρ  In case the correlation coefficient 0ρ = , the 
density function of U and V  becomes that of the product of two independent chi-square 
variables each with m  degrees of freedom.  We refer to Kotz, Balakrishnan and Johnson 
(2000) for other type of bivariate chi-square distribution.  
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With the help of simple transformations in the density function of the bivariate chi-square 
distribution (Theorem 3.1), we derive the joint distribution of the sum (Y U V= + ) and the 
product (W UV= ) in Theorem 4.1. Then we exploit simple transformations to derive the 
distribution of the sum ( )Y , the product (W ), the ratio ( / )H U V= , the ratio ( / )T U V=   
and the ratio 2 2

1 2( /( ))G U Vσ σ= . Wells, Anderson and Cell (1962) derived the distribution of  
W , the product of two independent chi-square variables with degrees of freedom 1m  and 2m . 
Note that Springer (1979, 365) derived the same but with some misprints. We derive the 
distribution of W UV= in Theorem 4.3 when U  and V have a bivariate chi-square 
distribution with common degrees of freedom m .  Our contribution is more general than Wells 
Anderson and Cell (1962) in the sense of accommodating correlated chi-square variables U  
and V . In case the variables are uncorrelated, Theorem 4.3 matches with Wells, Anderson and 
Cell for 1 2m m= . Note that some of the results in the paper follows from Krishnaiah, Hagis 
and Steinberg (1963). 
 
Ratios of two independent chi-squares are widely used in statistical tests of hypotheses. The 
distribution of /H U V=  for 1 2σ σ=  reported in Kotz, Balakrishnan and Johnson (2000) 
misses a constant. If 1 2σ σ= , Finney (1938) derived the sampling distribution of the square 

root of the ratio of correlated chi-squares variables ( /T U V= ) directly from the joint 
distribution of sample variances and correlation coefficient. He compared the variability of the 
measurements of standing height and stem length for different age groups of schoolboys by his 
method with the help of Hirschfeld (1937). The distribution of T derived in our paper (section 
4) from the bivariate chi-square distribution (Theorem 3.1) matches exactly with Finney 
(1938). Some works have also been done by Cohen (1986) and Wilcox (1989) for comparing 
variability of correlated random variables but not resorting to the functional form of the 
bivariate chi-square distribution. We remark that distribution of linear combinations of 
correlated chi-squares or some functions of them can also be derived along Provost (1986). 
 
2. Some Preliminaries 
 
Let ( , )f x y be the joint density function of X and Y . Then the following lemmas are well 
known.  
 
Lemma 2.1 Let X and Y be two random variables with common probability density function 

( )f x .  Further let 1W X Y= + . Then the density function of 1W at w is given by 

1
0

( ) ( , )g w f w y y dy
∞

= −∫ . 

Lemma 2.3 Let X and Y have the joint density function ( , )f x y .  Further let 3 /W X Y= . 
Then the p.d.f. of 3W  at w is given by 

3
0

( ) ( , )g w f yw y ydy
∞

= ∫ . 

 
In what follows we will be using the duplication formula of gamma function  
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2 1 1(2 ) 2 ( )
2

zz z zπ − ⎛ ⎞Γ = Γ Γ +⎜ ⎟
⎝ ⎠

.        (2.1) 

 
Multiplying both sides by 2z we have 
 

( )2 1
2(2 )! 2 !zz z zπ = Γ + .         (2.2) 

 
The hypergeometric function 1 2 1 2( , , , ; , , , ; )p q p qF a a a b b b z is defined by 
 

1 2 1 2

1

1 2 1 2

0 1 2 1 2

( , , , ; , , , ; )

( ) ( )( ) ( ) ( ) ( ) .
( ) ( ) ( ) ( ) ( ) ( ) !
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∞

=

⎛ ⎞Γ + Γ +Γ + Γ + Γ + Γ +
= ⎜ ⎟⎜ ⎟Γ Γ Γ Γ Γ Γ⎝ ⎠
∑

  (2.3) 

 
Note that 2 1 2 1( , ; ; ) (1 ) ( , ; ; )c a bF a b c z z F c a c b c z− −= − − −  can be transformed as 
 
2 1 2 1( , ; ; ) (1 ) ( , ; ; )c a bF a b c z z F c a c b c z− −= − − −       (2.4) 
 
(Gradshtyen and Ryzhik, 1992, 1069) 
 
The error function given by 
 

2

0

2( )
x

terf x e dt
π

−= ∫            (2.5) 

which enjoys the property: ( ) ( )erf x erf x− = − .  The Mittag-Leffler function is defined by  

0
( )

( 1)

k

k

zE z
kα α

∞

=

=
Γ +∑          (2.6) 

 
which is related to error function (Weisstein, 1999) through 
 

2

1/ 2 ( ) [1 ( )]zE z e erf z= + .         (2.7) 
 
The exact distribution of some sampling statistics derived in this paper will involve Macdonald 
function which admits the following integral representations: 
 

1. 2 (2 1) / 22
1
2 1

( )( ) ( 1)
( )

z
ztK z t e dt

α
α

α
π

α

∞
− −= −

Γ + ∫ , 1/ 2,  0zα > − >                                                 (2.8) 

(Watson, 1995, 185), (Gradshteyn and Ryzhik, 1994, 969, #8.432(3)). 

2. ( ) ( )2( 1)1
2 2 4

0

( ) expz z
tK z t t dtα α

α

∞
− += − −∫ , 0z >                                                                   (2.9) 

(Watson, 1995, 183), (Gradshteyn and Ryzhik, 1994, 969, #8.432(6)). 
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3. 1 1 (1/ 2) / 2
(1/ 2)

0

( )( ) ( / ) ( / 2)xx x e dx e Kα α µ α βµ
α

αβ β µ βµ
π

∞
− − − −

−
Γ

+ =∫ , 0,  0α µ> >            (2.10)  

(Gradshteyn and Ryzhik, 1994, 365, 3.383(8)). 

 
It may be mentioned that the function ( )K xα is variously called as Bessel function of the 
second kind with imaginary argument, modified Bessel function of the third kind, Macdonald 
function, Basset function or modified Hankel function. Series representations for different 
orders are available in Spainer and Oldham (1987, p 502). 
 
3. The Density Function of the Bivariate Chi-square Distribution 
 
Consider a random sample of size N represented by  1 2( , , , ) , 1, 2, ,j j j pjX X X X j N′= =  
where ~ ( , )j pX N µ Σ , 1 2,( , , )pµ µ µ µ ′= and ( )ikσΣ = , 1, 2, , ;  1,2, ,i p k p= = is a 

p p× positive definite matrix. Then 2 2 2

1
( ) / ~

N

i ij i m
j

U X X σ χ
=

= −∑  ( 1,2, , )i p= with 

1m N= − , and the joint distribution of 1 2, , , pU U U is called a p-variate chi-square 
distribution (Krishnaiah, Hagis and Steinberg, 1963). In this paper, however, we restrict 
ourselves to bivariate chi-square distribution ( 2)p = . The following theorem is due to Joarder 
(2007) though it follows from Krishnaiah, Hagis and Steinberg (1963). 
 
Theorem 3.1 The random variables U  and V  are said to have a correlated bivariate chi-
square distribution each with m  degrees of freedom,  if its density function is given by   

( 2) / 2 2

0 12 2 / 2 2 2 2

( )  ( , ) exp  ;
2  ( / 2)(1 ) 2 2 2 (2 2 )

m

m m

uv u v m uvf u v F
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− ⎛ ⎞⎛ ⎞+
= − ⎜ ⎟⎜ ⎟Γ − − −⎝ ⎠ ⎝ ⎠

   (3.1) 

 
where 0 1(; ; )F b z is defined in (2.4).  
 
It is easy to check that the density function in (3.1) has the following representation: 
 

( )
( )

2
( )

( 1) ( 2) / 2 2(1 ) 1
2

22 / 2
0 22

2 ( )  ( , )  [1 ( 1) ]  .
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∑    (3.2) 

 
 
We remark that  ( , ; ) ( , ; )f u v f u vρ ρ= −  and that ( , ; ) ( , ; )f u v f v uρ ρ= . In case 0ρ = , the 
density function of the joint probability distribution in Theorem 3.1, would be that of the 
product of two independent chi-square random variables given by 
 

( )
/ 2 1

( ) / 2

2 ( , )  , 0, 0.
2  ( / 2)

m
u v

m

uv e
f u v u v

m

−
− +

= > >
Γ
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It has been checked with MATHEMATICA 5.0 that the function in (3.1) integrates to 1. 
Figure 1 in the Appendix shows the bivariate surface of the density function in (3.1) for 
various values of ρ for m = 5.  
 
4. Some Functions of Correlated Chi-square Variables 
 
Theorem 4.1 Let U and V be two correlated chi-square variables with p.d.f. given by  
Theorem 3.1. Then the joint density function of  Y U V= +  and W UV=  is given by  

( 2) / 2 2 1/ 2
2 2

1 0 11 2 2 / 2 2 2

 exp ( 4 )
2 2

( , )  ;
2  ( / 2)(1 ) 2 (2 2 )

m

m m

yw y w
m wf y w F

m
ρ ρ

ρ ρ

− −

−

⎛ ⎞−
−⎜ ⎟ ⎛ ⎞−⎝ ⎠= ⎜ ⎟Γ − −⎝ ⎠

  (4.1) 

where 2{0 / 4,  0 }w y y< < < < ∞  or, {0 ,2 }w w y< < ∞ < < ∞ ,  2, 1 1m ρ> − < < .  

 
Equation (4.1) also has the following alternative computational form: 

( )
( )

( 2) / 2 2 1/ 2
2 1

2
1 22 / 2

0 2

 exp ( 4 )
2 2

( , )  [1 ( 1) ]  
1 !2  ( / 2)(1 )

m
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k
k

m m k m
k

yw y w
wf y w

km
ρ ρ

ρπ ρ

− −
+∞

+
=

⎛ ⎞−
−⎜ ⎟ ⎛ ⎞ Γ−⎝ ⎠= × + − ⎜ ⎟⎜ ⎟− ΓΓ − ⎝ ⎠

∑  

 
Proof.  It is well known that 2( ) 4a b ab+ > which implies 2a b ab+ >  and 2( ) / 4.ab a b< +  
Hence 2 2y u v uv w= + > = and 2 2( ) / 4 / 4w uv u v y= < + = . With these, the Jacobian of 

the transformation is ( ) 1/ 22| ( , , ) | 4 , 2 .J u v y w y w y w
−

→ = − >  Then the joint probability 
density function of Y and V  follows from Theorem 3.1. 
 
Corollary 4.1 If 0ρ = , then the joint density function of sum and product of two chi-square 
variables would be 

( 2) / 2 / 2 2 1/ 2
*

2 1 2

( 4 )( , )
2 ( / 2)

m y

m

w e y wf y w
m

− − −

−

−
=

Γ
,    20 / 4,  0 ,  2.w y y m< < < < ∞ >                      (4.2) 

By substituting 0ρ =  into equation (4.2) and integrating out y, we obtain the following density 
function of W . 

 
( 2) / 2

01 2 ( )
2 ( / 2)

m

m

w K w
m

−

− Γ
. 

 
By substituting 0ρ =  into equation (4.2) and integrating out w, it can be proved that Y ~ 2

2mχ . 
 
Theorem 4.2 Let U  and V  be two correlated chi-square variables with density function given 
by Theorem 3.1. Then the density function of Y U V= +  is given by  
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1
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, 0y >                               (4.3) 

where  2, 1 1m ρ> − < < . 
 
The function in (4.3) has the following computational form: 
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Proof. The density function of y in (4.3) follows from Theorem 4.1 by integrating over w  
( 20 / 4w y< < ).  

Figure 2 in the Appendix shows the graph of the density function of the sum of two chi-square 
variables (Theorem 4.2) for various values of ρ for 5m = . If 0ρ = , then the density function  
in Theorem 4.2 becomes that of 2

2mχ . 

In addition, by substituting 24u wy −= with 2( / 4)dw y du= (0 1)u< < , in (4.2), it can be also 
be checked that 2

2~ mY χ .  

Alternatively, the density function  of Y U V= + can be derived directly from Theorem 3.1 by 
the use of the convolution formula in Lemma 2.1.  

 
Theorem 4.3 Let U  and V  be two correlated chi-square variables with density function  
given by Theorem 3.1. Then the density function of  W UV=  is given by  
 

2 / 2 ( 2) / 2 2

4 0 0 11 2 2 2 2

(1 )( ) ;  ,
2  ( / 2) 1 2 (2 2 )

m m

m

w w m wf w K F
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 0w >                     (4.4) 

 
where 2,  1 1m ρ> − < < . 
 
The function in (4.4) has the following computational form: 

( )
( )

2 1
2

2
0 2

/ 2 ( 2) / 2

4 0 2

(1 )( )
12  ( / 2)

[1 ( 1) ] .
1 !

k
k

k
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ρ
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+∞−

+
=

− ⎛ ⎞−
= ⎜ ⎟⎜ ⎟−Γ ⎝ ⎠
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+ − ⎜ ⎟⎜ ⎟− Γ⎝ ⎠

∑  

 
Proof. Equation (4.4) follows from the joint density function 1( , )f y w  in equation (4.1) by 

integrating out y over the support space y > 2 w .  
 

Alternatively, the density function  of  W UV= can be derived directly from Theorem 3.1 by 
the use of Lemma 2.1.   

 
It has been checked with MATHEMATICA 5.0 that the function 4 ( )f w in Theorem 4.3 
integrates to 1. Figure 3 in the Appendix shows the graph of the density function of the product 
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of two chi-square variables (Theorem 4.3) for various values of ρ for 5m = . If  W is the 
product of two independent chi-square variables with degrees of freedom 1m  and 2m , then 

1
1 24

11
1 21 2 22

( ) 1

5 ( )( ) 1
1 2

( ) ( ),  0
2 ( / 2) ( / 2)

m m

m mm m

wf w K w w
m m

+ −

−+ −
= >

Γ Γ
              (4.5) 

(Wells, Anderson and Cell, 1962) where ( )K xα  is the modified Bessel function of the third 
kind defined in Section 2. Note that Springer (1979, 365) derived the above but there is a 
misprint in the density function.  Note also that if 0ρ =  and 1 2m m=  in 5 ( )f w , it reduces to 

4 ( )f w .  
 
Corollary 4.2 In  case U and V are independent,  the density function of  W UV= is given by  

( 2) / 2

6 01 2

 ( ) ( ),   0
2  ( / 2) 

m

m

wf w K w w
m

−

−= >
Γ

.       (4.6) 

Similarly substituting /(2 )t y w= in (4.2) with 2dy w dt= (0 )t< < ∞ , it can be proved 
that W has the above density function. Note that it matches with Wells, Anderson and Cell 
(1962) when 1 2m m m= = . It has been checked with MATHEMATICA 5.0 that the function 

6 ( )f w in Corollary 4.2 integrates to 1.  
 
Theorem 4.4 The density function of /H U V= is given by 

( 1) / 21 2 / 2 ( 2) / 2 2

7 2

2 (1 ) 4( ) 1 ,  0.
1 (1 ) (1 ),
2 2

mm m m

m

h hf h h
m h hB

ρ ρ
− +− − ⎛ ⎞−

= − >⎜ ⎟+ +⎛ ⎞ ⎝ ⎠⎜ ⎟
⎝ ⎠

    (4.7) 

 
Proof.  By using Lemma 2.3 and some algebraic manipulation in Theorem 4.1 we have 
equation (4.7). 
 
Note that Kotz, Balakrishnan and Johnson (2000, 452) misses the constant 12m −  in the above 
density function. We have checked that the density function 7 ( )f w in Theorem 4.4 integrates to 
1. Figure 4 in the Appendix shows the graph of the density function of the ratio of two chi-
square variables (Theorem 4.4) for various values of ρ for 5m = . 
 
In case 0ρ = , the density function in the theorem reduces to 

1 ( 2) / 2
*

7
2 (( 1) / 2)  ( )  

(1 ) ( / 2)

m m

m

m hf h
hmπ

− −Γ +
=

+Γ
 

which, by virtue of the duplication formula of gamma function (2.4) with 2z m= , simplifies 
to  

( 2) / 2
*

7 2

( )  ( )  
 ( / 2) (1 )

m

m

m hf h
m h

−Γ
=

Γ +
  

which is the density function of the ratio of the two independent chi-square variables each with 
m degrees of freedom. 
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It follows from Theorem 4.4 that the density function of T H=  is given by 

( 1) / 22 / 2 1 2 2

8 2 2 2

2(1 )  4( )  1  
( / 2, / 2) (1 ) (1 )

mm m

m

t tf t
B m m t t

ρ ρ
− +− ⎛ ⎞−

= −⎜ ⎟+ +⎝ ⎠
     (4.8) 

which coincides with Bose (1935) or Finney ( 1938).  The density function of  
2 2
1 1
2 2
2 2

U HG
V

σ σ
σ σ

= =  

 is given by 

( )
1 2 2 / 2 2 / 2 2 2 ( 2) / 2

2 1 2 1
9 2 2

2 1

( 1) / 22 2 2
2 1

2 2 2
2 1

2 ( / ) (1 ) ( / )  ( )  
1/ 2,  / 2 (1 / )

4 /           1  , 0.
(1 / )

m m m m

m

m

gf g
B m g

g g
g

σ σ ρ σ σ
σ σ

ρ σ σ
σ σ

− −

− +

−
=

+

⎛ ⎞
× − >⎜ ⎟+⎝ ⎠

     (4.9) 

 
5. Marginal and Conditional Distributions 
  
Theorem 5.1 Let U  and V  be two correlated chi-square variables with density function given 
by Theorem 2.1. Then both U and V will be distributed as independent chi-squares with 
common degrees of freedom m .  
 
Proof. By integrating out v from the joint density function in (2.1), we have 
 

2
2

( 2) / 2 22(1 )
( 2) / 2 2(1 )

1 0 1 2 21 2 / 2
0

 ( )   ;
2 4(1 )2  ( / 2)(1 )

u
vm

m k
m m

u e m uf u v e F dv
m

ρ
ρ ρ

ρπ ρ

−
−∞− −

+ − −
+

⎛ ⎞
= ⎜ ⎟−Γ − ⎝ ⎠

∫ .               (5.1) 

 
Since  
 

( )
( )

2

0 1 2 2 2
=0

( 1) / 2( / 2); [1 ( 1) ]
2 4(1 ) 1 ! ( ) / 22

k

k

k

km u m uF
k k m

ρ ρ
ρ ρπ

∞ ⎛ ⎞ Γ +⎛ ⎞ Γ
= + − ⎜ ⎟⎜ ⎟ ⎜ ⎟− − Γ +⎝ ⎠ ⎝ ⎠

∑ , 

 
(see 3.2 for example), evaluating the gamma integral in (5.1), the summand turns into 
 

( )2 / 2

2
=0

( 1) / 22[2(1 )] [1 ( 1) ]  .
!1

k

m k

k

ku
k

ρρ
ρ

∞ ⎛ ⎞ Γ +
⎜ ⎟− + −
⎜ ⎟−⎝ ⎠

∑      (5.2) 

 
Using 2 1z k= +  in the duplication formula of gamma function ( 2.4), we have  
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( )

2

2 2
=0 =0

1/ 2

( 1) / 22 1
!1 2(1 ) 1
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                                            ( )

                                            [1 ( )]
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z
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ρ ρπ
ρ ρ

π

π
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⎜ ⎟ ⎜ ⎟ ⎛ ⎞− −⎝ ⎠ ⎝ ⎠ Γ +⎜ ⎟
⎝ ⎠

=

= +

∑ ∑

 

 
where 22(1 )z uρ ρ− =  and ( )E zα  is the Mittag-Leffler function given by (2.6). Similarly, 
it can be proved that  
 

( )

2

2

1/ 22
=0

( 1) / 22 ( )
!1

                                            [1 ( )]

                                            [1 ( )]

k

k

z

z

ku E z
k

e erf z

e erf z

ρ π
ρ

π

π

∞ ⎛ ⎞ Γ +−⎜ ⎟ = −
⎜ ⎟−⎝ ⎠

= + −

= −

∑

 

 
so that (5.2) turns into 
 

2

2 22 / 2 ( 2) / 2 2 / 2 2(1 )[2(1 )] 2 2 (1 )
u

m z m me e
ρ
ρρ π π ρ+ −− × = − . 

 
If this is plugged into (5.1), 1( )f u simplifies to the density function of univariate chi-square 
distribution with m degrees of freedom. Krishnaiah, Hagis and Steinberg (1963) reported the 

-tha moment of a chi variable. 
 
 
Theorem 5.2 Let U  and V  be two correlated chi-square variables with density function given 
by Theorem 2.1. Then the conditional density function of U given V v=  will be given by 
 

( 2) / 2 2 2

2 0 12 / 2 2 2 2

 )( | ) exp ;
( / 2)(2 2 ) 2 2 ) 2 (2 2 )

m

m

u u v m uvf u v F
m

ρ ρ
ρ ρ ρ

− ⎛ ⎞ ⎛ ⎞− −
= ⎜ ⎟ ⎜ ⎟Γ − − −⎝ ⎠ ⎝ ⎠

            (5.3) 

 
Proof.  The theorem follows from  
 

2
2

( , )( | )
( )

f u vf u v
f v

=       

 
where 2 ( )f v is the density function of chi-square distribution with m degrees of freedom. 
 
Theorem 5.3 Let U  and V  be two correlated chi-square variables with density function  
given by Theorem 2.1.  Then the regression function of  U given V v= is given by 
 

2 2( | ) (1 )E U V v m vρ ρ= = − + ,    1 1ρ− < <  
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Proof.  The regression function of  U given V v= follows from the definition  

2
0

( | ) ( | ) .E U V v uf u v du
∞

= = ∫  

 
Theorem 5.4 Let U  and V  be two correlated chi-square variables with density function  
given by Theorem 2.1. Then the -tha moment of the conditional distribution of  U  given V  is 
given by 
 

2 2 2

1 12 2

(2 2 )( | ) exp ; ;
( / 2) 2 2 2 2 2 2 2

a
a v m m m vE U V a F a

m
ρ ρ ρ

ρ ρ
⎛ ⎞ ⎛ ⎞− − ⎛ ⎞= Γ + +⎜ ⎟ ⎜ ⎟⎜ ⎟Γ − −⎝ ⎠⎝ ⎠ ⎝ ⎠

           (5.4) 

 

Proof.  By definition, we have 2
0

( | ) ( | )a aE U V v u f u v du
∞

= = ∫  

( 2) / 2

/ 2 2 / 2 2

2 2

0 12 2 2
0

 ( | ) exp
2 ( / 2)(1 ) 2(1 )

                       exp ;
2(1 ) 2 4(1 )

m
a

m m

a

v vE U V v
m

u m uvu F du

ρ ρ

ρ ρ
ρ ρ

−

∞

⎛ ⎞−
= = ⎜ ⎟Γ − −⎝ ⎠

⎛ ⎞ ⎛ ⎞−
× ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
∫

     

 
By expanding the hypergeometric function, and completing the gamma integral we get (5.4).  
It is easily checked that  0( | ) 1E U V = . With some algebraic manipulations, it can also be 
checked that 1 2 2( | ) (1 )E U V v mρ ρ= + − . 
 
 
Acknowledgements The authors gratefully acknowledge the excellent research facility 
provided by King Fahd University of Petroleum & Minerals. In particular, the first author 
gratefully acknowledges the research support provided through the FT 2004-22 project. 
 
References 
 
Ahmed, S.E.  (1992). Large sample pooling procedure for correlation. The Statistician, 41, 

415-428.  

Anderson, T.W. (2003). An Introduction to Multivariate Statistical Analysis. John Wiley and 
Sons. New York. 

Bose, S.S. (1935). On the distribution of the ratio of variances of two samples drawn from a 
given normal bivariate correlated population, Sankhya, 2, 65-72. 

Cohen, A. (1986). Comparing variances of correlated variables. Psychometrika, 51 , 379-391. 

Finney, D.J. (1938). The distribution of the ratio of the estimates of the two variances in a 
sample from a bivariate normal population. Biometrika, 30, 190-192. 

Fisher, R.A. (1915). Frequency distribution of the values of the correlation coefficient in 
samples from an indefinitely large population. Biometrika, 10, 507-521. 

Gradshteyn, I.S. and Ryzhik, I.M. (1995). Table of Integrals, Series and Products, Academic 
 Press. 



 11
Hirschfeld, H.O. (1937). The distribution of the ratio of covariance estimates in two samples 

drawn from normal bivariate populations. Biometrika, 29, 65-79. 

Joarder, A.H. (2007). Moments of the product and ratio of two correlated chi-square random 
variables. To appear in Statistical Papers. 

Joarder, A.H. (2006). Product moments of bivariate Wishart distribution. Journal of 
Probability and Statistical Science. 4(2), 233-244. 

Krishnaiah, P.R.;  Hagis, P. and Steinberg, L. (1963). A note on the bivariate chi distribution. 
SIAM Review, 5, 140-144. 

Provost, S.B. (1986). The exact distribution of the ratio of a linear combination of a chi-square 
variables over the root of a product of chi-square variables. Canadian Journal of Statistics, 
14(1), 61-67. 

Kotz, S.; Balakrishnan, N. and Johnson, N.L. (2000). Continuous Multivariate Distributions 
(volume 1). John Wiley  and Sons, New York. 

Spainer, J. and Oldham, K.B. (1987). At Atlas of Functions. Hemisphere Publishing 
Corporation,  Washington D.C. 

Springer, M.D. (1979). The Algebra of Random Variables. John Wiley and Sons. 

Wilcox, Rand .R. (1989). Comparing the variances of dependent groups. Psychometrika, Vol 
54(2) , 305-315 

Wishart, J. (1928). The generalized product moment distribution in samples from a normal 
multivariate population. Biometrika, A20, 32-52. 



 12
Appendix 

 

 

 
Figure 1. Correlated bivariate Chi-square density f(x,y) surface with 5 degrees of freedom at 

different values of ρ : Graph a ( ρ = 0.95), Graph b ( ρ = -0.95), Graph c  ( ρ =0.7), Graph d 
( ρ = -0.7), Graph e ( ρ = 0.5), and Graph f (ρ = -0.5). 
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Figure 2. Sum of Chi-square variables for m = 5 and various ρ values 
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Figure 3. Product of Chi-square variables for m = 5 and various ρ values 
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Figure 4. Ratio of Chi-square variables for m = 5 and various ρ values 
 

 


