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Notation

• General Notation:

ℵα := the αth cardinal (ℵ0 stands for countable)
ωα := the first ordinal of cardinality ℵα
ω := the first infinite ordinal
PS(A) := the power set of the set A

V = L := Gödel’s Axiom of Constructability
Z := the ring of integers
Q := the field of rational numbers
P := the set of prime positive integers
Zn := Z/nZ (' {0, 1, ..., n− 1}, the cyclic group of order n)
Zp∞ := Z[1

p
]/Z (The Prüfer p-Group, p ∈ P)

Jp := End(Zp∞) (The ring of p-adic integers, p ∈ P)

• Rings:

R := an associative ring with 1R 6= 0R
Z(R) := {r ∈ R | rr′ = r′r for all r′ ∈ R} (the center of R)
I C R := I is a two-sided ideal of R
annlR(a) (annrR(a)) := {r ∈ R | ra = 0 (ar = 0)}
Rreg := {a ∈ R | annlR(a) = 0 = annrR(a)}
Rop := the opposite ring of R (r ·Rop r̃ = r̃ ·R r ∀r, r̃ ∈ R)

R(m,n) := The (R,R)-bimodule of m× n-matrices over R

R(n,n) := The ring of all n× n-matrices with entries in R
Spec(R) := the spectrum of all prime ideals of R
Max(R) := the spectrum of all maximal ideals of R

Jac(R) :=
⋂
{P | P C R is a maximal left ideal of R}

=
⋂
{P | P C R is a maximal right ideal of R}
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• Modules:

R-module := left R-module (unless otherwise specified)

RU (UR) := a left (right) R-module

RUS := an (R,S)-bimodule U (where R,S are rings)

RM (MR) := the category of left (right) R-modules
f.g.
R M (Mf.g.

R ) := the category of finitely generated left (right) R-modules
f.p.
R M (Mf.p.

R ) := the category of finitely presented left (right) R-modules
s
RM (Ms

R) := the category of small left (right) R-modules
s.s.
R M (Ms.s.

R ) := the category of self-small left (right) R-modules

RMS := the category of (R,S)-bimodules (where R,S rings)

L ≤R M := L is an R-submodule of M
L �R M := L is a proper R-submodule of M
L <⊕R M := RL is a direct summand of RM
L ≤essR M := RL is an essential R-submodule of RM

Soc(RU) :=
∑
{RX | X ≤R U is a simple R-submodule} (the socle of RM)

=
⋂
{RL | L ≤essR U (an essential R-submodule)}

Rad(RU) :=
⋂
{RX | X �R U is a maximal R-submodule}

=
∑
{RL | L �R U is a superfluous R-submodule}

annM(r) := {m ∈M | rm = 0} (r ∈ R, RM is a left R-module)
annS(m) := {s ∈ S | sm = 0} (M ∈ RM and ∅ 6= S ⊆ R)

τ(RM) :=
⋃

r∈R\{0}

annM(r) (the torsion submodule of RM)

annR(M) := {r ∈ R | rM = 0} =
⋂
m∈M

annR(m)

M# := {r ∈ R | rM $ M}
M# :=

⋃
m∈M\{0}

ann(m)

DR(M) := {r ∈ R | rM = M} (the divisibility set of RM)
E(M) := the injective envelope of RM

M̂ := the pure-injective envelope of the R-module M

RI (IR) := an injective cogenerator in RM (MR), e.g. I = HomZ(R,Q/Z)
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• Dual Modules2:

M c := HomZ(M,Q/Z) for an R-module M (the character module of M)
dM (Md) := HomR(M, I), where RM (MR) is a left (right) R-module
∗M (M∗) := HomR(M,R), where M is a left (right) R-module

Commutative Algebra:

• Ab : the category of Abelian groups (i.e. Z-modules)

• For a commutative ring R set

Rreg := {r ∈ R | 0 6= r is NOT a zero-divisor (called also regular element)}
R× := R\{0} (= Rreg if and only if R is a domain)
U(R) := {r ∈ R | r is a unit (invertible) in R}
Ass(M) := {p ∈ Spec(R) | p = annR(m) for some m ∈M}

RS := { r
s
| r ∈ R, s ∈ S} (the localization of R at S)

Q(R) := the (classical) total quotient ring of R (= RRreg)
Q := the quotient field of an integral domain R (:= RR×)
I−1 := {q ∈ Q(R) | qI ⊆ R} (for an ideal I C R)

2The notion of a dual module of a given module differs from an author to another
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Homological Algebra:

• For an R-module M we set

PM̃ := ...→ Pn+1
∂n+1→ Pn

∂n→ Pn−1 → ...→ P1
∂1→ P0 −→ 0

(obtained from a projective resolution PM̃ →M → 0);

FM̃ := ...→ Fn+1
∂n+1→ Fn

∂n→ Fn−1 → ...→ F1
∂1→ F0 −→ 0;

(obtained from a flat resolution FM̃ →M → 0);

EM̃ := 0→ E0 δ1→ E1 → ...→ En−1 δn

→ En δn+1

→ En+1 → ...
(obtained from an injective coresolution 0→M → EM̃);

PM := 0→ X → P
π→M → 0 (a projective presentation of RM);

FM := 0→ X → F
π→M → 0 (a flat presentation of RM);

EM := 0→M
ι→ E → Z → 0 (an injective copresentation of RM);

• The following table provides a summary of the definitions presented in
the sequel:

ExtnR(•, B) := (LnHomR(−, B))(•), ExtnR(A,B) = Hn(HomR(PÃ, B));

Ext
n

R(A, •) := (RnHomR(A,−))(•), Ext
n

R(A,B) = Hn(HomR(A,EB̃));

TorRn (•, B) := (Ln(−⊗R B))(•), TorRn (A,B) = Hn(PÃ ⊗R B));

Tor
R

n (A, •) := (Ln(A⊗R −))(•), Tor
R

n (A,B) = Hn(A⊗R PB̃));

torRn (A, •) := Hn(FÃ ⊗R −)), torRn (A,B) = Hn(FÃ ⊗R B));

tor
R
n (•, B) := Hn(A⊗R FB̃)), tor

R
n (A,B) = Hn(A⊗R FB̃));

• For the ring R we set

LG.dim.(R) := the left global dimension of R
RG.dim.(R) := the right global dimension of R
W.dim.(R) := the weak dimension of R
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• For U ⊆ RM and i ≥ 1, set3

U⊥i :=
⋂
U∈U

{Y ∈ RM | ExtiR(U, Y ) = 0}; U⊥∞ :=
∞⋂
i=1

U⊥i

Uᵀi :=
⋂
U∈U

{Y ∈MR | TorRi (U, Y ) = 0}; Uᵀ∞ :=
∞⋂
i=1

Uᵀi

⊥iU :=
⋂
U∈U

{X ∈ RM | ExtiR(X,U) = 0}; ⊥∞U :=
∞⋂
i=1

⊥iU

ᵀiU :=
⋂
U∈U

{X ∈MR | UorRi (X,U) = 0}; ᵀ∞U :=
∞⋂
i=1

ᵀiU

• For an R-module RU, we set:

proj.dim.(RU) := the projective dimension of RU
inj.dim.(RU) := the injective dimension of RU
flat.dim.(RU) := the flat dimension of RU

U+ := Ke(HomR(U,−)) ∩Ke(Ext1
R(U,−))

+U := Ke(HomR(U,−)) ∩Ke(Ext1
R(−, U))

• For each n ≥ 0 set

RPn := {RM | proj.dim.(RM) ≤ n}; RP :=
∞⋃
n=0

RPn

RIn := {RM | inj.dim.(RM) ≤ n}; RI :=
∞⋃
n=0

RIn

RFn := {RM | flat.dim.(RM) ≤ n}; RF :=
∞⋃
n=0

RFn

3If i is dropped, then i = 1 is meant.
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• We set

RPROJ := RP0, RINJ := RI0 and RFLAT := RF0.

• For a non-empty class of left R-module ∅ 6= U ⊆ RM, we set

U := the smallest closed4 subcategory of RM that contains U ;
Uf := the smallest finitely closed5 subcategory of RM that contains U .

• For an R-module RU and n ≥ 1, let 6

Genn(U) := {RM | ∃ exact sequence U (Λn) → ...→ U (Λ1) →M → 0}
Gen∞(U) := {RM | ∃ e.s. ...→ U (Λn) → ...→ U (Λ1) →M → 0}
genn(U) := {RM | ∃ e.s. Ukn → ...→ Uk1 →M → 0, ki ∈ N}
gen∞(U) := {RM | ∃ e.s. ...→ Ukn → ...→ Uk1 →M → 0, ki ∈ N}
Add(U) := {RM |M ≤⊕R U (Λ) for some index set Λ}
add(U) := {RM | RM ≤⊕R Uk for some k ∈ N}
σn[U ] := {L | L ≤R N for some N ∈ Genn(RU)}
σfn[U ] := {L | L ≤R N for some N ∈ genn(RU)}

• By convention, for any R-module RU we have:

Gen0(U) = σ0[U ] = RM.

4i.e. closed under submodules, factor modules and arbitrary direct sums
5i.e. closed under submodules, factor modules and finite direct sums
6If n is dropped, then n = 1 is meant. We also set σ0[RU ] = Gen0(RU) := RM.
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• For an R-module RU and n ≥ 1, let7

Cogenn(U) := {RM | ∃ exact sequence 0→M → UΛ1 → ...→ UΛn}
Cogen∞(U) := {RM | ∃ e.s. 0→M → UΛ1 → ...→ UΛn → ..., ki ∈ N}
cogenn(U) := {RM | ∃ e.s. 0→M → Uk1 → ...→ Ukn , ki ∈ N}
cogen∞(U) := {RM | ∃ e.s. 0→M → Uk1 → ...→ Ukn → ..., ki ∈ N}
Prod(U) := {RM |M <⊕R U

Λ for some index set Λ}
prod(U) := {RM |M <⊕R U

k for some k ∈ N}
πn[U ] := {N/L | RL ≤ RN and N ∈ Cogen(RN)}
πfn[U ] := {N/L | RL ≤ RN and N ∈ cogen(RN)}

• By convention, for any R-module RU we have:

Cogen0(U) = π0[U ] = RM.

• For RU and n ≥ 0, set8

Presn(U) := Genn+1(U); presn(U) := genn+1(U);
Copresn(U) := Cogenn+1(U); copresn(U) := cogenn+1(U).

• For any subclass U ⊆ RM (respectively U ⊆MR) we set

f.g.U := U∩ f.g.
R M; Uf.g. := U ∩Mf.g.

R
f.p.U := U∩ f.p.

R M; Uf.p. := U ∩Mf.p.
R

s.s.U := U∩ s.s.
R M; U s.s. := U ∩Ms.s.

R

7If n is dropped, then n = 1 is meant.
8If n is dropped, then n = 1 is meant.
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• We set

Rmod := {RU | U has a projective resolution consisting of f.g. R-modules}.

The subcategory modR ⊆Mf.g.
R is analogously defined.

Remark: Objects in Rmod (modR) are called strongly finitely pre-
sented. If R is left (right) coherent, then

Rmod = f.p.
R M (modR = Mf.p.

R ).

• For U ⊆ RM (U ⊆MR) set

U<ω := U ∩Rmod (U<ω := U ∩modR).

• Set

RPROG := {RP | P is a progenerator in RM};
= {RP | P is f.g., projective and a generator in RM};

• For U ⊆ RM we set

PROJ (U) := {RU | HomR(U,−) respects short exact sequences in U};
(We say U is projective on U in this case);

INJ (U) := {RU | HomR(−, U) respects short exact sequences in U}.
(We say U is injective on U in this case);

• For RU and n ≥ 1 we set9

RQ-PROGn := {RU | U is a progenerator in σn[U ]};
RGEN n := {RU | Genn(U) = RM};
RSUBGEN n := {RU | σn[U ] = RM};
RS-Gn := {RU | σn[U ] = Genn(U)};
RINJ -GEN n := {RU | RINJ ⊆ Genn(U)}.

9If n is dropped, then n = 1 is meant.
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• Remarks:

1. Q-PROG0 = RPROG and

RQ-PROG1 := {RU | U is a progenerator in σ[RU ]};
= {RU | U is a quasi-progenerator 10 in RM};

2. RI-GEN 1 = RSUBGEN 1.

3. σ[RU ] = Gen(RU) and σf [RU ] = gen(RU)f .

4. We have π[RU ] = R/annR(U)M, whence a closed subcategory of RM (i.e.
σ[RU ] ⊆ π[RU ]).

5. We have prod(RU) = add(RU) ⊆ Add(RU) ∩ Prod(RU) and

Add(RU) ⊆ Pres(RU) ⊆ Gen(RU) ⊆ σ[RU ];
add(RU) ⊆ pres(RU) ⊆ gen(RU) ⊆ σf [RU ];
Prod(RU) ⊆ Copres(RU) ⊆ Cogen(RU) ⊆ π[RU ];
prod(RU) ⊆ copres(RU) ⊆ cogen(RU) ⊆ πf [RU ];

10in the sense of Fuller [Ful:1974]
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Tilting Theory:

• For n ≥ 011, we set

RST ARn := {RU | U is an n-star R-module}
RST AR := {RU | U is an n-star R-module for some n ∈ N};

RST ARs.s.
n := {RU | U is a self-small n-star R-module}

RST ARs.s. := {RU | U is a self-small n-star R-module for some n ∈ N}

RQ-T ILT n := {RT | T is n-quasi-tilting}
RQ-T ILT := {RT | T is n-quasi-tilting for some n ∈ N};

RSELF -T ILT n := {RT | T is n-self-tilting}
RSELF -T ILT := {RT | T is n-self-tilting };

for some n ∈ N
RT ILT n := {RT | T is n-tilting}
RT ILT := {RT | T is n-tilting for some n ∈ N};

RC-T ILT n := {RT | T is classical n-tilting}
RC-T ILT := {RT | T is classical n-tilting for some n ∈ N}

11If n is dropped, then n is an arbitrary non-negative integer.
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Abstract

Tilting (cotilting) modules were introduced by S. Brenner and M. Butler
[BB:1980] as a natural generalization of progenerators (injective cogenera-
tors). Since then, “Tilting (Cotilting) Theory” is attracting the attention
of many researchers in different aspects of mathematics, including mainly
“Representation Theory” of (finite dimensional, Artin) algebras, “Categories
of Modules” and “Commutative Algebra”.

This technical report includes a survey of the main results known on the
structure of tilting (cotilting) modules, and some of their generalizations,
over commutative rings. We studied intensively these results and presented
some of them in several interactive talks at the “Commutative Algebra Weekly
Seminar” (KFUPM) during the period December 2004 - June 2006.

At the end of the report we include a number of open problems concerning
the structure of tilting (cotilting) modules over commutative rings. Some of
these problems were formulated by us after careful investigation and intensive
literature review, while the others were suggested by experts in “Tilting
(Cotilting) Theory” or were highlighted in the literature.

2000 Mathematics Subject Classification:

13C05: Theory of modules and ideals - Structure, classification theorems
13D07: Homological functors on modules
13F05: Dedekind, Prüfer and Krull rings and their generalizations
13F30: Valuation rings

16D50: Injective modules, self-injective rings
16D90: Module categories
16E10: Homological dimension
16E65: Homological conditions on rings

Keywords: Morita Equivalence, Morita Duality, Tilting Modules, Cotilt-
ing Modules, Star Modules, Progenerators, Quasi-Progenerators, Injective
Cogenerators, Divisible Modules, Torsion Theories, Cotorsion Pairs, Homo-
logical Dimensions, Ext-(bi)functor, Tor-(bi)functor, (Iwangsawa-)Gorenstein
Rings, Prüfer Domains, Dedekind Domains, Valuation Domains, Matlis Do-
mains, Krull Domains
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Introduction

In [Mor:1958], K. Morita presented the first major results on equivalences
and dualities between categories of modules for a pair of rings R and S.

A left R-module RP is said to be a progenerator, iff RP is finitely
generated, projective and a generator. A bimodule RPS induces a Morita
equivalence between the categories of modules RM and SM if and only if RP
is a progenerator and S ' End(RP )op (equivalently, MS is a progenerator
and R ' End(MS)); and such an equivalence is induced by the covariant
functors HomR(P,−) : RM→ SM and P ⊗S − : SM→ RM.

On the other hand, a bimodule RUS induces a Morita duality between
suitable full subcategories of RM and MS if and only if RUS is faithfully
balanced and RU, US are injective cogenerators; and such a duality is
obtained by restrictions of the contravariant functors HomR(−, U) : RM →
MS and HomS(−, U) : MS → RM. For details, the reader is referred to
[AF:1974] and [CF:2004].

The definitions of tilting (cotilting) modules of arbitrary finite projective
(injective) dimension, that we adopt, are due to L. Angeleri-Hügel and F.U.
Coelho [AC:2001]. As clarified by S. Bazzoni [Baz:2004(b)], an n-tilting (n-
cotilting) module (for 1 ≤ n <∞) can be defined briefly as an R-module U
for which Genn(U) = U⊥∞ (Cogenn(U) = ⊥∞U), where Genn(U) is the class
of U-n-generated12 R-modules (Cogenn(U) is the class of U -n-cogenerated13

R-modules) and

U⊥∞ :=
∞⋂
i=1

Ker(ExtiR(U,−)) (⊥∞U :=
∞⋂
i=1

Ker(TorRi (−, U))).

12i.e. of U -codominant dimension ≥ n
13i.e. of U -dominant dimension ≥ n

3



As mentioned above, Tilting theory is a generalization of Morita theory
on equivalences between module categories. In fact, every progenerator RP
is tilting and every tilting module RT satisfying suitable finiteness condi-
tions induces an equivalence between suitable full subcategories of RM and

End(RT )opM as shown by the Tilting Theorem [BB:1980] and its generaliza-
tions (e.g. [Miy:1986]).

Moreover, tilting modules play an important role in the representation
theory of (finite dimensional, Artin) algebras (e.g. [Hap:1988], [ASS:2006]).
According to I. Assem et. al. [ASS:2006, Page 184]: one of the main ideas
is that when the representation theory of an algebra A is difficult to study
directly, it may be convenient to replace it with another algebra B and to
reduce a problem on A to a problem on B. To do this we construct a module

AT, called a tilting module, which can be thought of as being close to the
(Morita) progenerators such that, if S := End(AT )op, then the categories
of finitely generated left A-modules and finitely generated left S-modules are
reasonably close to each other (although generally not equivalent).

The first examples of tilting modules were finitely generated over finite
dimensional and Artin algebras (e.g. [BB:1980], [HR:1982]), and were gen-
eralized later to finitely generated tilting modules of projective dimension at
most 1 over arbitrary ground rings (which we call after [GT:2006] classi-
cal 1-tilting modules). However, many interesting examples of infinitely
generated modules (over commutative rings) having the tilting property were
discovered, among which are the Fuchs divisible module ∂ over an arbitrary
integral domain R studied by A. Facchini (e.g. [Fac:1987], [Fac:1988]), the

Bass tilting module B :=
⊕

ht(q)=0

E(R/q)⊕
⊕

ht(p)=1

E(R/p) over a commutative

1-Gorenstein ring R (e.g. [AHT:2006]), and the Abelian group Q⊕Q/Z (e.g.
[GT:2000]).

The definition of (possibly infinitely generated) tilting modules of projec-
tive dimension at most 1 is due to R. Colpi and J. Trlifaj [CT:1995]; on the
other hand, Y. Miyashita introduced in [Miy:1986] strongly finitely presented
tilting modules with arbitrary finite projective dimension. Generalizing both
definitions, arbitrary tilting modules of arbitrary finite projective dimension
were introduced by L. Angeleri-Hügel and F.U. Coelho in [AC:2001]. These
were studied further and characterized using special classes of modules by S.
Bazzoni [Baz:2004(b)].
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One of the first notions that generalized progenerators is that of quasi-
progenerators (introduced by K. Fuller in [Ful:1974]). A left R-module TV
with S := End(RV )op is a said to be a quasi-progenerator, iff RV is finitely
generated, self-projective and self-generator (roughly speaking, iff V is a
progenerator in σ[RV ]). In fact, RV is a quasi-progenerator if and only if

σ[RV ]
HomR(T,−)
≈

T⊗S−
SM.

A notion that generalizes progenerators, quasi-progenerators as well as
classical 1-tilting modules is that of ∗1-modules (introduced by C. Menini and
A. Orsatti in [MO:1989] and named14 in [Col:1990]): a left R-module RV with

S := End(RV )op is said to be a ∗1-module, iff Gen(RV )
HomR(T,−)
≈

T⊗S−
Cogen(dSV )

(where dV := HomR(V, I) and RI is an injective cogenerator). Such modules
are necessarily finitely generated as shown by J. Trlifaj in [Trl1994].

A subclass of ∗1-modules that generalizes tilting modules, similarly as
quasi-progenerators generalize progenerators, is the notion of 1-quasi-tilting
modules introduced by R. Colpi et. al. in [CDT:1997]15. In particular, a self-
small R-module T is said to be 1-quasi-tilting, iff Pres(RT ) = Gen(RT ) ⊆
T⊥1 . Dropping the finiteness condition, R. Wisbauer introduced the (possi-
bly infinitely generated) 1-self-tilting modules16: An R-module TT is 1-self-
tilting, iff

Gen(RT ) = T⊥1

σ[RT ] := {M ∈ σ[RT ] | Ext1
T (T,M) = 0}.

(i.e. roughly speaking, iff T is a tilting object in the category σ[RT ] of T -
subgenerated R-modules). Moreover, he showed that ∗1-modules coincide
with the self-small 1-self-tilting modules.

Another generalization of tilting modules is due to T. Wakamatsu in
[Wak:1988]: an R-module RW (possibly with infinite projective dimension)
is said to be a Wakamatsu tilting module, iff R ' End(WS), where
S := End(RW )op, and RWS is self-orthogonal in the sense that ExtiR(W,W ) =
0 = ExtiS(W,W ) for all i ≥ 1 (see [MR:2004] for more details).

14called originally ∗-modules
15called originally quasi-tilting modules
16called originally self-tilting modules
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In a series of recent papers (e.g. [HHTW:2003], [Wei:2005a], [Wei:2005b])
J. Wei et. al. introduced further generalizations of the notion of tilting
modules by presenting the notions of (not necessarily finitely generated) n-
star modules, for n ≥ 2. For n = 1, the class of (self-small) 1-star modules
coincides with the class of (∗1-modules) 1-self-tilting modules. The relation
between (strongly finitely presented) n-star modules and (classical) n-tilting
modules was also clarified.

Cotilting theory is a generalization of Morita duality in the same sense
that Tilting Theory is a generalization of Morita equivalences between cat-
egories of modules. A central point in cotilting theory was always to ob-
tain a Cotilting Theorem dual to the Brenner-Butler Tilting Theorem. Sev-
eral cotilting theorems were obtained by different authors (e.g. [Col:1989],
[CF:1990], [Ang:2000], [Wis:2002]), using different notions of cotilting mod-
ules (several of which are different from the cotilting modules defined above).

Cotilting modules appeared first as vector space duals of tilting mod-
ules over finite dimensional algebras (e.g. [Hap:1988]). A first attempt to
generalize cotilting modules is due to R. Colby [Col:1989]. In [CDT:1997],
R. Colpi et. al. defined 1-cotilting modules by introducing conditions that
are formally dual to those of 1-tilting modules in [CT:1995]. Generalizing
several previous definitions, L. Angeleri-Hügel and F.U. Coelho introduced
in [AC:2001] cotilting modules of arbitrary finite injective dimension were
defined by dualizing the conditions that define tilting modules of arbitrary
finite projective dimension. These were studied further by S. Bazzoni in
several papers (e.g. [Baz:2004(a)], [Baz:2004(b)]).

It should be noticed that, although the conditions defining cotilting mod-
ules are formal dual of those defining tilting modules, a major difference
between them is that “all tilting modules are of finite type” (as proved re-
cently by S. Bazzoni and J. Štoviček in [BS]), while not all cotilting modules
are of cofinite type as indicated by S. Bazzoni in [Baz]. However, an inter-
esting property of cotilting modules is that they are pure-injective as shown
recently by J. Štoviček [Sto:2006].

Although there is a wide literature on tilting (cotilting) modules since
their appearance more than 25 years ago, their structure is still not well
understood in most cases. This surprising fact becomes more clear, if one
considers infinitely generated tilting (cotilting) modules.
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For instance, restricting to modules over commutative integral domains a
complete description for the structure of infinitely generated tilting (cotilting)
modules is known only for Prüfer (Dedekind) domains, as characterized by L.
Salce [Sal:2005] (S. Bazzoni [Baz]). Indeed, several partial results are known
over other domains.17

The characterization of tilting (cotilting) modules over integral domains
found its real start almost at the beginning of the current century, when R.
Göbel and J. Trlifaj completed in [GT:2000] the characterization of tilting
(cotilting) Abelian groups. This work was continued by J. Trlifaj et. al.
(e.g. [TW:2002], [TW:2003], [BET:2005]), who characterized tilting (cotilt-
ing) modules over arbitrary Dedekind domains. Tilting modules over valu-
ation domains were studied by L. Salce in [Sal:2004] and a complete char-
acterization (removing previous set theoretic assumptions in [Sal:2005]) are
included in [GT:2006]. A characterization of cotilting modules of cofinite type
over Prüfer domains, e.g. strongly discrete valuation domains, is obtained
by S. Bazzoni [Baz]. Elegant versions of the -so far- obtained characteriza-
tions of tilting (cotilting) modules over the above mentioned special classes
of integral domains are included in the recent monograph [GT:2006].

So, a main open problem in “Tilting (Cotilting) Theory” is to

determine the structure of tilting (cotilting) modules over
special classes of commutative non Prüfer integral domains.

The main goal of this technical report is to present a survey on the results
that are known -so far- on the structure of tiling (cotilting) modules over
commutative rings. Moreover, we formulate some problems related to the
main open problem highlighted above.

We assume familiarity with the foundations of “Categories of Modules”
(e.g. [AF:1974], [Fai:1981], [Wis:1991]), “Modules over Commutative Rings”
(e.g. [FS:2000], [Mat:2004]), “Homological Algebra” (e.g. [Osb:2000] and
[Rot:1979]) and “Relative Homological Algebra” (e.g. [EJ:2000]). However,
we include several definitions and results that are used in the report in Part
I (Preliminaries). The appendix contains also a “brief introduction” to the
ExtnR(•, •) and TornR(•, •) bifunctors for n ∈ N.

17see also [GT:2006] for more on this issue.
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We don’t provide proofs of the results included in this brief survey. How-
ever, we provide reference(s) to each result (with exception to those that can
be considered nowadays as folklore).

This technical report consists of four main parts:

Part I contains mainly preliminaries on modules over associative and
commutative rings, in addition to a brief introduction to Morita theory on
equivalences (dualities).

Part II is the core of the report and consists of three chapters. In Chapter
4, we include a summary of the basic definitions and results on tilting (cotilt-
ing) modules over arbitrary associative rings that are needed in the sequel.
We also include some of the generalizations of the titling (cotilting) modules,
e.g. star modules, self-tilting modules (finitely cotilting modules). Some of the
“Tilting (Cotilting) Theorems” that are known so far are also included. In
Chapter 5, we restrict our attention to the structure of tilting (cotilting) mod-
ules over commutative rings and integral domains. In particular, we present
results on the structure of tilting (cotilting) modules over Prüfer domains,
elementary divisor domains, commutative 1-Gorenstein rings, Dedekind do-
mains and valuation domains. Chapter 6 contains a brief literature review
of tilting (cotilting) modules along with some historical notes.

Part III is the main goal of the report. It includes a number of open
problems on tilting (cotilting) modules over commutative rings that were
formulated after careful investigation and intensive literature review.

Part IV is an appendix on “(Co)Homology” and contains mainly the
different (equivalent ways) to define ExtnR(•, •)- and TornR(•, •)-bifunctors.

An updated list of references is included at the end of the report. Indeed,
there are many other important and interesting articles on tilting (cotilting)
modules that were not included in this list because the results in such articles
were beyond the scope of this brief survey.
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Part I

Preliminaries
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Chapter 1

Modules over Associative Rings

In what follows, we include some properties of modules over rings defined
using the Hom and the Tensor functors.

Throughout, R denotes an associative ring with 1R 6= 0R. Ideals of R are
assumed to be two-sided (unless otherwise explicitly specified). All modules
are assumed to be unitary.

1.1 Generators (Cogenerators) and Projec-

tives (Injectives)

Definition 1. Let U 6= ∅ be a non-empty class of R-modules and M be an
R-module.

1. The trace of U in M is

Tr(U ,M) :=
∑
{Im(f) | f ∈ HomR(U,M) for some U ∈ U}.

2. The reject of U in M is

Rej(M,U) :=
⋂
{Ker(h) | h ∈ HomR(M,U) for some U ∈ U}.
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Definition 2. Let U 6= ∅ be a non-empty class of R-modules. We say an R-
module M is U -generated (U -cogenerated), iff for any RN (RL) and any
distinct R-linear morphisms f, g : M → N (f, g : L→M), there exists some
U ∈ U and h : U →M (h : M → U) such that f ◦ h 6= g ◦ h (h ◦ f 6= h ◦ g).

Remark 3. Let U 6= ∅ be a non-empty class of R-modules and M be an R-
module. The R-submodule Tr(U ,M) ⊆ M (Rej(M,U) ⊆ M) is the largest
R-submodule of M that is U -generated (the smallest R-submodule of M
such that M/Rej(M,U) is U -cogenerated). In particular, M is U -generated
(U -cogenerated) if and only if Tr(U ,M) = M (Rej(M,U) = 0).

Definition 4. We call an R-module U :

1. self-generator (self-cogenerator), iff U generates all of its submod-
ules (cogenerates all of its factor modules).

2. generator (cogenerator), iff every R-module M is U -generated (U -
cogenerated).

Definition 5. An R-module M is said to be cyclically presented, iff M '
R/(Rr) for some r ∈ R.

Definition 6. An R-module M is κ-generated for some cardinal κ, iff M
admits a spanning set of cardinality κ. In particular, RM is said to be finitely
(countably) generated, iff M admits a finite (countable) spanning set.

Definition 7. Let Y be an R-module. We say an R-module U is
Y -projective , iff for every epimorphism Y

π→ Z → 0 and any R-linear
morphism f : U → Z, there exists an R-linear morphism f̃ : U → Y, such
that π ◦ f̃ = f ;

Y -injective, iff for very monomorphism 0 → X
ι→ Y and any R-linear

morphism g : X → U, there exists an R-linear morphism g̃ : Y → U, such
that g̃ ◦ ι = g;

weakly Y -injective , iff for very monomorphism 0 → X
ι→ Y (N) with

RX finitely generated and any R-linear morphism g : X → U, there exists
an R-linear morphism g̃ : Y (N) → U, such that g̃ ◦ ι = g;

Definition 8. We call an R-module U :

1. quasi-projective (quasi-injective), iff U is U -projective (U -injective);
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2. FP-injective, iff U is weakly R-injective;

3. projective (injective ), iff U is M -projective (M -injective) for every
left R-module M.

Proposition 9. ([Wis:1991, Sections 13, 18]) Let P be a left R-module and
S := End(RP )op. The following are equivalent:

1. RP is a generator;

2. HomR(P,−) : RM → ZM is faithful; i.e. for any left R-modules A,B
the following canonical set mapping is injective:

HomR(P,−) : HomR(A,B)→ Map(HomR(P,A),HomR(P,B));

3. HomR(P,−) reflects zero morphisms in RM;

4. HomR(P,−) reflects epimorphisms in RM;

5. HomR(P,−) reflects exact sequences in RM;

6. for every left R-module M, there exists an index set Λ and an epimor-
phism P (Λ) →M → 0;

7. for every left R-module M we have Tr(P,M) = M.

8. RP generates all finitely generated (cyclic) R-modules;

9. RP generates R;

10. Tr(P,R) = R (i.e. ∗PP = R);

11. there exists {p1, ..., pn} ⊆ P and {ϕ1, ..., ϕn} ⊆ ∗P such that

ϕ1(p1) + ...+ ϕn(pn) = 1R.

12. RR is a direct summand of RP
k for some k ∈ N (i.e. ∃ an R-module

N such that R⊕N = P k);

13. PS is finitely generated, projective and R ' End(PS).
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Corollary 10. Let P be a left R-module and S := End(RP )op. If RP is
a generator, then PS is a direct summand of Sk (i.e. there exists a right
S-module LS, such that P ⊕ L = Sk).

Lemma 11. ([Wis:1991, 18.13. (8)]) Let P be a left R-module, S := End(RP )op

and B := End(PS). If RP is finitely generated and projective, then

1. BP is a finitely generated and projective.

2. PS is a generator.

Definition 12. An R-module U is said to be faithful, iff annR(U) = 0.

Proposition 13. ([Wis:1991, 14.10 (1, ii)]) The following are equivalent for
an R-module U :

1. RU is faithful;

2. U cogenerates R;

3. R ↪→ UΛ for some index set Λ;

4. U cogenerates a generator in RM.

Proposition 14. For an R-module U the following are equivalent:

1. RU is a cogenerator;

2. HomR(−, U) : RM→ ZM is faithful; i.e. for any left R-modules A and
B, the following canonical set mapping is injective:

HomR(−, U) : HomR(A,B)→ Map(HomR(B,U),HomR(A,U));

3. for every left R-module M, there exists an index set Λ and a monomor-
phism 0→M → UΛ;

4. for every left R-module M we have Rej(M,U) = 0.
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Definition 15. Let U 6= ∅ be a non-empty class of R-modules. We say an
R-module U is
U -projective , iff U is Y -projective for every Y ∈ U ;
projective on U , iff HomR(U,−) respects short exact sequences in U ;
Ext-projective in U , iff Ext1

R(U,U) = 0 (i.e.U ⊆ U⊥1);
U -injective , iff U is Y -injective for every Y ∈ U ;
injective on U , iff HomR(−, U) respects short exact sequences in U ;
Ext-injective in U , iff Ext1

R(U , U) = 0 (i.e. U ⊆ ⊥1U);

Proposition 16. The following are equivalent for a left R-module P :

1. RP is projective;

2. HomR(P,−) : RM → ZM is (right) exact; i.e. for every short exact
sequence of left R-modules

0→ X → Y → Z → 0,

the following sequence of Abelian groups is exact

0→ HomR(P,X)→ HomR(P, Y )→ HomR(P,Z)→ 0;

3. Every short exact sequence of left R-modules

0→ X → Y → P → 0

splits, i.e. Y ' X ⊕ P ;

4. P is a direct summand of a free left R-submodule, i.e. there exists some
index set Λ and an R-module K such that R(Λ) ' K ⊕ P ;

5. there exists a class {fλ, pλ} ∈ ∗P × P, such that every p ∈ P can be
written (not necessarily uniquely) as

p =
n∑
i=1

fλi
(p)pλi

({λ1,...,λn} ⊂ Λ).

Proposition 17. For a left R-module U the following are equivalent:

1. RU is injective;
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2. HomR(−, U) : RM → ZM is (right) exact; i.e. for every short exact
sequence of left R-modules

0→ X → Y → Z → 0,

the following sequence of Abelian groups is exact

0→ HomR(Z,U)→ HomR(Y, U)→ HomR(X,U)→ 0;

3. Every short exact sequence of left R-modules

0→ U → Y → Z → 0

splits, i.e. Y ' U ⊕ Z.

Definition 18. A short exact sequence of left R-modules

0→ X
ι→ Y

π→ Z → 0 (1.1)

is said to be pure-exact (or that X ⊆ Y is a pure submodule), iff for
every right R-module M the following sequence of Abelian groups is exact

0→M ⊗R X →M ⊗R Y →M ⊗R Z → 0.

Definition 19. An R-module U is said to be
pure-projective, iff for all pure-exact sequences of the form (1.1), for

every R-linear morphism f : U → Z there exists an R-linear morphism
f̃ : U → Y such that f = π ◦ f̃ ;

pure-injective, iff for all pure-exact sequences of the form (1.1), every
R-linear morphism g : X → U can be extended to an R-linear morphism
g̃ : Y → U such that g = g̃ ◦ ι.

Definition 20. Let k ≥ 1. We say an R-module U is

k-
∑

-quasi-projective, iff for any short exact sequence of R-modules

0→ K → U ′ → N → 0 (1.2)

with U ′ ∈ Add(U) and K ∈ Genk−1(U), the following induced sequence is
exact

0→ HomR(U,K)→ HomR(U,L)→ HomR(U,N)→ 0; (1.3)

strictly k-
∑

-quasi-projective , iff for any short exact sequence of

R-modules of the form (1.2) with U ′ ∈ Add(RU) and N ∈ Genk−1(U), the
induced sequence (1.3) is exact if and only if K ∈ Genk−1(U).
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After R. Colpi in [Col:1990], we present

Definition 21. We call and R-module U :
(strictly) w-

∑
-quasi-projective, iff RU is (strictly) 2-

∑
-quasi-projective;

(strictly)
∑

-quasi-projective , iff RU is (strictly) 1-
∑

-quasi-projective.

Definition 22. An R-module U is called w-
∏

-quasi-injective, iff the con-

travariant functor HomR(−, U) respects exactness of short exact sequences
of the form

0→ X → UΛ → Z → 0 (where Z ∈ Cogen(U), Λ any index set).

23. We call anR-module U locally projective (in the sense of B. Zimmermann-
Huisgen [Z-H:1976]), iff for every diagram of R-modules

0 // F

g′◦ι ��

ι // U
g

  @
@@

@@
@@

g′

��
L π

// N // 0

with exact rows and finitely generated R-submodule F ⊆ U : for every R-
linear morphism g : U → N, there exists an R-linear morphism g′ : U → L,
such that the entstanding parallelogram is commutative (i.e. g◦ι = π◦g′◦ι).

Definition 24. Let M,N be R-modules. An R-linear morphism ϕ : M → N
is said to be

n-splitting, iff for each subset F ⊆ M with |F | = n, there exists some
ψ ∈ HomR(N,M) such that F (1− ϕψ)ϕ = 0;

splitting, iff ϕ is n-splitting for every n ∈ N.

Notation. Let U be a left R-module, S := End(RU)op and consider for every
f ∈ ∗U the R-linear morphism

φf : U → S, u 7→ f(−)u.

We consider also the two ideals

∇U :=
∑
f∈ ∗U

Im(f) C R and ∆U :=
∑
f∈ ∗U

Im(φf ). (1.4)
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Proofs of the following characterizations of locally projective R-modules
can be found in [Abu:2005], [Z-H:1976] and [GT:2006]:

Proposition 25. The following are equivalent for a left R-module RU :

1. RU is locally projective;

2. RU satisfies the α-condition, i.e. for every right R-module M the fol-
lowing canonical map is injective

αUM : M ⊗R U → HomR(∗U,M), m⊗R u 7→ [f 7→ mf(u)];

3. αUM is injective for every cyclic right R-module M ;

4. Any R-linear morphism ϕ : M → U is finitely splitting;

5. RU has a local dual basis (in the sense that For any finite subset
E = {u1, ..., un} ⊆ U, there exists {ϕ1, ..., ϕn} ⊆ ∗U such that e =∑n

k=1
ϕk(e)uk for every e ∈ E);

6. For any u ∈ U, there exists {u1, ..., un} ⊆ U and {ϕ1, ..., ϕn} ⊆ ∗U,

such that u =
∑n

k=1
ϕk(u)uk;

7. U = ∇UU, and S/∆ is flat as a left S-module;

8. U = ∇UU, and US is a generator in σ[US].

Remark 26. A modules U satisfying the equivalent conditions of Proposition
25 were studied by several authors under several names (e.g. universally
torsionless (UTL) in [Gar1967], trace modules in [BO1972, BO1972] and
modules plats et strictement de Mittag-Leffler in [GR1971].

Definition 27. An R-module U is said to be
torsion-less, iff U is R-cogenerated (i.e. U ↪→ RΛ for some index set

Λ);
freely separable, iff every finitely generated R-submodule K ≤R U can

be embedded in a free direct summand of U ;
projectively separable, iff every finitely generated R-submodule K ≤R

U can be embedded in a projective direct summand of U ;
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Remark 28. ([Abu:2005], [GT:2006, Proposition 1.3.12.]) Every locally pro-
jective R-module is flat, R-cogenerated (i.e. torsion-less) and moreover iso-
morphic to a pure R-submodule of RΛ for some index set Λ.

Proposition 29. Let R be a PID and U and R-module. The following are
equivalent:

1. RU is locally projective;

2. RU is freely separable;

3. every pure R-submodule L <R U or finite rank is a free direct summand
(i.e. L <⊕R U);

4. RU is a pure R-submodule of RΛ for some index set Λ.

Finiteness Conditions

In what follows, we consider various finiteness conditions for modules
over arbitrary rings.

Lemma 30. The following are equivalent for a left R-module RU :

1. RU is finitely generated;

2. for every class of left R-modules {Uλ}Λ with an epimorphism of R-

modules ϕ :
⊕

Λ

Uλ → U, there exists a finite subset Λ′ := {λ1 , ..., λn} ⊆

Λ, such that the following map is an epimorphism

ϕ ◦ εΛ′ :
n⊕
i=1

Uλi

εΛ′
↪→

⊕
Λ

Uλ
ϕ−→ U.

3. For every class L = {Lλ}λ of right R-modules, the following canonical
map is surjective

ϕU,L : (
∏
Λ

Lλ)⊗R U →
∏
Λ

(Lλ ⊗R U).
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4. For any set Λ, the canonical map ϕU : RΛ ⊗R U → UΛ is surjective.

Lemma 30 motivates the following

Definition 31. An R-module RU is said to be finitely cogenerated, iff

for every monomorphism f : U →
∏

λ∈Λ
Uλ in RM, there exists a finite

subset Λ′ = {λ1, ..., λn} ⊆ Λ such that the following map (with π canonical)
is injective:

f̃ : U
f
↪→

∏
λ∈Λ

Uλ
πΛ′→

n∏
i=1

Uλi

(equivalently, iff for any class {Uλ}λ∈Λ of R-submodules of U with
⋂
λ∈Λ

Uλ = 0,

there exists a finite subset {Uλ1 , ..., Uλn} ⊆ {Uλ}λ∈Λ such that
n⋂
i=1

Uλi
= 0).

Definition 32. An R-module RU is simple, iff U 6= 0 and U has no non-
trivial R-submodules.

Definition 33. We define the socle of an R-module V as

Soc(RV ) :=
∑
{U | U ⊆ V is a simple R-submodule}.

We call RV semisimple, iff V = Soc(RV ) (equivalently, iff everyR-submodule
U ≤R V is a direct summand).

Definition 34. Let V be an R-module.
An R-submodule U ≤R V is said to be essential1 (written U ≤essR V ),

iff for every non-zero R-submodule 0 6= L ≤R V we have L ∩ U 6= 0;
An R-submodule U ≤R V is said to be superfluous2 (written U � V ),

iff whenever L ≤R V satisfies L+ U = V we have also U = V.

Proposition 35. ([Wis:1991, 21.3.])

1. An R-module U is finitely cogenerated if and only if Soc(U) is finitely
generated and essential in U.

1called also large submodule (e.g. [Wis:1991])
2called also small submodule (e.g. [Wis:1991])
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2. Every finitely cogenerated R-module is a (finite) direct sum of inde-
composable R-modules.

Definition 36. A left R-module RU is called finitely presented, iff RU is
finitely generated and for every short exact sequence of R-modules

0→ X → Y → U → 0

with RY finitely generated, the left R-module RX is also finitely generated.

Proposition 37. ([Wis:1991, 25.4.]) The following are equivalent for a left
R-module RU :

1. RU is finitely presented;

2. There exists a short exact sequence

0→ K → Rn → U → 0

with RK finitely generated;

3. There exists an exact sequence

Rm → Rn → U → 0.

4. HomR(U,−) preserves direct limits;

5. U ⊗R − preserves direct products, i.e. for every class right R-modules
L = {Lλ}Λ, we have a canonical isomorphism

(
∏
Λ

Lλ)⊗R U
ϕU,L'

∏
Λ

(Lλ ⊗R U).

6. We have a canonical isomorphism RΛ ⊗R U
ϕU' UΛ.

Definition 38. A left R-module RU is coherent, iff RU is finitely generated
and every finitely generated R-submodule L ≤R U is finitely presented.

Remark 39. For every class {Mλ}λ∈Λ of R-modules, there is a canonical
monomorphism

ψ :
⊕
λ∈Λ

HomR(U,Mλ) ↪→ HomR(U,
⊕
λ∈Λ

Mλ), (fλ)Λ 7→ [u 7→ (fλ(u))Λ].
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Definition 40. An R-module U is called
small, iff HomR(U,−) respects direct sums, i.e. for every class {Mλ}λ∈Λ

of R-modules, the following canonical map is an isomorphism⊕
λ∈Λ

HomR(U,Mλ)
ψ
' HomR(U,

⊕
λ∈Λ

Mλ);

self-small, iff for every index set Λ we have

HomR(U,U (Λ)) ' EndR(U)(Λ).

Lemma 41. ([Zem:2005, Lemma 1.1.]) The following are equivalent for an
R-module U :

1. U is a small R-module;

2. If U =
∞⋃
k=1

Uk for an increasing chain of R-submodules

U1 ≤ U2 ≤ ... ≤ Uk ≤ Uk+1 ≤ ...,

then there exists some n ∈ N, with U = Un.

3. If U =
∞∑
k=1

Uk for a system of R-submodules Uk ≤ U, then there exists

some n ∈ N, with U =
n∑
k=1

Uk.

Notation. With s
RM ⊆ RM (Ms

R ⊆ MR) we denote the full subcategory of
small left (right) R-submodules.

Proposition 42. ([CT:1994, Corollary 1.2.]) The class s
RM is closed under

taking quotients and extensions.

Remarks 43. The following should be remarked concerning small R-modules.

1. Small modules were introduced first by H. Bass in [Bas:1968], and are
known in the literature under several names (e.g. dually slender mod-

ules , (
∑

-)compact modules
∑

-modules, modules of type
∑

: see

[Zem:2005] for more details).
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2. The notion of small modules we use is different from that of small
submodules, which we call here superfluous (e.g. [Wis:1991, 19.1.]).

3. Every finitely generated R-modules is small (e.g. [Wis:1991, 13.9., 2
(ii)]), while the converse is not true (R. Rentschler gave in [Ren:1996]
an example of an infinitely generated small module).

4. A projective R-module is small if and only if it is finitely generated.

5. In general, sRM is not closed under taking submodules.
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Chain Conditions

Definition 44. An R-module U is called
Noetherian, iff every ascending chain of R-submodules of U is station-

ary, i.e. for any non-decreasing chain of R-submodules

U1 ≤R U2 ≤R ... ≤R Uk ≤R Uk+1 ≤R ...,

there exists some n ∈ N such that Un = Un+i for all i ≥ 1.
Artinian, iff every descending chain of R-submodules of U is stationary,

i.e. for any non-decreasing chain of R-submodules

U1 ≥R U2 ≥R ... ≥R Uk ≥R Uk+1 ≥R ...,

there exists some n ∈ N such that Un = Un+i for all i ≥ 1.

Proposition 45. ([Wis:1991, 27.1., 31.1.]) Let U be an R-module.

1. U is Noetherian if and only if every R-submodule of U is finitely gen-
erated.

2. U is Artinian if and only if every factor R-module of M is finitely
cogenerated.

Proposition 46. ([CT:1994, Proposition 1.3.]) An R-module U is Noethe-
rian if and only if each (essential) R-submodule of U is small.
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1.2 Torsion Theories

Definition 47. A non-empty class U of R-modules is said to be closed
under extensions, iff for every short exact sequence of R-modules

0→ X → Y → Z → 0 (1.5)

with X,Z ∈ U also Y ∈ U .

Definition 48. A non-empty class U 6= ∅ of R-modules is said to be

pretorsion, iff U is closed under epimorphic images and direct sums;

torsion, iff U is closed under epimorphic images, direct sums and exten-
sions;

pretorsion-free, iff U is closed under submodules and direct products;

torsion-free, iff U is closed under submodules, direct products and ex-
tensions;

hereditary, iff U is closed under submodules.

Definition 49. A pair (T,F) of non-empty classes of R-modules is called a
torsion theory, iff

1. We have

T := {RT | HomR(T, F ) = 0 for all F ∈ F};
F := {RF | HomR(T, F ) = 0 for all T ∈ T}.

2. For every RM there exists an R-submodule L <R M such that

L ∈ T and M/L ∈ F. (1.6)

In case L in (1.6) is unique, it is called the torsion-submodule of M
w.r.t. (T,F).
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Subgenerators

Definition 50. A subcategory G of the category of R-modules is said to be
closed, iff G is closed under submodules, quotients and arbitrary direct

sums (equivalently, iff G is a hereditary pretorsion class);
finitely closed, iff G is closed under submodules, quotients and finite

direct sums.

Notation. For every non-empty class U 6= ∅ of left R-modules, set

U := the smallest closed subcategory of RM containing U ;

Uf := the smallest finitely closed subcategory of RM containing U .

51. Let U be a left R-module. A left R-module RN is said to be U-
subgenerated, iff N is a submodule of a U -generated R-module. With
σ[RU ] ⊆ RM we denote the full subcategory of R-modules subgenerated by

RU. We call a left R-module RU a subgenerator (called also a cofaithful
module), iff σ[RU ] = RM.

Proposition 52. The category σ[RU ] is the smallest closed subcategory of

RM containing RU (i.e. σ[RU ] = Gen(RU)).

Weak Subgenerators

53. For an R-module U consider the category

π[RU ] := {M/L |M ∈ Cogen(RU) and L ≤R M}.

We call RU a weak subgenerator, iff π[RU ] = RM.

Proposition 54. ([Wis:2002, 1.10.])

1. For any left R-module U, we have π[RU ] = R/annR(C)M.

2. RU is a weak subgenerator if and only if RU is faithful.

3. If RR is finitely cogenerated, then π[RU ] = σ[RU ] for every left R-
module RU.
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4. R is left Artinian if and only if, for any left R-module RU, σ[RU ] =
π[RU ].

Lemma 55. ([Wis:1991, Exercise 16.12. (4)]) For a self injective left R-
module RU with S := End(RU)op we have

σ[RU ] = R/AnnR(U)M⇔MS is finitely generated.

Lemma 56. The following are equivalent for a left R-module RU with S :=
End(RU)op :

1. US is flat;

2. for every R-linear morphism f : Un → Uk (where n, k ∈ N), we have
Ker(f) ∈ Gen(RU);

3. or every R-linear morphism f : Un → U (where n ∈ N), we have
Ker(f) ∈ Gen(RU).

Proposition 57. ([Wis:1991, 15.4.]) Let RU be a left R-module, R :=
R/annR(U) and S := End(RU)op.

1. If US is finitely generated, then σ[RU ] = RM;

2. If R is commutative and RU is finitely generated, then σ[RU ] = RM.

The following results characterizes the subgenerators in the category of
R-module and plays an important role in the sequel:

Lemma 58. ([Col:1990, Proposition 4.5.], [Wis:1991, 15.3.], [Wis:2000, 2.3.])
The following are equivalent for a left R-module RU :

1. σ[RU ] = RM (i.e. RU is a subgenerator, or cofaithful);

2. R ↪→ Uk for some k ∈ N;

3. {L | L <R U
(N) is a cyclic R-module} is a set of generators in RM;

4. RU generates E(RR) (the injective envelope of RR);

5. RU generates all injective R-modules.
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Lemma 59. ([Col:1990, Proposition 4.5.], [Wis:1991, 15.3., 15.4.], [Wis:2000,
2.3.]) Let RU be a left R-module and S := End(RU)op. Then σ[RU ] = RM, if
(for example) RU is faithful and any of the following conditions holds:

1. US is finitely generated (equivalently, Gen(RU) is closed under direct
products);

2. σ[RU ] is closed under direct products;

3. R is commutative and RU is finitely generated;

4. RR is finitely cogenerated (e.g. R is left Artinian).

Properties of Gen(RU)

Lemma 60. ([CF:2004, Chapter 1]) Let RU be a left R-module and S :=
End(RU)op.

1. Gen(RU) is closed under epimorphic images and direct sums (i.e. a
pretorsion class).

2. If Gen(RU) ⊆ U⊥1 , then Gen(RU) is closed under extensions (whence
a torsion class);

3. If Gen(RU) is closed under submodules (i.e. Gen(RU) = σ[RU ]), then
US is flat.

4. Gen(RU) is closed under direct products if and only if US is finitely
generated.

Definition 61. AnR-module U is said to be product complete, iff Add(RU)
is closed under arbitrary direct sums.

Proposition 62. ([KS:1998]) Let RU be a finitely generated left R-module.
Then RU is product complete if and only if S := End(RU)op is right coherent,
left perfect and US is finitely presented.
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1.3 Special classes of Associative Rings

For the convention of the reader, we include in what follows the defini-
tions and some of the main results on special classes of associative rings that
are used in this report.

Finiteness Conditions

Definition 63. The ring R is called
left (right) coherent, iff RR (RR) is coherent; and coherent, iff R is

left and right coherent.
strongly left (right) coherent, iff the right (left) R-module RR is

locally projective; and strongly coherent, iff R is left and right strongly co-
herent.

Proposition 64. The following are equivalent for the ring R :

1. R is left coherent;

2. every finitely presented R-module is coherent;

3. for every r ∈ R the annihilator annR(r) is finitely generated, and the
intersection of a (cyclic) finitely generated left ideal with a finitely gen-
erated left ideal is also finitely generated;

4. every product of flat right R-modules is flat;

5. for every set Λ, the right R-module RΛ
R is flat.

Proposition 65. ([GT:2006, Theorem 1.3.15.]) The following are equivalent
for the ring R :

1. R is strongly left coherent;

2. any product of locally projective right R-modules is locally projective;

3. all left R-ideals of the form mM∗, where m ∈MR, are finitely generated.

Lemma 66. ([Wis:1991, Exercise 17.15. (12)])
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1. The following assertions are equivalent for the ring R :

(a) RR is finitely cogenerated;

(b) every cogenerator in RM is a subgenerator;

(c) every faithful left R-module is a subgenerator.

2. RR is injective if and only if every subgenerator in RM is a generator.

Chain Conditions

Definition 67. The ring R is called
left (right) Noetherian, iff RR (RR) is Noetherian; and Noetherian,

iff R is left and right Noetherian.
left (right) Artinian, iff RR (RR) is Artinian; and Artinian, iff R is

left and right Artinian.

Definition 68. The ring R is called left (right) steady, iff every small left
(right) R-module is finitely generated, i.e. s

RM = f.g.
R M (Ms

R = Mf.g.
R ); and

steady, iff R is left and right steady.

Proposition 69. 1. ([CT:1994, Corollaries 1.4., 1.6.]) Every left (right)
Noetherian ring is left (right) steady.

2. Every left (right) perfect ring is left (right) steady.

Proposition 70. ([Zem:2005, Theorem 1.4.], [CT:1994, Proposition 1.3.])
The following are equivalent for the ring R :

1. R is left Noetherian (i.e. every ascending chain of left R-ideals is
stationary);

2. every left ideal of R is finitely generated;

3. every (essential) left ideal of R is small;

4. every finitely generated left R-module is finitely presented;

5. every small left R-module is finitely presented.
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6. f.g.
R M = f.p.

R M = s
RM.

Proposition 71. ([Wis:1991, 31.4., Exercises 17.15 (12), 31.15. (4)], [Wis:2002,
1.10 (4)]) The following are equivalent for the ring R :

1. R is left Artinian;

2. every finitely generated (cyclic) left R-module is finitely cogenerated;

3. R is left Noetherian, Jac(R) is nilpotent and R/Jac(R) is left semisim-
ple;

4. every factor ring of R is left finitely cogenerated;

5. every self-injective left R-module U is finitely generated over End(RU)op;

6. σ[RU ] = π[RU ] (= R/annR(U)M) for every RU.

Corollary 72. If R is left Artinian, then RR is finitely cogenerated.

Definition 73. The ring R is said to be an Artin algebra, iff Z(R) is
Artinian and R is finitely generated a Z(R)-module.

Remark 74. Every Artin algebra is an Artinian ring.

Homological Rings

Definition 75. The ring R is said to be
left (right) hereditary, iff every left (right) ideal I C R is projective;

and hereditary, iff R is left and right hereditary.
left (right) semihereditray, iff every finitely generated left (right) ideal

I C R is projective; and semi-hereditary, iff R is left and right semi-
hereditary.

Definition 76. The ring R is said to be (strongly) von Neumann regu-
lar, iff for every r ∈ R, there exists s ∈ R such that r = rsr (r = r2s).

Proposition 77. ([Wis:1991, 3.10., 37.6.]) The following are equivalent for
the ring R :
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1. R is von Neumann regular;

2. every left (right) principal ideal of R is generated by an idempotent;

3. every left (right) principal ideal is a direct summand of R;

4. every finitely generated left (right) ideal is a direct summand of R.

5. every left (right) R-module is flat;

6. every finitely presented left (right) R-module is projective;

7. every cyclic left (right) R-module is flat.

Proposition 78. ([Wis:1991, 3.11.]) The following are equivalent:

1. R is strongly von Neumann regular;

2. R is von Neumann regular and contains no non-zero nilpotent elements;

3. every left (right) principal ideal is generated by a central idempotent;

4. R is von Neumann regular and every left (right) ideal is a two-sided
ideal.

(Semi-)Perfect Rings

Definition 79. Two idempotents e, e′ ∈ R are said to be orthogonal, iff
ee′ = 0.

Definition 80. An idempotent e ∈ R is said to be
local, iff eRe is a local ring;
primitive, iff for each pair e1, e2 of orthogonal idempotents

e = e1 + e2 ⇒ e1 = 0 or e2 = 0.

Definition 81. ([Wis:1991, 42.6.]) The ring R is said to be semiperfect, iff
there exists a set of local orthogonal idempotents {e1, ..., ek} such that

R = Re1 ⊕ ...⊕Rek.
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Definition 82. Let R be semiperfect. A left R-module M is said to be
primitive, iff M ' Re for some primitive idempotent e ∈ R.

Definition 83. A pairwise orthogonal set {e1, ..., em} of idempotents in R is
said to be

complete, iff 1R = e1 + ...+ em;
basic, iff {Re1, ..., Rem} is a complete irredundant set of representatives

of the primitive left R-modules.

Definition 84. An idempotent e ∈ R is said to be basic, iff there exists a
basic set {e1, ..., em} of primitive idempotents of R such that

e = e1 + ...+ em.

Definition 85. A ring S is said to be a basic ring for the ring R, iff
S ' eRe for some basic idempotent e ∈ R.

Remark 86. Let R be semiperfect. Then R has a basic idempotent e and a
basic ring S ' eRe for R exists, which is unique up to isomorphism.

Proposition 87. ([AF:1974, Proposition 27.4.]) A semiperfect ring R with
basic idempotent e is Morita equivalent3 to its basic ring eRe. Moreover, two
semiperfect rings R, R̃ with basic idempotents e, ẽ, respectively, are Morita
equivalent if and only if their basic rings eRe and ẽR̃ẽ are Morita equivalent.

Definition 88. The ring R is said to be left (right) perfect, iff R satisfying
the descending chain condition on its principal right (left) ideals; and perfect,
iff R is left and right perfect.

Proposition 89. ([Wis:1991, 43.9.], [Fai1976, Theorem 22.29]) The following
are equivalent for the ring R :

1. R is a left (right) perfect ring;

2. the descending chain condition on the principal right (left) ideals of R
holds;

3. the descending chain condition on the finitely generated right (left) ide-
als of R holds;

3in the sense of 108
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4. the ascending chain condition for finitely generated left (right) R-modules
holds;

5. the ascending chain condition for cyclic left (right) R-modules holds;

6. every flat left (right) R-module is projective.

(Quasi-)Frobenius Rings

Definition 90. The ring R is called
left (right) pseudo-Frobenius, iff every faithful left (right) R-module

is a generator in RM; and pseudo Frobenius, iff R is left and right Pseudo-
Frobenius;

left (right) finitely pseudo-Frobenius ring, iff every faithful finitely
generated left (right) R-module is a generator in RM; and finitely pseudo-
Frobenius, iff R is left and right finitely pseudo-Frobenius.

Theorem 91. ([Wis:1991, 48.12.]) The following are equivalent:

1. R is left Pseudo-Frobenius;

2. every cogenerator in RM is a generator;

3. RR is injective and finitely cogenerated;

4. RR is injective, semiperfect and Soc(RR) ≤essR R;

5. RR is a cogenerator and there are only finitely many non-isomorphic
simple modules in RM;

6. RR is a cogenerator in RM and RR cogenerates all simple right R-
modules;

7. RR is an injective cogenerator.

Definition 92. A ring R is said to be quasi-Frobenius, or a QF ring, iff

RR (RR) is Noetherian and injective.

Theorem 93. ([Wis:1991, 48.12.]) The following are equivalent:

34



1. R is a QF ring, i.e. RR (RR) is Noetherian and injective;

2. RR (RR) is Noetherian and a cogenerator;

3. RR is a cogenerator and RR is Noetherian;

4. RR is cogenerator and RR is Noetherian;

5. RR is a cogenerator and RR is Artinian;

6. RR is cogenerator and RR is Artinian;

7. RR (RR) is Artinian and a cogenerator;

8. RR (RR) is Artinian, and injective envelopes of simple left (right) R-
modules are projective;

9. every injective left (right) R-module is projective;

10. every projective left (right) R-module is injective;

11. R(N) is an injective cogenerator in RM (in MR);

12. R is left (right) perfect and every FP-injective left (right) R-module is
flat.

Gorenstein Rings

Definition 94. The ring R is called an (Iwangsawa-)Gorenstein ring, iff
R is left and right Noetherian and the left and the right injective dimensions
of R are finite. In this case inj.dim.(RR) = n = inj.dim.(RR) for some n <∞,
and R is called n-Gorenstein.

Example 95. The class of 0-Gorenstein rings coincides with the class of QF-
rings.

Lemma 96. ([EJ:2000, §9]) Let R be an n-Gorenstein ring. Then

RP = RPn = RI = RIn = RF = RFn.
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Definition 97. An R-module RM over an arbitrary ring R is said to be
Gorenstein-injective, iff M = Ker(f) for some long exact sequence

...→ E1 → E0
f→ E0 → E1 → ...,

of injective left R-modules that stays exact under HomR(E,−) for any injec-
tive left R-module E;

Gorenstein-projective, iff M = Ker(g) for some long exact sequence

...→ P1 → P0
g→ P 0 → P 1 → ...,

of projective left R-modules that stays exact under HomR(−, P ) for any
projective left R-module P ;

Gorenstein-flat, iff M = Ker(f) for some long exact sequence

...→ F1 → F0
f→ F 0 → F 1 → ...,

of flat left R-modules that stays exact under F ⊗R − for any injective right
R-module F.

Notation. For the ring R we set

GI(R) := {RM |M is Gorenstein-injective};
GP(R) := {RM |M is Gorenstein-projective};
GF(R) := {RM |M is Gorenstein-flat}.

Proposition 98. ([EJ:2000, 10.1.2., 10.2.3., 10.3.4.])

1. If RM is Gorenstein-injective, then RM is injective or inj.dim.(RM) =
∞;

2. If RM is Gorenstein-projective, then RM is projective or proj.dim.(RM) =
∞;

3. If RM is Gorenstein-flat, then RM is flat or flat.dim.(RM) =∞.
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Chapter 2

An Introduction to Morita
Theory

99. Two arbitrary categories C and D are said to be equivalent (and we
write C ≈ D), iff there exists a covariant functor F : C → D and a (necessarily
covariant) functor G : D → C with natural isomorphisms

G ◦ F ' idC and F ◦G ' idD.

2.1 (Ad)Static Modules

100. For rings R,S and a bimodule RPS we consider the covariant functors

HomR(P,−) : RM → SM; P ⊗S − : SM → RM.

For every RM and SN we have the canonical morphisms

νM : P ⊗S HomR(P,M) → M, p⊗S f 7→ f(p);
ηN : N → HomR(P, P ⊗S N), n 7→ [p 7→ p⊗S n].

We say RM (SN) is P -static (P -adstatic), iff P ⊗S HomR(P,M)
νM' M

(N
ηN' HomR(P, P ⊗S N)). Moreover, we set

Statl(RPS) := {RM | P ⊗S HomR(P,M)
νM' M};

Adstatl(RPS) := {SN | N
ηN' HomR(P, P ⊗S N)}.

In case S := EndR(P )op, we set:

Stat(RP ) := Statl(RPEndR(P )op) and Adstat(RP ) := Adstatl(RPEndR(P )op).
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Lemma 101. (Compare [CF:2004, Lemmata 2.1.2., 2.1.3.]) Let R,S be rings
and P an (R,S)-bimodule.

1. RK is P -generated if and only if νK : P ⊗S HomR(P,K) → K is
surjective;

2. P ⊗S N ⊆ Pres(RP ) ⊆ Gen(RP ) for every SN.

3. SL is d
SP -cogenerated if and only if ηL : L → HomR(P, P ⊗S L) is

injective.

4. HomR(P,M) ⊆ Copres(dSP ) ⊆ Cogen(dSP ) for every RM.

Definition 102. Let K be a left R-module.

1. Let M be a right R-module. An R-submodule L ≤R M is called K-
pure, iff the following sequence of Abelian groups is exact

0→ L⊗R K →M ⊗R K →M/L⊗R K → 0;

2. Let M be a left R-module. An R-submodule L ≤R M is called K-
copure , iff the following sequence of Abelian groups is exact

0→ HomR(M/L,K)→ HomR(M,K)→ HomR(L,K)→ 0.

Theorem 103. ([Nau:1990]) For every (R,S)-bimodule RPS, the adjoint pair
of covariant functors (−⊗S,HomR(P,−)) induces an equivalence of subcate-
gories

Statl(RPS) ≈ Adstatl(RPS).

In particular, we have

Stat(RP ) ≈ Adstat(RP ).

Remark 104. Let RPS be an (R,S)-bimodule. By definition, Statl(RPS) ⊆
RM and Adstatl(RPS) ⊆ SM are the largest subcategories, between which the
adjoint pair of covariant functors (−⊗S,HomR(P,−)) induces an equivalence.
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2.2 Morita Equivalences

Definition 105. ([Ful:1974]) An R-module U is called
progenerator, iff RU is finitely generated (small), projective and a gen-

erator;
quasi-progenerator, iff RP is finitely generated, quasi-projective and a

self-generator.

Remarks 106. 1. By [Bas:1968, Cotollary 4.8.], an R-module U is faith-
fully projective (i.e. small, projective and a generator) if and only if

RU is a progenerator.

2. Roughly speaking, an R-module RP is a quasi-progenerator if and only
if P is a progenerator in σ[RP ].

Theorem 107. (Morita) The following are equivalent for rings R and S :

1. RM
F
≈
G

SM;

2. There exists a progenerator RP and S ' End(RP )op.

In this case, F ' HomR(P,−) and G ' P ⊗S −.

Definition 108. Two rings R and S are said to be Morita equivalent, or
to be similar (and we write R ∼ S), iff RM ≈ SM.

Theorem 109. (e.g. [Fai:1981], [Wis:1991]) For two rings R and S, we have

1. RM ≈ SM⇔MR ≈MS.

2. If R ∼ S, then Z(R) ' Z(S).

3. If R and S are commutative, then R ∼ S if and only if R ' S.

4. For every n ∈ N, we have R ∼ Mn(R).

5. If R ∼ S, then the left (right) global dimensions of R and S are equal.
In particular, for every n ∈ N, the rings R and Mn(R) have equal left
(right) global dimensions.
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Morita Contexts

110. With a Morita semi-context we mean a datum

m = (R,S, P,Q,<,>R),

where R,S are rings, RPS is an (R, S)-bimodule, Q an (S,R)-bimodule and
<,>R: P ⊗SQ→ R is a (R,R)-bilinear morphism. The ideal I := Im(<,>R

) C R is called the trace ideal associated to the Morita semi-context m.

111. With a Morita context we mean a datum

M = (R, S, P,Q,<,>R, <,>S),

where (R,S, P,Q,<,>R), (S,R,Q, P,<,>S) are Morita semi-contexts and
the bilinear morphisms <,>R: P ⊗S Q → R, < −, >S: Q ⊗R P → S are
compatible, in the sense that

< p, q >R p̃ = p < q, p̃ >S & < q, p >S q̃ = q < p, q̃ >R,∀ p, p̃ ∈ P, q, q̃ ∈ Q.
(2.1)

112. Let m = (R,S, P,Q,<,>R), m̃ = (R̃, S̃, P̃ , Q̃, <,>R̃) be Morita semi-
contexts. With a morphism of Morita semi-contexts from m to m′ we
mean a four fold set of maps

(β, γ, φ, ψ) : (R,S, P,Q)→ (R̃, S̃, P̃ , Q̃),

where β : R → R̃ and γ : S → S̃ are morphisms of rings, φ : P → P̃ is
(R,S)-bilinear and ψ : Q→ Q̃ is (S,R)-bilinear, such that

β(< p, q >R) =< φ(p), ψ(q) >R̃ for all p ∈ P, q ∈ Q .

Notice that we consider P̃ as an (R, S)-bimodule and Q̃ as a (S,R)-bimodule
with actions induced by the morphism of rings β and γ.

113. LetM = (R,S, P,Q,<,>R, <,>S), M̃ = (R̃, S̃, P̃ , Q̃, <,>R̃, <,>S̃) be
Morita contexts. Following [Ami:1971, Page 275], we mean by a morphism

of Morita contexts fromM to M̃ a four fold set

(β, γ, φ, ψ) : (R,S, P,Q)→ (R̃, S̃, P̃ , Q̃),
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where β : R → R̃, γ : S → S̃ are ring morphisms, φ : P → P̃ is (R,S)-

bilinear and ψ : Q→ Q̃ is (S,R)-bilinear, such that for all p ∈ P and q ∈ Q
we have

β(< p, q >R) =< φ(p), ψ(q) >R̃ and γ(< q, p >S) =< ψ(q), φ(p) >S̃ .

114. Let (R,S, P,Q,<,>R) be a Morita semi-context and consider the iso-
morphisms of Abelian groups

Hom(R,S)(P,Q
∗)

ζ
' Hom(R,R)(P ⊗S Q,R)

ξ
' Hom(S,R)(Q,

∗ P ).

Then we have the dual pairings P l := (QR, RP ) and P r := (RP,QR), induced
by the canonical morphisms

κPl
:= ξ(<,>R) : QR → (∗P )R and κPr := ζ−1(<,>R) : RP → R(Q∗).

On the otherhand, let (S,R,Q, P,<,>S) be a Morita semi-context and con-
sider the isomorphisms of Abelian groups

Hom(R,S)(P,
∗Q)

ζ′

' Hom(S,S)(Q⊗R P, S)
ξ′

' Hom(S,R)(Q,P
∗).

Then we have the dual pairings Pr := (SQ,PS) and P l := (PS, SQ), induced
by the canonical morphisms

κPr := ξ′(<,>S) :S Q→S (P ∗) and κQr := (ζ ′)−1(<,>S) : PS → (∗Q)S.

In what follows we include some of the classical results about gener-
ators and progenerators (e.g. [Fai:1981], [Wis:1991] and [CF:2004]).

Proposition 115. Let R,S be rings and M = (R,S, P,Q,<,>R, <,>S) be
a Morita context.

1. If <,>R: P ⊗S Q→ R is surjective, then:

(a) <,>R is injective (whence P ⊗S Q
<,>R' R);

(b) RP and QR are generators;

(c) PS and SQ are finitely generated and projective;

(d) P ' ∗Q and Q ' P ∗;

(e) We have isomorphisms of rings End(PS) ' R ' End(SQ)op.
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2. If <,>S: Q⊗R P → S is surjective, then:

(a) <,>S is injective, hence Q⊗R P
<,>S' S;

(b) PS and SQ are generators;

(c) RP and QR are finitely generated and projective;

(d) P ' Q∗ and Q ' ∗P ;

(e) We have isomorphisms of rings End(RP )op ' S ' End(QR).

Proposition 116. Let R, S be rings. The following are equivalent for a
Morita context M = (R,S, P,Q,<,>R, <,>S) :

1. The (R,R)-bilinear morphisms <,>R: P ⊗S Q→ R and Q⊗R P → S
are surjective;

2. P ⊗S Q
<,>R' R and Q⊗R P

<,>S' S as bimodules;

3. RP is a progenerator and S ' End(RP )op;

4. RP and PS are generators and S ' End(RP )op;

5. SQ is a progenerator and R ' End(SQ)op;

6. PS is a progenerator and R ' End(PS).

Proposition 117. Let P a left R-module, S := End(RP )op and consider the
bilinear morphisms

[, ]P : P ⊗S ∗P → R and (, )P : ∗P ⊗R P → S.

1. (R,S, P,∗ P, [, ]P , (, )P ) is a Morita context.

2. The following are equivalent:

(a) The canonical (R,R)-bilinear morphism [, ]P : P⊗S ∗P → R is
surjective;

(b) RP is a generator;

(c) PS is finitely generated projective and R ' End(PS).
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In this case, P⊗S ∗P
[,]P' R as (R,R)-bimodules, R ' End(PS) and ∗PR

is a generator.

3. The following are equivalent:

(a) the canonical (S, S)-bilinear morphism (, )P : ∗P ⊗R P → S is
surjective;

(b) RP is finitely generated projective.

In this case, ∗P ⊗R P
(,)P' S as (S, S)-bimodules, S ' End(∗PR) as

rings, and PS is a generator.

4. The following are equivalent:

(a) RP is a progenerator;

(b) RP and PS are generators;

(c) RP and PS are finitely generated projective;

(d) PS is a progenerator and R ' End(PS).

Proposition 118. Let Q be a right R-module, S := End(QR) and consider
the canonical bilinear morphisms

(, )Q : Q∗ ⊗S Q→ R and [, ]Q : Q⊗R Q∗ → S.

1. (R,S,Q∗, Q, (, )Q, [, ]Q) is a Morita context.

2. The following are equivalent:

(a) the canonical (S, S)-bilinear morphism (, )Q : Q∗ ⊗S Q → R is
surjective;

(b) QR is a generator;

(c) SQ is finitely generated projective and R ' End(SQ)op.

In this case, Q∗ ⊗S Q
(,)Q' R as bimodules, R ' End(SQ)op as

rings, and RQ
∗ is a generator.

3. The following are equivalent:

43



(a) the canonical (S, S)-bilinear morphism [, ]Q : Q ⊗R Q∗ → S is
surjective;

(b) QR is finitely generated and projective; in this case Q ⊗R Q∗
[,]Q'

S as (S, S)-bimodules, S ' End(RQ
∗)op as rings, and SQ is a

generator.

4. The following are equivalent:

(a) QR is a progenerator;

(b) QR and SQ are generators;

(c) QR and SQ are finitely generated projective;

(d) SQ is a progenerator and R ' End(SQ)op.
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2.3 Morita Duality

119. Two arbitrary categories C and D are said to be dual (and we write
C � D), iff there exists a contravariant functor F : C → D and a (necessarily
contravariant) functor G : D → C with natural isomorphisms

G ◦ F ' idC and F ◦G ' idD.

Remark 120. It is obvious from the definitions, that for two categories C and
D we have

C � D ⇔ Cop ' Dop.

For no pair of rings R,S is there a duality between the full module categories

RM and MS (or SM), since (RM)op is not equivalent to SM for any ring S.
However, for a pair of rings R and S one is still interested in duality between
suitable subcategories of RM and MS.

121. For rings R,S and an (R,S)-bimodule RUS we consider the functors

H(RU) := HomS(−,HomR(−, U)), RM → RM;
H(US) := HomR(−,HomS(−, U)), MS → MS.

For every RM and NS we have the canonical morphisms

βM : M → HomS(HomR(M,U), U), m 7→ [f 7→ f(m)];
βN : N → HomR(HomS(N,U), U), n 7→ [g 7→ g(n)].

A left R-module RM is called U -torsionless (respectively semi U-reflexive,
U-reflexive ), iff βM is injective (respectively surjective, bijective). Similar
definitions can be given for right S-modules. Set

Ref(RU) := {RM |M
βM' HomS(HomR(M,U), U)};

Ref(US) := {NS | N
βN' HomR(HomS(N,U), U)}.

Proposition 122. Let R,S be rings. For a bimodule RUS, the adjoint pair
of contravariant functors (H(RU),H(US)) induces a duality

Ref(RU) � Ref(US).

45



Theorem 123. (Morita) Let R,S be rings, C ⊆ RM and D ⊆ MS be full
subcategories that are closed under isomorphisms and such that RR ∈ C,
SS ∈ D. If (F,G) is a pair of contravariant functors inducing a duality
C � D, then there exists a bimodule RUS such that

1. RU ' G(S) and US ' F (R);

2. There are natural isomorphisms

F ' HomR(−,R U) and G ' HomS(−, US);

3. C ⊆ Ref(RU) and D ⊆ Ref(US).

Definition 124. An (R,S)-bimodule RUS is said to be faithfully balanced,
iff S ' End(RU)opand R ' End(US).

Definition 125. A bimodule RUS is said to be a Morita bimodule, iff

1. RMS is faithfully balanced;

2. RR ∈ Ref(RU) and SS ∈ Ref(US);

3. Ref(RU) and Ref(US) are closed under submodules and factor mod-
ules.

Theorem 126. For an (R,S)-bimodule RUS the following are equivalent:

1. RUS is a Morita (R,R)-bimodule;

2. Every factor module of RR,SS, RU and US is U-reflexive;

3. RUS is faithfully balanced such that RU and US are injective cogenera-
tors.
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Chapter 3

Modules over Commutative
Rings

Throughout this chapter, R denotes a commutative ring with 1R 6= 0R.
Non-zero divisors of R are said to be regular elements, and we set

R× := R\{0} and Rreg := {r ∈ R | r is a regular element}.

With an R-module U we mean a left R-module, considered as an (R,R)-
bimodule with right action given by

ur := ru for every r ∈ R and u ∈ U.

3.1 Preliminaries

Definition 127. The (classical) total quotient ring of R is

Q(R) := RRreg = {r
s
| r ∈ R and s ∈ Rreg}.

If R is an integral domain, then Q := RR× is a field (called the quotient
field of R).
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Theorem 128. For any integral domain R we have

Q ' E(RR) (the injective envelope of RR).

In particular, RQ is injective and R ≤R Q is an essential R-submodule.

Definition 129. Let R be a commutative ring. Any intermediate ring R ⊆
R̃ ⊆ Q(R) is called an overring of R.

Definition 130. Let M be an R-module. The divisibility set of RM is

DR(M) := {r ∈ R | rM = M}.

Remark 131. For any R-module M, then DR(M) ⊆ R is an admissible mul-
tiplicatively closed set.

Definition 132. Let M be an R-module and ∅ 6= S ⊆ R.

1. The S-divisible submodule of M is

dS(M) :=
⋃
{N ≤R M | sN = N for every s ∈ S}.

2. If S ⊆ R is multiplicatively closed, then the S-torsion submodule of
M is

τS(M) := {m ∈M | ∃ s ∈ S with sm = 0} =
⋃
s∈S

annM(s).

Definition 133. Let ∅ 6= S ⊆ R be a non-empty set. An R-module M is
called S-divisible (S-reduced), iff dS(M) = M (dS(M) = 0);

Definition 134. Let ∅ 6= S ⊆ R be a non-empty multiplicatively closed
set. An R-module M is called S-torsion (S-torsion-free), iff τS(M) = M
(τS(M) = 0).

Notation. Let ∅ 6= S ⊆ R be a non-empty set. We define

DI(S) := {RM |M is S-divisible} and R(S) := {RM |M is S-reduced}.

If S is multiplicatively closed, then we define

T (S) := {RM |M is S-torsion} and T F(S) := {RM |M is S-torsion-free}.
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Definition 135. An R-module M is called divisible (respectively reduced,
torsion, torsion-free), iff M is Rreg-divisible (respectively Rreg-reduced,
Rreg-torsion, Rreg-torsion-free).

Notation. We set

RDI := {RM |M is divisible}; RR := {RM |M is reduced};
RT := {RM |M is torsion}; RT F := {RM |M is torsion-free}.

Definition 136. An R-module M is said to be mixed, iff 0 6= τ(M) $ M
(i.e. M is neither torsion nor torsion-free).

Notation. For an R-module RF we denote with gen(RF ) the minimal car-
dinality of generating sets of F as an R-module.

Definition 137. Let R be an integral domain. The rank of RM is defined
as

rk(RM) := sup{gen(RF ) | F ≤R M is a free R-submodule}.

AnR-moduleM is said to be of finite rank (countable rank), iff rk(RM) <
∞ (rk(RM) ≤ ∞).

Definition 138. Let R be an integral domain. A prime ideal J C R is said
to be branched, iff it is not the union of two prime ideals properly contained
in J ; otherwise, it is called unbranched.

Definition 139. An R-module M is said to be
cotorsion, iff Ext1

R(F,M) = 0 for every flat R-module RF ;
cotorsion-free, iff M has no non-zero cotorsion R-submodules.

Definition 140. Let M be an R-module. An R-submodule L ≤R M is
called tight, iff

proj.dim.(M/L) ≤ proj.dim.(M) (and necessarily then proj.dim.(L) ≤ proj.dim.(M)).
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3.2 Localizing Systems (Gabriel Filters)

Definition 141. Let R be an integral domain with quotient field Q. A
non-empty multiplicatively closed collection of R-ideals S 6= ∅ is called a
generalized multiplicative system of R, and the associated overring

RS :=
⋃
{q ∈ Q | qI ⊆ R for some I ∈ S} =

⋃
I∈S

I−1.

is called the generalized S-transform of R.

Definition 142. Let R be an integral domain. A non-empty set F 6= ∅ of
non-zero ideals of R is called a localizing system (Gabriel filter) of R, iff
the following two conditions are satisfied:

1. if I ∈ F and I ⊆ J C R, then J ∈ F;

2. if I ∈ F and J C R is such that a−1J ∩ R ⊆ I for all 0 6= a ∈ I, then
J ∈ F.

Remark 143. Let R be an integral domain. By [FHP:1997, Proposition
5.1.1.], every localizing system of R is multiplicatively closed (i.e. a gen-
eralized multiplicative system of R). In particular, every localizing system
of R is closed under finite intersections.

Definition 144. A localizing system F of an integral domain R is said to
be finitely generated (principal), iff every ideal I ∈ F contains a finitely
generated (principal) ideal J ∈ F.

Definition 145. Let R be an integral domain and S a generalized multi-
plicative system of R-ideals. An R-module M is said to be

1. S-divisible , iff IM = M for every I ∈ S;

2. hS-divisible , iff M ∈ Gen(RS).

Notation. Let R be an integral domain and F a localizing system of R-ideals.
We set

DI(F) := {RM | IM = M for all I ∈ F};
hF(R) := {RM |M ∈ Gen(RF)};

50



Proposition 146. Let R be an integral domain and F a localizing system of
R.

1. DI(F) is closed under epimorphic images, direct sums and extensions.

2. hF(F) is closed under epimorphic images and direct sums.

3. If RF is flat as an R-module, then hF(R) ⊆ DI(F).

Definition 147. Let R be an integral domain. An R-module M is said to
be I-divisible for some ideal I C R, iff IM = M.

Notation. For an R-module M we set

D(M) := {I C R | IM = M};
D0(M) := {I ∈ D(M) | I contains a finitely generated ideal J ∈ D(M)};
Dp(M) := {I ∈ D(M) | I contains a principal ideal (a) ∈ D(M)}.

Lemma 148. ([Sal:2005, Lemma 1.1.]) Let R be an integral domain and M
an R-module. Then D(M), D0(M) and Dp(M) are localizing systems.

Proposition 149. ([FHP:1997, Proposition 5.1.10. & 5.1.11.]) Let R be an

integral domain and R ⊆ R̃ ⊆ Q be an overring of R.

1. If RR̃ is flat, then D(R̃) is a finitely generated localizing system of R

and R̃ = RD(R̃).

2. The following are equivalent:

(a) RR̃ is flat;

(b) R̃ = RS for some generalized multiplicative system S ⊆ D(R̃);

(c) R̃ = RF for some (finitely generated) localizing system F ⊆ D(R̃).
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3.3 The (Krull) Dimension of Commutative

Rings

Definition 150. Let R be commutative ring. The height of a prime ideal
p C R is defined as

ht(p) := max{n | ∃ a chain of prime ideals p := p0 % ... % pn}.

The (Krull) dimension of R is defined as

dim(R) = sup{ht(p) | p ∈ Spec(R)}.

Definition 151. Let R be a commutative ring and M an R-module. A
prime ideal p ∈ Spec(R) is said to be an associated prime ideal of M,
iff p = annR(m) for some m ∈ M (equivalently, iff M contains a cyclic
R-submodule N := Rm ' R/p).

Notation. Let M be an R-module. We set

Ass(M) := {p ∈ Spec(R) | p = annR(m) for some m ∈M}.
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3.4 (Sub)Generators over Commutative Rings

In what follows, we restate some of the main results on the structure of
modules over commutative rings that will be needed in the sequel.

Proposition 152. ([Wis:1991, 15.4.], [Wis:2000, 2.3.]) Let R be commutative
and U a finitely generated R-module. Then

σ[RU ] = R/annR(U)M.

Moreover, the following are equivalent:

1. RU is faithful;

2. σ[RU ] = RM (i.e. RU is a subgenerator);

3. RU generates E(RR) (the injective envelope of RR);

4. RU generates all injective R-modules;

5. R ↪→ Uk for some k ∈ N;

6. {L | L <R U (N) is a cyclic R-module} is a set of generators in RM.

Theorem 153. ([Wis:1991, 48.12., 48.17.]) The following are equivalent for
a commutative ring R :

1. R is a pseudo-Frobenius ring (i.e. every faithful R-module is a gener-
ator);

2. RR is a cogenerator;

3. RR is an injective cogenerator;

4. RR is injective and finitely cogenerated;

5. RR is a cogenerator and there are only finitely many non-isomorphic
simple modules in RM;

6. every cogenerator in RM is a generator;
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7. RR is injective and finitely cogenerated;

8. RR is injective, semiperfect and Soc(RR) ≤essR R.

Proposition 154. ([FP:1984]) Every self-injective commutative ring is a
finitely pseudo-Frobenius ring.

Proposition 155. ([FP:1984]) For a commutative ring R, the following are
equivalent:

1. R is a finitely pseudo-Frobenius ring (i.e. every finitely generated, faith-
ful R-module is a generator);

2. every finitely generated faithful ideal is projective and R has a classical
ring of quotients Qc(R), which is (self-)injective.

Proposition 156. ([Wis:1991, 37.12. (5)]) For a commutative von-Neumann
regular ring R, the following are equivalent:

1. R is a finitely pseudo-Frobenius ring (i.e. every finitely generated, faith-
ful R-module is a generator);

2. R is self-injective;

3. for every faithful finitely generated R-module N, the trace ideal Tr(N,R)
is finitely generated.

Corollary 157. An integral domain R is finitely pseudo-Frobenius if and
only if R is a Prüfer domain.

Proposition 158. Let R be commutative.

1. If I C R is an ideal and U is an R-module with IU = U, then there
exists r ∈ I such that (1− r)M = 0.

2. If RU is a faithful, then U generates all simple R-modules.

Proposition 159. Let R be commutative. A non-zero projective R-module
P 6= 0 is a generator, if one of the following conditions hold:

1. RP is finitely generated, and R contains no non-trivial idempotents;

54



2. RP is finitely generated and faithful;

3. RP is faithful and R is Noetherian.

Proposition 160. ([Bas:1968, Cotollary 4.8.], [Fai:1981], [Wis:1991, 18.11.])
Let R be a commutative ring. For an R-module P with S := End(RP )op the
following are equivalent:

1. RP is a progenerator (i.e. RP is finitely generated, projective and a
generator);

2. RP is a faithfully projective (i.e. RP is small, projective and a gener-
ator);

3. RP is finitely generated and projective, PS is finitely generated projec-
tive, and R ' End(PS)

op;

4. RP and PS are generators;

5. RP is finitely generated, projective and faithful.

If R has no non-trivial idempotents, then “2” (and “1”) are equivalent
to:

2′. RP is finitely generated and projective.

If R is Noetherian and RP 6= 0, then “2” (and “1”) are equivalent to:

2′′. RP is projective and faithful.

55



The Picard Group

161. Let R be a commutative ring and consider the category

Pic(R) := {RP | RPR is an equivalence (R,R)-bimodule}
= {RP | P ⊗R Q ' R for some R-module RQ}.

We define the Picard group Pic(R) as the isomorphism classes of Pic(R),
i.e.

Pic(R) := {[P ] | RP is an equivalence (R,R)-bimodule}.
The multiplication of Abelian group Pic(R) is given by

[P ] • [Q] := [P ⊗R Q], for all P,Q ∈ Pic(R),

and the unity is [R]. For every P ∈ Pic(R), we have [P ]−1 = [P ∗]. The groups
Pic(Q(R)/R) is called the relative Picard group of R.

162. Let φ : R → S be a morphism of commutative rings. Then φ induced
a map

−⊗R S : Pic(R)→ Pic(S),

as well as a group morphism

φ∗ : Pic(R)→ Pic(S), [P ] 7→ [−⊗R S].

This shows that we have covariant functors

Pic(•) : CR→ SET and Pic(•) : CR→ Ab,

where CR is the category of commutative rings, SET is the category of sets
and Ab is the category of Abelian groups.

Proposition 163. ([Bas:1968, Proposition III.7.5.]) Let R be a commutative
ring. The following are equivalent for an R-module P :

1. P ∈ Pic(R);

2. RP is finitely generated projective of rank 1;

3. RP is finitely generated projective and End(RP ) ' R;

4. RP is finitely generated and Pm ' Rm for every m ∈ Max(R).

Example 164. ([Lam:1999, Examples 2.22 (C), (F)]) Let R be a commutative
ring. If R is local, or R is a UFD, then Pic(R) = {1}.
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Invertible Ideals

Definition 165. Let R be a commutative ring. We say ∅ 6= I ⊆ Q(R) is
a pre-fractional ideal, iff I ≤R Q(R) is an R-submodule;
a fractional ideal, iff I ≤R Q(R) is an R-submodule and there exists

some 0 6= r̃ ∈ R with r̃I ⊆ R;
an (integral) ideal, iff I C R is an ideal of R.

Definition 166. Let R be a commutative ring. We call a (pre-)fractional
ideal of R an invertible, iff IJ = R for some (pre-)fractional ideal J of R.

Notation. Let R be a commutative ring. We set

F(R) := {I | 0 6= I ≤R Q(R) is a non-zero fractional ideal of R}.

We also set

I(R) := {I ∈ F(R) | I is invertible} and P(R) := {Rq | q ∈ Q(R)}.

For ∅ 6= I ⊆ R, we set

I−1 := (R :Q(R) I) := {q ∈ Q(R) | qI ⊆ R}.

Definition 167. Let R be a commutative ring. We call a (pre-)fractional
ideal of R regular (or non-degenerate), iff I ∩Rreg 6= ∅. In particular, an
(integral) ideal I C R is regular, iff I contains a regular element.

Lemma 168. (Compare with [Lam:1999, Lemma 2.16, Theorem 2.14]) Let
R be a commutative ring. If I is a regular (pre-)fractional ideal of R, then:

1. HomR(I,Q(R)) ' Q(R) as Q(R)-modules.

2. I∗ ' I−1 as R-modules.

3. If I is invertible, then EndR(I) ' R.

Theorem 169. (Compare with [Lam:1999, Lemma 2.13, Theorem 2.17]) Let
R be a commutative ring. The following are equivalent for a (pre-)fractional
ideal I of R :

1. I is invertible;
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2. II−1 = R;

3. RI is (finitely generated) projective and I is regular.

Remarks 170. Let R be a commutative ring.

1. Several authors define fractional ideals of R to be the (finitely gener-
ated) pre-fractional ones defined above, e.g. [Lam:1999] ([BK:2000]).
Although non-standard, we add the prefix “pre” to distinguish between
the two different classes of R-modules and to avoid confusion.

2. The group of invertible pre-fractional ideals and the group of invertible
fractional ideals coincide. In particular, An (integral) ideal I C R is
invertible as a pre-fractional ideal of R if and only if I is invertible as
a fractional ideal of R.

Definition 171. Let R be a commutative ring. We call I(R)/P(R) the class
group of R

Proposition 172. ([Lam:1999, Theorem 2.14]) Let R be a commutative ring.
If I is an invertible (pre-)fractional ideal of R, then:

1. RI is finitely generated projective of rank 1;

2. For any (pre-)fractional ideal J of R, we have a canonical isomorphism
of R-modules I ⊗R J ' IJ ;

3. RI is free if and only if I = qR for some q ∈ Q(R) (necessarily a unit).

Definition 173. Let R be a commutative ring. The idealizer of an ideal
I C R is

E(I) = {q ∈ Q(R) | qI ⊆ I}.

Remark 174. Let R be a commutative ring. The idealizer E(I) is the largest
overring of R, in which I is an ideal.

Definition 175. Let R be a commutative ring. An element q ∈ Q(R) is
said to be integral over R, iff ∃ f(x) = a0 + ...+an−1x

n−1 +xn ∈ R[x] with
f(q) = 0. The integral closure of R is defined as

IC(R) := {q ∈ Q(R) | q is integral over R}.

The commutative ring R is said to be integrally closed, iff R = IC(R).
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Theorem 176. (Compare with [FS:2000, 3.7.]) For an integral domain R,
the following are equivalent:

1. R is integrally closed;

2. E(I) = R for every finitely generated (fractional) ideal 0 6= I C R;

3. EndR(I) ' R for every finitely generated (fractional) ideal 0 6= I C R.

Proposition 177. ([Lam:1999, Page 35]) Let R be a commutative ring.

1. Every finitely generated projective R-module P has the property that
the function

[P : R] : Spec(R)→ Z, p 7→ rkRp(Mp)

is constant if and only if R has no non-trivial idempotents.

2. If R is an integral domain, the for every finitely projective R-module P
we have

[P : R] = dimQ(P ⊗R Q).

Definition 178. Let R be a commutative ring. We say a finitely generated
projective R-module M has rank n, iff each of the {rk(Mp) | p ∈ Spec(R)} =
{n}, where rk(Mp) is the rank of the free Rp-module Mp.

Proposition 179. (Compare with [Bas:1968, Chapter III]) Let R be com-
mutative and I C R an ideal. Then MI := (R,R, I, I∗, <,>R, <,>

R) is a
Morita context with canonical R-bilinear morphisms

<,>R: I ⊗R I∗ → R and <,>R: I ⊗R I → R

Moreover, the following are equivalent:

1. I ∈ Pic(R);

2. I ⊗R I∗
<,>R' R;

3. RI is finitely generated projective and faithful;

4. RI is finitely generated projective of rank 1;

5. RI is finitely generated and Im ' Rm for every m ∈ Max(R).

6. RI is a generator and R ' End(RI);

7. RI is a progenerator and R ' End(RI).
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In view of Proposition 160, the following result is easy to prove (in fact,
it seems to be folklore, e.g. [Wis:1991, 40.1., 18.11], [BK:2000, Proposition
4.1.17.], [Fai:1981, Chapter 2, page 458], [Bas:1968, Chapter III]):

Theorem 180. Let R be commutative and 0 6= I C R be a non-zero ideal. If
I is regular (e.g. R is an integral domain), then the following are equivalent:

1. I is invertible;

2. II−1 = R;

3. RI is projective;

4. RI is finitely generated projective;

5. RI is finitely generated projective and faithful;

6. RI is a progenerator (i.e. RI is finitely generated, projective and a
generator);

7. RI is a faithfully projective (i.e. RI is small, projective and a genera-
tor);

8. I ⊗S I∗ ' R as (R,R)-bimodules;

9. RI is finitely generated projective and End(RI) ' R;

10. RI is finitely generated projective of rank 1;

11. RI is a generator and R ' End(RI);

12. RI is finitely generated and Im ' Rm for every m ∈ Max(R).

13. I ∈ Pic(R).
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181. Let R be a commutative ring. The embedding ι : R ↪→ Q(R) induces
a map of set

−⊗R Q(R) : Pic(R)→ Pic(Q(R))

a morphism of Abelian groups

ι∗ : Pic(R)→ Pic(Q(R)), [P ] 7→ [P ⊗R Q(R)].

Theorem 182. ([Lam:1999, Theorem 2.21.]) Let R be a commutative ring.

Then the embedding R
ι
↪→ Q(R) induced an exact sequence of Abelian groups

1 −→ U(R) −→ U(Q(R))
β−→ I(R)

γ−→ Pic(R)
ι∗−→ Pic(Q(R)).

Where

β(q) := Rq for every q ∈ U(Q(R)) and γ(I) := [I] for every I ∈ I(R).

Theorem 183. ([Lam:1999, Corollary 2.21.’]) Let R be a commutative

ring and consider the embedding R
ι
↪→ Q(R). If the induced morphism ι∗ :

Pic(R) −→ Pic(Q(R)) is trivial, then we have an isomorphism of Abelian
groups

Pic(R) ' I(R)/P(R).

Every invertible (pre-)fractional ideal of R is an equivalence (R,R)-
bimodule; however the converse is not true in general, e.g. [Lam:1999, Exam-
ple 2.22(A)]. The following results provides examples of rings for which every
equivalence (R,R)-bimodule is isomorphic to an invertible (pre-)fractional
ideal of R, whence the Picard and class groups of R are isomorphic.

Corollary 184. ([Lam:1999, Corollary 2.21.’, Example 2.22(E)]) If R is an
integral domain, or if R is a Noetherian commutative ring, then Pic(K) =
{1} whence Pic(R) ' I(R)/P(R).
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3.5 Special Classes of Commutative Rings

For the convention of the reader, we include in this section the definitions
and the main results on some special classes of commutative rings and integral
domain that will be used in the sequel.

Definition 185. A commutative ring R is said to be
local, iff R has exactly one maximal ideal;
semilocal, iff R has a finite number of maximal ideals;
principal ideal ring (PIR), iff every ideal of R is principal;
Bézout, iff every finitely generated ideal of R is principal.

Definition 186. An integral domain is said to be maximal, iff R is linearly
compact in the discrete topology, i.e. every class of cosets {rλ + Iλ}Λ with
the finite intersection property has a non-empty intersection (where rλ ∈ R,
Iλ C R for every λ ∈ Λ and Λ an arbitrary index set).

Definition 187. An integral domain R is said to be a Matlis domain, iff

proj.dim.(RQ) = 1.

Prüfer Rings

Definition 188. A commutative ring R is called a Prüfer ring

Proposition 189. ([FHP:1997, Theorems 1.1.1, 5.1.15.]) The following are
equivalent for an integral domain R :

1. R is a Prüfer domain;

2. RR is semi-hereditary (i.e. every finitely generated ideal of R is pro-
jective);

3. Each 2-generated ideal of R is invertible;

4. For each P ∈ Spec(R), RP is a valuation domain;

62



5. For each m ∈ Max(R), Rm is a valuation domain;

6. Each overring of R is integrally closed;

7. Each overring of R is flat as an R-module;

8. Each overring of R is the intersection of localizations of R;

9. If R ⊆ R̃ ⊆ Q is an overring of R, then

Spec(R̃) = {pR̃ | p ∈ Spec(R)}.

10. R is integrally closed and for each overring R ⊆ R̃ ⊆ Q there exists a
localizing system F of R such that R̃ = RF;

11. We have a 1-1 correspondence

{F | F is finitely generated localizing system}
R 7→RF

�
D(−)

{R̃ | R̃ overring of R}

12. Every ideal I C R is flat;

13. every finitely generated torsion-free R-module is projective;

14. every finitely generated torsion-free R-module is flat;

15. every torsion-free R-module is flat;

16. the tensor product of any two torsion-free R-modules is torsion-free;

17. the tensor product of any two ideals of R is torsion-free;

18. every finitely presented cyclic R-module is a direct summand of a direct
sum of cyclically presented modules.

Corollary 190. (Compare [FS:2000, Ch. VI, Exercise 1.10.]) Let R be a
Prüfer domain. If P 6= 0 is a projective R-module, then RP is a progenerator.

Lemma 191. ([FS:2000, VI.6.2. & VI.6.4.]) Let R be a Prüfer domain.

1. A finitely generated R-module M is finitely presented if and only if
proj.dim.(RM) ≤ 1;
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2. If proj.dim.(RM) ≤ 1, then RM is coherent and all finitely generated
R-submodules of M are tight.

192. Let R be a commutative ring. Two rectangular matrices A,B ∈
Mm×n(R) are said to be equivalent, iff there exist two invertible square
matrices G ∈Mm(R) and H ∈Mn(R), such that GAH = B. A rectangular
matrix A ∈Mm×n(R) admits a diagonal reduction, iff A is equivalent to
some diagonal matrix D ∈Mm×n(R), with diagonal entries di satisfying the
divisibility relations di+1 | di for all i < min{m,n}.

Definition 193. A commutative ring R is said to be an elementary di-
visor ring (EDR), iff every rectangular matrix with entries in R admits a
diagonal reduction.

Lemma 194. ([FS:2000, V.3.4.]) An integral domain R is an EDR if and
only if every finitely presented R-module decomposes (uniquely) as a direct
sum of cyclic R-modules.

Remark 195. By [FS:2000, Corollary III.6.6.], the following are equivalent
for a semilocal integral domain R :

R is Prüfer ⇔ R is Bézout ⇔ R is an EDR.

Valuation Rings

Definition 196. A commutative ring R is said to be a valuation ring, iff
the ideals of R form a chain, i.e. for any ideals I, J C R we have I ⊆ J or
J ⊆ I.

Theorem 197. ([Kap:1974, Theorem 63]) For an integral domain R the
following are equivalent:

1. R is a valuation domain;

2. For every r, s ∈ R we have s ∈ Rr or r ∈ Rs;

3. For every r, s ∈ R we have r | s or s | r;

4. For any 0 6= q ∈ Q we have q ∈ R or q−1 ∈ R;
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5. R is Bézout and local.

Definition 198. A valuation domain R is said to be

1. discrete rank 1 (i.e. DVR), iff R is Noetherian;

2. discrete, iff no branched prime ideal L C R is idempotent;

3. strongly discrete, iff no non-zero prime ideal L C R is idempotent.

Definition 199. Let R be valuation commutative ring with maximal ideal
m. A valuation ring R̃ is said to be an intermediate extension of R, iff

1. R ⊆ R̃ is a subring with the same unity;

2. The correspondences

I 7→ R̃I and J 7→ J ∩R

are inverse to each other and establish a bijection between the set of
ideals of R and the set of ideals of R̃;

3. The have a canonical isomorphism R/m
φ
' R̃/R̃m.

Commutative Gorenstein Rings

Lemma 200. ([EJ:2000, Theorem 9.3.3.]) The following are equivalent for
a commutative Noetherian ring R :

1. E(RR) is flat;

2. Rp is a Gorenstein ring of Krull dimension 0 for all p ∈ Ass(R);

3. E(N) is flat for every flat R-module N ;

4. F(U) is injective for every injective R-module U (where F(U) → U is
the flat cover1 of UR);

1See [EJ:2000] for the definition of flat covers
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5. U ⊗R Ũ is injective for all injective R-modules U, Ũ ;

6. RRreg is injective.

Proposition 201. ([Bas:1963]) Let R be a commutative n-Gorenstein ring.
Every minimal injective coresolution of R is of the form

0→ R→ E0 → ...→ En → 0,

where
Eh :=

∑
ht(p)=h

E(R/p) for all h ≥ 0.

Dedekind Domains

Definition 202. An integral domain R is called Dedekind, iff every non-
zero ideal I C R is invertible.

Proposition 203. ([Wis:1991, 40.5.]) The following are equivalent for an
integral domain R :

1. R is Dedekind;

2. R is Noetherian and Prüfer;

3. RR is hereditary;

4. every divisible R-module is injective;

5. every cyclic R-module is a direct summand of a direct sum of cyclically
presented modules.

Proposition 204. ([Wis:1991, 40.6.]) Let R be a Dedekind domain with
quotient field Q. Then:

1. Every non-zero prime ideal of R is maximal.

2. Every ideal in R is a product of prime ideals.

66



3. For every ideal I 6= R, we have R/I '
∏
i≤n

R/pki
i with {p1, ..., pn} is a

set of distinct prime ideals in R and ki <∞ for i = 1, ..., n.

4. R is a 1-Gorenstein ring.

5. We have an isomorphism of R-modules

Q/R '
⊕

0 6=p∈Spec(R)

E(R/p) =
⊕

p∈Max(R)

E(R/p).

6. R has a minimal injective coresolution

0→ R→ Q
π→

⊕
p∈Max(R)

E(R/p)→ 0.

Proposition 205. Let R be a Dedekind domain with quotient field Q. An
R-module M is cotorsion if and only if Ext1

R(Q,M) = 0.

Abelian Groups (Z-Modules)

Proposition 206. The ring of integers Z is a Dedekind domain.

Definition 207. The torsion-subgroup of an Abelian group G is

τ(G) := {g ∈ G | ng = 0 for some n ∈ N}.

Definition 208. An Abelian group G is called

torsion, iff τ(G) = G;

torsion-free, iff τ(G) = 0;

Definition 209. An Abelian group G is called

cotorsion, iff Ext1
R(Q, G) = 0;

cotorsion-free, iff G has no cotorsion subgroups.
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Definition 210. Let p be a prime positive integer and consider the multi-
plicatively closed set

S(p) = {pk | k ∈ N}.
An Abelian group G is called

a p-group, iff G is an S(p)-torsion Z-module (equivalently, iff for every
g ∈ G there exists some k ∈ N with pkg = 0);

a p-torsion group, iff G is an S(p)-torsion Z-module;
a p-torsion-free group, iff G is an S(p)-torsion-free Z-module.

Definition 211. Let p be a prime integer and G an Abelian group. The
p-component of G is

p(G) = {g ∈ G| ∃ k ∈ N such that pkg = 0}.

Definition 212. Let p be a prime integer. The p-component of the Abelian
group Q/Z is called the Prüfer p-group and is given by denoted by Zp∞ :

Zp∞ := Z[
1

p
]/Z = {q + Z | q ∈ Q and pkq ∈ Z for some k ∈ N}. (3.1)

The ring
Jp := EndZ(Zp∞) '

is called the ring of p-adic integers.

Lemma 213. For suitable direct systems of Abelian groups

Zp∞ = lim
−→p∈P

{Zpk | k ∈ N}
Q/Z = lim

−→
{Zn | n ∈ N}.

Q = lim
−→

{ 1
n
Z | n ∈ N}.

Proposition 214. Let p be a prime integer.

1. We have

Zp∞ = {q + Z ∈ Q/Z | pkq ∈ Z for some k ∈ N}.

2. For a suitable inverse system of Abelian groups we have

Jp := EndZ(Zp∞) ' lim
←−
{Zpk | k ∈ Z}.
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Proposition 215. ([Wis:1991, 15.10.]) Let p be a prime positive integer.

1. Every torsion Abelian group G is a direct sum of its p-components, i.e.

G =
⊕
p∈P

p(G). In particular, we have Q/Z =
⊕
p∈P

Zp∞ .

2. We have

{G | G is a p-torsion Abelian group} == σ[
⊕
n∈N

Zpn ].

In σ[Zp∞ ], Zp∞ is a cogenerator and
⊕
n∈N

Zpn is a generator.

3. We have

{G | G is a torsion Abelian group} = σ[Q/Z] = σ[
⊕
n∈N

Zn].

In σ[Q/Z], Q/Z is a cogenerator and
⊕
n∈N

Zpn is a generator.
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Part II

Tilting and Cotilting Modules
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Chapter 4

Tilting (Cotilting) Modules
over Associative Rings

In this chapter, we introduce some of the main results on tilting (cotilt-
ing) modules over arbitrary associative rings. Throughout this chapter, R
denotes a (not necessarily commutative) associative ring with 1R 6= 0R.

4.1 Tilting Modules - Basics

In what follows we present the main definitions and results from the
theory of tilting modules that will be used in the sequel.

Definition 216. An R-module M is called a κ-splitter for some cardinal
κ, iff Ext1

R(M,Mκ) = 0. We call RM a splitter , iff M is κ-splitter for every
κ.

Definition 217. An R-module T is called a tilting module, provided:

1. proj.dim.(T ) <∞;

2. ExtiR(T, T (Λ)) = 0 for every index set Λ and all i ≥ 1 ( i.e. RT is a
splitter);
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3. There exist T0, ..., Tk ∈ Add(T ) fitting in an exact sequence of R-
modules

0→ R→ T0 → T1 → ...→ Tk → 0. (4.1)

A tilting R-module with projective dimension at most n is called n-
tilting.

Definition 218. A left R-module RT is said to be classical tilting, iff RT is
tilting and T ∈ RP<ω. A classical tilting R-module with projective dimension
at most n is said to be classical n-tilting.

Proposition 219. ([GT:2006, Page 189]) An R-module T is classical tilting
(classical n-tilting for some n ∈ N), iff

1. T ∈ RP<ω (T ∈ RP<ωn );

2. ExtiR(T, T ) = 0 for all i ≥ 1;

3. There exist T0, ..., Tk ∈ add(T ) fitting in an exact sequence of R-modules

0→ R→ T0 → T1 → ...→ Tk → 0.

Definition 220. A ring S is said to be tilted from the ring R, iff there
exists a classical tilting R-module T such that S ' End(RT )op.

Definition 221. Two tilting R-modules T1, T2 are said to be equivalent,
iff T⊥∞1 = T⊥∞2 .

Theorem 222. ([Baz:2004(b), Proposition 3.5., Theorem 3.11.]) Let n ≥ 1.
The following are equivalent for an R-module T :

1. T is an n-tilting R-module;

2. Genn(T ) = T⊥∞ ;

3. The following conditions are satisfied

(a) proj.dim.(T ) ≤ n;

(b) ExtiR(T, T (Λ)) = 0 for every index set Λ and any 1 ≤ i ≤ n;
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(c) there exists proj.dim.(T ) ≤ k ≤ n and T0, ..., Tk ∈ Add(T ) fitting
in an exact sequence of R-modules

0→ R→ T0 → ...→ Tk → 0.

Proposition 223. ([Baz:2004(b), Proposition 3.6.]) Let n ≥ 1. If RT is
n-tilting, then for every l ≥ 1 we have

n⋂
i=1

T⊥i = T⊥∞ = Genn(T ) = Genn+l(T ) = Gen∞(T );

whence RT is n+ l tilting for every l ≥ 1.

Remarks 224. 1. Tilting modules generalize projective generators. Ob-
viously, every projective generator is 0-tilting. In particular, RT is a
progenerator if and only if RT is classical 0-tilting.

2. The notion of a tilting module was generalized several times till the
above general definition was introduced. Still different authors use
different notions of tilting modules. For example, R. Colpi and K.
Fuller (e.g. [CF:2004]) mean by a tilting module a classical 1-tilting
module, while they call infinitely generated tilting modules of projective
dimension at most 1 generalized tilting modules.
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Partial Tilting Modules

Definition 225. Let T be an R-module. We call T ′ :
pre-partial tilting module, iff proj.dim.(T ′) <∞ and ExtiR(T ′, T ′(Λ)) =

0 for every index set Λ and all i ≥ 1;
partial tilting module, iff RT

′ is pre-partial tilting and T ′⊥∞ is closed
under direct sums.

A (pre-)partial tilting R-module with projective dimension at most n is
called (pre-)partial n-tilting .

Remarks 226. ([Trl:2007, 2.10.])

1. Several authors (e.g. [AC:2001], [AC:2002]) call pre-partial tilting mod-
ules partial tilting. We follow [Trl:2007] in assuming that a partial
tilting module T ′ should satisfy the extra condition “T ′⊥∞ is closed un-
der direct sums” to guarantee that partial tilting modules admit tilt-
complement. Although our terminology is not standard, we add the
prefix “pre” to distinguish between the two different classes of modules
and to avoid confusion.

2. Not all pre-tilting modules (or direct summands of tilting modules)
are partial tilting. For example, consider R = Z and T ′ = Q. As
pointed out in [CT:1995, 1.5.], Q⊥∞ (which coincides with the class of
cotorsion Abelian groups1) is not closed under arbitrary direct sums,
whence Q is not partial tilting according to our definition). However,
Q is a pre-partial tilting R-module and admits a tilt-complement since
T := Q⊕Q/Z is a 1-tilting Abelian group.

Definition 227. We call an R-module T ′ :
classical (pre-)partial tilting , iff T ′ is a (pre-)partial tilting R-module

and T ′ ∈ RP<ω;
classical (pre-)partial n-tilting , iff T is a (pre-)partial tilting R-

module and T ∈ RP<ωn .

Definition 228. A class U of R-modules is said to be
(n-)tilting, iff U = T⊥∞ for some (n-)tilting R-module T ;
(pre-)partial (n-)tilting, iff U = T⊥∞ for some (pre-)partial (n-)tilting

R-module T.
1An Abelian group G is cotorsion, iff Ext1Z(F,G) = 0 for every torsion free (flat)

Abelian group F ;
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Definition 229. We say an R-module T ′ admits a tilt-complement, iff
there exists an R-module T ′′ such that T := T ′ ⊕ T ′′ is a tilting R-module.

Theorem 230. ([AC:2001, Theorem 4.4.], [AC:2002, Theorem 2.1.])

1. An R-module T is tilting if and only if RT is pre-partial tilting and
T⊥∞ ⊆ Gen(RT ).

2. A pre-partial tilting R-module T ′ is partial tilting if and only if T ′

admits a tilt-complement T ′′ which is Ext-projective in T ′⊥∞ .

Theorem 231. ([AC:2002, Corollary 2.2.]) Let T ′ be pre-partial tilting R-
module.

1. If R is left coherent and RT
′ is finitely presented, then RT

′ is partial
tilting.

2. If R is an Artin algebra and RT
′ is finitely generated, then RT

′ is partial
tilting.
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4.2 Self-Tilting Modules & Star Modules

Inspired by the notion of (self-small) n-star modules introduced and
investigated recently by J. Wei et. al., e.g. ([HHTW:2003]) [Wei:2005b],
[Wei:2005a], we introduce the following definitions which extends (to n > 1)
the corresponding notions in [MO:1989], [CDT:1997] and [Wis:1998]:

Definition 232. We call a (possibly infinitely generated) R-module RT an:

n-star module, iff RT is (n + 1)-
∑

-quasi-projective and Presn(T ) =

Genn(T );

∗n-module, iff RT is a self-small n-star module2;

weak ∗n-module, iff RT is self-small and (n+ 1)-
∑

-quasi-projective;

classical ∗n-module, iff RT ∈ RP<ωn and T is an n-star module.

n-quasi-tilting, iff Presn(T ) = Genn(T ) ⊆ T⊥1 ;

n-self-tilting , iff RT is projective on Genn(T ) and Presn(T ) = Genn(T ).

To be consistent with the general definition of a tilting module we
adapted in this report, we introduce the following notions:

Definition 233. We say an R-module RT is a

star module , iff RT is an n-star module for some n ≥ 1;

∗-module , iff RT is a ∗n-module for some n ≥ 1;

weak ∗-module , iff RT is a weak ∗n-module for some n ≥ 1;

classical ∗-module , iff RT is a classical ∗n-module for some n ≥ 1;

quasi-tilting , iff RT is n-quasi-tilting for some n ≥ 1;

self-tilting , iff RT is n-self-tilting for some n ≥ 1.

Remarks 234. 1. The reader should be warned that the each of the notions
in Definition 233 was used initially to denote the corresponding ones
in Definition 232 with n = 1. As we did with tilting modules, we set
n = 1 whenever we use the initial notions.

2. The ∗1-modules (which are by our definition self-small) were introduced
by C. Menini and A. Orsatti in [MO:1989] as modules inducing the
equivalence of categories in Proposition 245 below.

2as introduced originally in [HHTW:2003]

78



3. The ∗1-modules are necessarily finitely generated as shown by J. Trlifaj
in [Trl1994]. For n ≥ 2, the (self-small) ∗n-modules are not necessarily
finitely generated as the examples in [Wei:2006] show.

Theorem 235. ([Wei:2005a, Proposition 3.6.]) The following are equivalent
for an R-module T :

1. RT is n-quasi-tilting;

2. RT is an n-star module and Genn(RT ) is closed under extensions.

Theorem 236. ([Wei:2005a, Proposition 3.6.]) The following are equivalent
for an R-module T :

1. RT is n-tilting (i.e. Genn(RT ) = T⊥∞);

2. Genn(RT ) = T⊥1≤i≤n ;

3. RT is an n-star module and RINJ ⊆ Genn(RT );

4. RT is n-quasi-tilting and RINJ ⊆ Genn(RT ) (i.e. RINJ ⊆ Genn(RT ) =
Genn+1(RT ) = T⊥1).

Theorem 237. ([HHTW:2003, Theorems 2.8., 2.10.]) The following are
equivalent for a left R-module T with S := End(RT )op :

1. RT is a ∗n-module;

2. RT is self-small and for any exact sequence

0→M → N → L→ 0

in RM with N,L ∈ Genn(RT ), we have Genn(RT ) if and only if the
following induced sequence is exact:

0→ HomR(T,M)→ HomR(T,N)→ HomR(T, L)→ 0.

3. We have an equivalence of categories:

Genn(RT )
HomR(T,−)
≈

T⊗S−
T ᵀ∞ := {SN | TorSi (T,N) = 0 for all i ≥ 1}.
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Theorem 238. ([HHTW:2003, Theorem 3.5.]) The following are equivalent
for an R-module T :

1. RT is a self-small n-tilting module;

2. RT is a ∗n-module and RINJ ⊆ Genn(RT ).

Theorem 239. The following are equivalent for T ∈ Rmod :

1. RT is a (classical) n-tilting module;

2. Genn(RT ) = T⊥∞ and Genn(RT ) ⊆ T⊥n ;

3. RT is a ∗n-module, RINJ ⊆ Gen(RT ) ⊆ T⊥n .
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1-Self-Tilting Modules & Star Modules

Theorem 240. ([CF:2004, 2.4.5., 2.4.6., 2.4.7.]) The following are equivalent
for a left R-module RT with S := End(RT )op :

1. RT is a weak ∗1-module (i.e. RT is self-small and w-
∑

-quasi-projective);

2. We have an equivalence of categories

Pres(RT )
Hom(RT,−)
≈

T⊗S−
Cogen(dST ).

3. For every left R-module RN, the following canonical map is surjective:

ηlT,N : N → HomR(T, T ⊗S N), n 7→ [t 7→ t⊗S n].

241. Let RU be a left R-module. By [Wis:1991], the Abelian category σ[RU ]
of U -subgenerated left R-modules has enough injectives and so every B ∈
σ[RU ] has an injective coresolution, i.e. a long exact sequence

0→ B
ι→ E0 δ1→ ...→ En−1 δn

→ En δn+1

→ En+1 → ...

with En injective in σ[RU ] for each n ≥ 0. For any A ∈ σ[RU ], applying
HomR(A,−) to the cochain complex

EB̃ : 0
δ0→ E0 → ...→ En−1 δn

→ En δn+1

→ En+1 → ...

yields a cochain complex of Abelian groups

...→ HomR(A,En−1)
δn◦−→ HomR(A,En)

δn+1◦−→ HomR(A,En+1)→ ... (4.2)

So, one can define for any A ∈ σ[RU ] the additive covariant functors

Ext
n

U(A, •) : σ[RU ]→ Ab, B 7→ Hn(HomR(A,EB̃)),

where

Hn(HomR(A,EB̃)) := Ker((δn+1 ◦ −))/Im((δn ◦ −)) for n ≥ 1

is the nth-cohomology group of the cochain complex (4.2).
For n ≥ 1, we set

A⊥n

σ[RU ] := {Y ∈ σ[RU ] | Ext
n

U(A, Y ) = 0}.

One may refer to [Wis:1998] for more details.
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Proposition 242. ([Wis:1998, 4.2.]) The following are equivalent for an
R-module RT :

1. RT is 1-self-tilting (i.e. projective on Gen(RT )) and Pres(RT ) = Gen(RT ));

2. Pres(RT ) = Gen(RT ) and RT is w-
∑

-quasi-projective;

3. Pres(RT ) = Gen(RT ) ⊆ T⊥1

σ[RT ]
;

4. Gen(RT ) = T⊥1

σ[RT ]
;

5. The following conditions are satisfied:

(a) Ext
2

T (T,N) = 0 for all N ∈ σ[RT ];

(b) Ext
1

T (T, T (Λ)) = 0 for every index set Λ;

(c) Ker(HomR(T,−)) ∩ T⊥1

σ[RT ]
= 0.

If σ[RT ] has a progenerator G, then (c) can be replaced by:

(c′) there exist RT1, RT2 ∈ Add(RT ) fitting in a short exact sequence
of R-modules

0→ G→ T1 → T2 → 0.

Proposition 243. ([Wis:1998, 4.2.]) If RT is 1-self-tilting, then RT is closed
under extensions and products in σ[RT ].

Remarks 244. 1. By definition, a 1-self-tilting module is (roughly speak-
ing) an R-module T that is 1-tilting in the Grothendieck category
σ[RT ] = Gen(RT ).

2. A different definition of tilting modules inAbelian categories see [HRS1996].

3. The 1-quasi-tilting modules may have projective dimension n ≥ 2 as
shown by [CDT:1997, Example 5.4.].

4. Condition “2” in Proposition 242 shows that the class of 1-self-tilting
modules coincides with the class of 1-star modules. It’s not clear,
whether for a given n ≥ 2, the class of n-self-tilting modules coincides
with the class of n-star modules.
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As reported in [Wis:1998], the following characterizations of ∗1-modules
were obtained in [Fol:1997, 3.12.]:

Proposition 245. ([Wis:1998, 5.2.]) The following are equivalent for a left
R-module RT :

1. RT is a ∗1-module (i.e. a self-small 1-star module);

2. RT is a self-small 1-self-tilting R-module;

3. We have an equivalence of categories

Gen(RT )
Hom(RT )
≈

T⊗S−
Cogen(dST ).

4. RT satisfies the following conditions:

(a) Ext
2

T (T,N) = 0 for every N ∈ σ[RT ];

(b) RT is finitely presented in σ[RT ] and Ext
1

T (T, T ) = 0;

(c) Ker(HomR(T,−)) ∩ T⊥1

σ[RT ] = 0.

If σ[RT ] has a progenerator G, then (c) can be replaced by:

(c′) there exist T1, T2 ∈ add(RT ) fitting in a short exact sequences of
R-modules:

0→ G→ T1 → T2 → 0.

Under these conditions, HomR(G, T ) is finitely presented in MS.

Remark 246. Let RT be a left R-module. By Lemma 101, Stat(RT ) ⊆
Gen(RT ) and Adstat(RT ) ⊆ Cogen(dST ). On the otherhand, Stat(RT ) ⊆ RM
and Adstat(RT ) ⊆ SM are (by definition) the largest subcategories, between
which the adjoint pair of covariant functors (− ⊗S T,HomR(T,−)) incudes
an equivalence.

In the light of Remarks 246 (and 104), we conclude

Proposition 247. ([Xin:1999, Lemma 2.3.]) For a left R-module RT with
S := End(RT )op, we have

RT is a ∗1 -module⇔ Stat(RT ) = Gen(RT ) and Adstat(RT ) = Cogen(dST );
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Theorem 248. ([CDT:1997, Proposition 2.1.]) The following are equivalent
for an R-module RT :

1. RT is a self-small 1-quasi-tilting (i.e. Pres(RT ) = Gen(RT ) ⊆ T⊥1);

2. RT is a ∗1-module and Gen(RT ) is a torsion class;

3. RT is a ∗1-module and Gen(RT ) ⊆ T⊥1 ;

4. RT is finitely generated and Gen(RT ) = T⊥1 ∩ σ[RT ].
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Characterizations of Tilting Modules

In view of Lemma 58, we get from [CT:1995, Proposition 1.3.], [Wis:1998,
4.4.], [CF:2004, Theorem 3.1.5.] the following characterizations of 1-tilting
modules :

Theorem 249. The following are equivalent for an R-module T with S :=
End(RT )op :

1. RT is 1-tilting;

2. The following conditions are satisfied:

(a) proj.dim.(RT ) ≤ 1;

(b) Ext1
R(T, T (Λ)) = 0 for every index set Λ;

(c) Ker(HomR(T,−)) ∩ T⊥1 = 0.

3. Gen(RT ) = T⊥1 ;

4. T is 1-self-tilting, RT is faithful and TS is finitely generated.

5. T is 1-self-tilting and σ[RT ] = RM;

6. T is 1-self-tilting with E(RR) ∈ Gen(RT );

7. T is 1-self-tilting and RINJ ⊆ Gen(RT );

8. T is 1-self-tilting and R ↪→ T k for some k ∈ N;

9. T is 1-self-tilting and {L | L <R T
(N) is a cyclic R-module} is a set of

generators in RM.

Lemma 250. ([CF:2004, Propositions 1.1.1., 1.1.2., 1.1.3.], [Trl:1992, Lemma
1.1.2.]) Let T be an R-module. Then

1. proj.dim.(RT ) ≤ 1 if and only if T⊥1 is closed under factors.

2. If RT is finitely presented, then Ext1
R(T,−) commutes with direct sums

(whence T⊥1 is closed under direct sums).
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3. If RT is finitely generated and T⊥1 is closed under direct sums and
factor modules, then RT is finitely presented.

4. The following are equivalent for RT :

(a) RT is finitely presented and proj.dim.(RT ) ≤ 1;

(b) RT is small and T⊥1 is closed under direct sums and factors.

In view of Lemmas 58 and 250, we get from [Col:1993, Theorem 3],
[CT:1995, Proposition 1.3.], [CDT:1997, Proposition 2.3.], [Wis:1998, 4.4.]
and [CF:2004, Theorem 3.2.1.] the following characterizations of classical
1-tilting modules :

Theorem 251. For a left R-module RT with S := End(RT )op the following
are equivalent:

1. RT is a classical 1-tilting R-module;

2. RT is 1-tilting R-module and RT is self-small (respectively, small, finitely
generated, finitely presented);

3. RT is small, Gen(RT ) ⊆ T⊥1 and T⊥1 is a torsion class;

4. Gen(RT ) = T⊥1 and RT is self-small (respectively, small, finitely gen-
erated, finitely presented);

5. The following conditions are satisfied:

(a) RT is finitely presented and proj.dim.(RT ) ≤ 1;

(b) Ext1
R(T, T ) = 0;

(c) There exist T0, T1 ∈ add(RT ) fitting in a short exact sequence of
R-modules 0→ R→ T0 → T1 → 0.

6. The following conditions are satisfied:

(a) RT is small and Gen(RT ) is closed under direct sums and factor
modules;

(b) Ext1
R(T, T ) = 0;
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(c) There exist T0, T1 ∈ add(RT ) fitting in a short exact sequence of
R-modules 0→ R→ T0 → T1 → 0.

7. The following conditions are satisfied:

(a) RT is finitely presented and proj.dim.(RT ) ≤ 1;

(b) Ext1
R(T, T ) = 0;

(c) Ker(HomR(T,−)) ∩ T⊥1 = 0.

8. RT is a ∗1-module (respectively self-small 1-self-tilting, 1-quasi-tilting)
and σ[RT ] = RM;

9. RT is a ∗1-module (respectively self-small 1-self-tilting, 1-quasi-tilting)
with E(RR) ∈ Gen(RT );

10. RT is a ∗1-module (respectively self-small 1-self-tilting, 1-quasi-tilting)
and RINJ ⊆ Gen(RT );

11. RT is a ∗1-module (respectively self-small 1-self-tilting, 1-quasi-tilting)
and R ↪→ T k for some k ∈ N;

12. RT is a ∗1-module (respectively self-small 1-self-tilting, 1-quasi-tilting)
and {L | L <R T

(N) is a cyclic R-module} is a set of generators in RM.

13. RT is a ∗1-module (respectively self-small 1-self-tilting, 1-quasi-tilting),

RT is faithful and TS is finitely generated;

14. RT is 1-quasi-tilting, RT is faithful and Gen(RT ) is closed under direct
products;

15. RT is 1-quasi-tilting and Gen(RT ) is a tilting torsion class.

252. For an R-module T we have

RQ-PROG = RST ARs.s.
1 ∩ RS-G.

It follows then that

RPROG = RQ-PROG ∩ RSUBGEN
= (RST ARs.s.

1 ∩ RS-G) ∩ RSUBGEN
= RST ARs.s.

1 ∩ (RS-G ∩ RSUBGEN )
= RST ARs.s.

1 ∩ RGEN
= (RST ARs.s.

1 ∩ RS-G) ∩ (RST ARs.s.
1 ∩ RSUBGEN )

= RQ-PROG ∩ RC-T ILT 1.
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Combining 252 with [Col:1990, Theorem 4.7.], [CF:2004, Ch. 2] yields

Theorem 253. Let RT be a left R-module and S := End(RT )op.

1. The following are equivalent:

(a) RT is a quasi-progenerator;

(b) σ[RT ] ≈ SM;

(c) Gen(RT ) ≈ SM and Gen(RT ) = σ[RT ];

(d) RT is a ∗1-module and

i. Gen(RT ) = σ[RT ]; or

ii. RT is a self-generator; or

iii. RT is quasi-projective.

2. The following are equivalent:

(a) RT is a progenerator;

(b) RM ≈ SM;

(c) RT is a ∗1-module and a generator;

(d) RT is a quasi-progenerator and a (sub)generator;

(e) RT is a quasi-progenerator and a classical 1-tilting R-module;

Corollary 254. ([CF:2004, Corollary 2.4.12.]) Let RR be finitely cogenerated
(e.g. R is left Artinian). Then RT is classical 1-tilting if and only if RT is a
faithful ∗1-module.

Corollary 255. ([CF:2004, Corollary 2.4.13.]) Let R be left Artinian, RT be
a left R-module and R := R/annR(T ). Then RT is classical 1-tilting if and
only if RT is a ∗1-module.

Definition 256. A non-empty class of R-modules U 6= ∅ is said to be closed
under n-images, iff for every exact sequence of R-modules

Un → Un−1 → ...→ U1 → N → 0,

with Uj ∈ U (j = 1, ..., n), also N ∈ U .
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For any R-module RU, the class Gen(RU) is obviously closed under
1-images. It’s not known, if Genn(RU) is closed under n-images for n > 1.
However, we have the following partial results:

Lemma 257. ([Wis:1998, 3.2.(2, i)]) For any R-module RU, we have:

1. If RU is 2-
∑

-quasi-projective, then Gen2(RU) is closed under 2-images;

2. If RU is n-star R-module, then Genn(RU) is closed under n-images.
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4.3 Cotilting Modules - Basics

Definition 258. An R-module C is called a cotilting module, provided:

1. inj.dim.(RC) <∞;

2. ExtiR(CΛ, C) = 0 for every index set Λ and all i ≥ 1;

3. There exists an injective cogenerator RI and C0, ..., Ck ∈ Prod(RC)
fitting in an exact sequence of R-modules

0→ Ck → Ck−1 → ...→ C0 → I→ 0. (4.3)

A cotilting R-module with injective dimension at most n is called n-
cotilting.

Theorem 259. ([Baz:2004(b), Proposition 3.5., Theorem 3.11.]) Let n ≥ 1.
The following are equivalent for an R-module C :

1. Cogenn(RC) = ⊥∞C;

2. C is n-cotilting;

3. The following conditions are satisfied:

(a) inj.dim.(RC) ≤ n;

(b) ExtiR(CΛ, C) = 0 for every index set Λ and any 1 ≤ i ≤ n;

(c) there exists an injective cogenerator RI, an integers inj.dim.(RC) ≤
k ≤ n and C0, ..., Ck ∈ Prod(RC) fitting in an exact sequence of
R-modules

0→ Ck → ...→ C0 → I→ 0.

Proposition 260. ([Baz:2004(b), Proposition 3.6.]) Let n ≥ 1. If C is an
n-cotilting R-module, then for every l ≥ 1 we have

n⋂
i=1

⊥iC = ⊥∞C = Cogenn(RC) = Cogenn+l(RC) = Cogen∞(RC).

In particular, RC is n+ l-cotilting for every l ≥ 1.
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Remarks 261. 1. Cotilting modules can be considered as a generalization
of injective cogenerators. Obviously, every injective cogenerator is 0-
cotilting.

2. The notion of a cotilting module was generalized several times till the
above general definition was introduced.

91



Partial Cotilting Modules

Definition 262. We call an R-module C ′ a
pre-partial cotilting module, iff inj.dim.(RC

′) <∞ and ExtiR(C ′Λ, C ′) =
0 for every index set Λ and all i ≥ 1;

partial cotilting module, iff C ′ is pre-partial cotilting and ⊥∞C ′ is
closed under direct products.

A (pre-)partial cotilting R-module with injective dimension at most n is
called (pre-) partial n-cotilting.

Definition 263. A class U of R-modules is said to be
(n-)cotilting, iff U = ⊥∞C for some left (n-)cotilting R-module C;
(pre-)partial cotilting, iff U = ⊥∞C ′ for some (pre-)partial left (n-

)cotilting R-module C ′.

Definition 264. Two cotilting R-modules C1, C2 are said to be equivalent,
iff ⊥∞C1 = ⊥∞C2.

Definition 265. We say an R-module C ′ admits a cotilt-complement, iff
there exists an R-module C ′′, such that C := C ′⊕C ′′ is a cotilting R-module.

Theorem 266. ([AC:2001, Page 249], [AC:2002, Page 93])

1. An R-module C is cotilting if and only if RC is pre-partial cotilting and
⊥∞C ⊆ Cog(RC).

2. Let C ′ be a pure-injective pre-partial cotilting R-module. Then RC
′ is

partial cotilting if and only if C ′ admits a cotilt-complement C ′′ which
is Ext-injective in ⊥∞C ′.

Remarks 267. ([Trl:2007, 3.12.])

1. Several authors (e.g. [AC:2001]) don’t assume the extra condition
“⊥∞C ′ is closed under direct products” in their definitions of a partial-
cotilting module. We follow [Trl:2007] in assuming this extra condition
to guarantee that partial cotilting modules admit cotilt-complements
(whence pure injective). We add the prefix “pre-” to distinguish be-
tween the two different classes of modules and to avoid confusion.

2. If R is left Artinian and RC
′ is a pure-injective pre-partial 1-cotilting

R-module, then C ′ admits a cotilt-complement.
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Self-Cotilting Modules

Definition 268. (Compare [Wis:2002], [CDT:1997]) We call RC :

1. self-1-cotilting, iff RC is Cogen(RC)-injective and Cogen(RC) = Copres(RC).

2. f-cotilting, iff C is cogen(RC)-injective and cogen(RC) = copres(RC).

269. Let C be anR-module, R = R/annR(C) and denote with Extnπ[RC](•, •) :=

Exti
R
(•, •) the nth-Ext-bifunctor associated to π[RC] = RM. We set

⊥n

π[RC]C := {N ∈ π[RC] | Extnπ[RC](N,C) = 0} = ⊥n(RC).

For more details, see [Wis:2000].

Proposition 270. ([Wis:2002, 3.6.]) For an R-module C and R = R/annR(C)
the following are equivalent:

1. C is self-1-cotilting;

2. Copres(RC) = Cogen(RC) and C is w-
∏

-quasi-injective;

3. RC is 1-cotilting (i.e. C is cotilting in RM = π[RC]);

4. Cogen(RC) = ⊥1

π[RC]C;

5. The following conditions are satisfied:

(a) Ext2
π[RC](N,C) = 0 for each N ∈ π[RC];

(b) Ext1
π[RC](C

Λ, C) = 0 for any index set Λ;

(c) Ker(HomR(−, C))∩ ⊥1

π[RC]C = 0.

6. The following conditions are satisfied:

(a) Ext2
π[RC](N,C) = 0 for each N ∈ π[RC];

(b) Ext1
π[RC](C

Λ, C) = 0 for any index set Λ;

(c) there exists an injective cogenerator U ∈ π[RC] and C0, C1 ∈
Prod(RC) fitting in a short exact sequence of left R-modules

0→ C1 → C0 → U→ 0.
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Remark 271. By 1⇔ 2 in the previous theorem, a self-1-cotilting R-module
is (roughly speaking) an R-module RC that is 1-cotilting in π[RC] = RM.

Corollary 272. ([Wis:2002, Corollary 3.8.]) For a cotilting R-module C we
have

RC is injective ⇔ RC is a cogenerator.

Theorem 273. ([ATT:2001], [Wis:2002, 3.6., 3.7.], [CF:2004, Propositions
5.2.5, 5.2.6.]) The following are equivalent for an R-module C :

1. C is 1-cotilting;

2. Cogen(RC) = ⊥1C.

3. The following conditions are satisfied:

(a) inj.dim.(C) ≤ 1;

(b) Ext1
R(CΛ, C) = 0 for every set Λ;

(c) the exist an injective cogenerator RI and C0, C1 ∈ Prod(C) fitting
in a short exact sequence of R-modules:

0→ C1 → C0 → I→ 0.

4. The following conditions are satisfied:

(a) inj.dim.(C) ≤ 1;

(b) Ext1
R(CΛ, C) = 0 for every set Λ;

(c) Ker(HomR(−, C))∩ ⊥1C = 0.

5. C is self-1-cotilting and π[RC] = RM;

6. C is self-1-cotilting and RC is faithful.

Proposition 274. ([CTT:1997, Proposition 2.4.]) Let C be an R-module.

1. Assume RC to be injective. Then RC is 1-cotilting if and only if RC is
a cogenerator.

2. Let C be 1-cotilting. Then E(C)⊕E(C)/C is an injective cogenerator.
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Proposition 275. ([CTT:1997, Lemma 2.6.]) Let C be an R-module and
assume Cogen(RC) ⊆ ⊥1C and ⊥1C is a torsion-free class. Then

1. Cogen(RC) is a torsion-free class.

2. C is a partial 1-cotilting R-module.

Lemma 276. ([CF:2004, Proposition 5.2.1.]) Let C be an R-module. Then
inj.dim.(RC) ≤ 1 if and only if ⊥1C is closed under submodules.

Definition 277. ([Ang:2000]) A left R-module RC with S := End(RC)op is
called finitely cotilting, iff

1. inj.dim.(RC) ≤ 1;

2. Ext1
R(C,C) = 0;

3. Ker(HomR(−, C)) ∩Ker(Ext1
R(−, C)) = 0;

4. RC is finitely generated and HomR(f.g.R M, C) ⊆Mf.g.
S .

Theorem 278. ([Ang:2000, Proposition 2.2.]) Let C be an R-module.

1. Assume RC to be finitely generated and product complete. Then RC is
finitely cotilting if and only if RC is 1-cotilting.

2. Assume RC to be of finite length (equivalently, RC is Noetherian and
Artinian). Then RC is finitely cotilting if and only if RC is 1-cotilting
such that HomR(−, C)(f.g.R M) ⊆Mf.g.

S .
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4.4 Cotorsion Pairs

Cotorsion pairs were introduced by L. Salce [Sal:1979] in the context of
Abelian groups under the name “cotorsion theories” and can be considered
as dual to the classical “torsion pairs” (or “torsion theories”). The interest
in cotorsion pairs revived recently as they were used in proving the “flat cover
conjecture” by L. Bican et. al. [BEE:2001]. Cotorsion pairs proved also to be
an important tool in studying tilting (cotilting) classes and approximations
of modules (e.g. [GT:2006]).

Definition 279. A pair C := (A,B) of classes of R-modules is said to be a
cotorsion pair, iff A := ⊥1B and B = A⊥1 . We call A∩B the kernel of C.

Example 280. Every non-empty class U 6= ∅ of R-modules generates a co-
torsion pair (⊥1U , (⊥1U)⊥1) and cogenerates a cotorsion pair (⊥1(U⊥1),U⊥1).

Definition 281. A cotorsion pair C = (A,B) is said to be
hereditary, iff A := ⊥∞B and B = A⊥∞ ;
complete, iff for every R-module Z there exists A ∈ A and B ∈ B fitting

in a short exact sequence of R-modules

0→ B → A→ Z → 0.

Definition 282. A cotorsion pair C = (A,B) is said to be n-tilting (n-
cotilting), iff there exists an n-tiltingR-module RT (an n-cotiltingR-module

RC), such that B = T⊥∞ (A = ⊥∞C).

283. The class of all cotorsion pairs over R is partially ordered by inclusion
in the first component (i.e. (A,B) ≤ (A′,B′), iff A ⊆ A′). The ≤-least
cotorsion pair is (RP0, RM) and the ≤-greatest is (RM, RINJ ).

Theorem 284. ([ST, Theorem 2]) Let 0 ≤ n < ∞ and C = (A,B) be a
cotorsion pair. Then C is n-tilting if and only if

1. C is hereditary;

2. A ⊆ RPn;

3. B is closed under arbitrary direct sums.
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Theorem 285. ([ST:2006, Theorem 2.4.]) Let 0 ≤ n < ∞ and C = (A,B)
be a cotorsion pair. Then C is n-cotilting if and only if

1. C is hereditary;

2. B ⊆ RIn;

3. A is closed under arbitrary direct products.

Theorem 286. ([AC:2001], [Trl:2007, Lemam 2.7.]) Let C = (A,B) be an
n-tilting cotorsion pair and T the corresponding n-tilting module (for which
B = T⊥∞). Then

1. C is hereditary, complete and C ≤ (RPn, (RPn)⊥∞) (i.e. A ⊆ RPn);

2. Ker(C) := A ∩ B = Add(RT );

3. A coincides with the class of all R-modules A possessing an n-coresolution

0→ A→ T0 → ...→ Tn → 0

with Ti ∈ Add(T ) for all i ≤ n;

4. B coincides with the class of all R-modules B possessing an infinite
resolution

...→ Ti+1 → Ti → ...→ T0 → B → 0

with Ti ∈ Add(T ) for all 0 ≤ i <∞. Hence, B is closed under arbitrary
direct sums.

Theorem 287. ([AC:2001], [Trl:2007, Lemam 3.9.]) Let C = (A,B) be an
n-cotilting cotorsion pair and C the corresponding n-cotilting module (for
which A = ⊥∞C). Then

1. C is hereditary, complete and (⊥∞(RIn), RIn) ≤ C (i.e. ⊥∞(RIn) ⊆ A);

2. Ker(C) := A ∩ B = Prod(RC);

3. B coincides with the class of all R-modules B possessing an n-resolution

0→ Cn → ...→ C0 → B → 0

with Ci ∈ Prod(C) for all 0 ≤ i ≤ n;
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4. A coincides with the class of all R-modules A possessing an infinite
coresolution

0→ A→ C0 → ...→ Ci → Ci+1 → ...

where Ci ∈ Prod(C) for all 0 ≤ i < ∞. Hence, A is closed under
arbitrary direct products.

Tilting and cotilting classes are characterized as follows

Theorem 288. (Compare [AC:2001, 4.2. & 4.3.]) Let n ∈ N.

1. A class of modules T is n-tilting if and only if

(a) (⊥∞T , T ) is a complete cotorsion pair;

(b) T is closed under arbitrary direct sums; and whenever there exists
a short exact sequence of R-modules

0→ X → Y → Z → 0

with X, Y ∈ T , then Z ∈ T ;

(c) ⊥∞T ⊆ RPn.

2. A class C of R-modules is n-cotilting if and only if

(a) (C, C⊥∞) is a complete cotorsion pair;

(b) C is closed under arbitrary direct products; and whenever there
exists a short exact sequence

0→ X → Y → Z → 0

with Y, Z ∈ C, then X ∈ C;
(c) C⊥∞ ⊆ (RIn).
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4.5 Classes of Finite (Cofinite) Type

Definition 289. ([Trl:2007]) A class U of left R-modules is said to be
of finite type (of countable type), iff there exists n <∞ and a subset

S ⊆ RP<ωn (S ⊆ RP≤ωn ), such that U = S⊥∞ ;
of cofinite type, iff there exists n <∞ and a subset of right R-modules

S ⊆ (P<ωn )R, such that U = Sᵀ∞ ;
definable, iff U is closed under arbitrary direct products, direct limits

and pure submodules.

Definition 290. A subclass R ⊆ f.g.
R M is said to be resolving, iff the fol-

lowing conditions are satisfied:

1. R contains all finitely generated projective left R-modules;

2. R is closed under direct summands and extensions;

3. whenever there exists a short exact sequence of left R-modules

0→ X → Y → Z → 0

with Y, Z ∈ R, then X ∈ R.

Remark 291. ([Trl:2007, 4.11.]) A subclass R ⊆ RP<ω1 is resolving if and
only if R is closed under extensions and summands, and R ∈ R.

Definition 292. An R-module U is said to be definable (respectively of
finite type, of countable type), iff U⊥∞ is definable (respectively of finite
type, of countable type). We say U is of cofinite type, iff ⊥∞U is of cofinite
type.

Theorem 293. ([AHT:2006]) Let U be a class of R-modules that is of finite
type. Then U is tilting (and definable).

All tilting modules known so far were noticed to be of finite type.
Recently S. Bazzoni and J. Štoviček proved

Theorem 294. ([BS, Theorem 4.2.]) Let R be an arbitrary ring, n ≥ 0 and
T an n-tilting R-module. Then T is of finite type.
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Corollary 295. Let U be a class of R-modules. Then

U is of finite type ⇔ U is tilting (and definable).

Remark 296. The expected dual of Theorem 294 does not hold: S. Bazzoni
gave in [Baz, Proposition 4.5.] a class of cotilting modules over non strongly
discrete valuation domains that are not of cofinite type (see Proposition 382).

The following result shows that there is a correspondence between
the n-tilting left R-modules (which are now known to be of finite type by
Theorem 294) and the right n-cotilting R-modules of cofinite type:

Theorem 297. ([AHT:2006, Proposition 2.3.]) Let n <∞ and denote with
(F0)R the class of flat right R-modules.

1. If RT is an n-tilting left R-module, then dTR is an n-cotilting right
R-module of cofinite type and, moreover, ⊥∞(dTR) = (F0)R = ᵀ∞T.

2. RM ∈ T⊥∞ if and only if dMR ∈ ⊥∞(dTR) for every left R-module M.

Theorem 298. ([Trl:2007, Theorem 4.14.], [GT:2006, Theorem 8.2.8.]) Let
R be right Noetherian. Assume also that RF1 = RP1 (e.g. R is left perfect,
or left hereditary, or 1-Iwangsawa-Gorenstein). Then every 1-cotilting left
R-module is of cofinite type.

The following results gives examples, where the assumptions (whence
the results) of Theorem 298 hold:

Corollary 299. ([Trl:2007], [GT:2006]) All 1-cotilting left R-modules are
equivalent to duals of 1-tilting right R-modules, if (for example):

1. R is right Artinian;

2. R is right Noetherian and left hereditary;

3. R is 1-Gorenstein;

Theorem 300. ([AHT:2006, Theorem 2.2.]) Let n <∞.
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1. There are bijective correspondences:

{T⊥∞ | RT is n-tilting}
⊥∞ (−)∩Rmod←→

(−)⊥∞
{R ⊆ RP<ωn resolving};

{⊥∞C | CR is n-cotilting of c.t.3} (−)ᵀ∞∩Rmod←→
ᵀ∞ (−)

{R ⊆ RP<ωn resolving}.

2. Let ∅ 6= S ⊆ RP<ωn be a non-empty subclass. Then S⊥∞ is an n-tilting
class (of finite type). Moreover, ᵀ∞(S⊥∞) ⊆ MR is the corresponding
n-cotilting class of cofinite type, i.e.

ᵀ∞(S⊥∞) = ᵀ∞(⊥∞(S⊥∞) ∩Rmod).

Theorem 301. ([GT:2006, Theorem 8.1.2.]) Let n ≥ 0 and RT be an n-tilting
left R-module. Then T dR is an n-cotilting right R-module with n-cotilting class
given by

C := ᵀ∞T = {NR | TorRi (N, T ) = 0 for all i ≤ n}.

Moreover, if X ⊆ RP<ωn is such that T⊥∞ = X⊥∞ , then C = ᵀ∞X .

3i.e. of cofinite type
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4.6 Tilting Modules over Gorenstein Rings

In this section we consider the tilting modules over Iwangsawa-Gorenstein
rings.

Theorem 302. ([AHT:2006, Proposition 3.6.]) The following are equivalent
for a Noetherian ring R :

1. R is Gorenstein (i.e. R is Noetherian, inj.dim.(RR) <∞ and inj.dim.(RR) <
∞);

2. The Gorenstein injective modules in RM and in MR form a tilting class;

3. The Gorenstein injective modules in MR form a tilting class and the
class of Gorenstein flat modules in MR form a cotilting class;

4. The Gorenstein injective modules in RM form a tilting class and the
class of Gorenstein flat modules in RM form a cotilting class.

Theorem 303. ([AHT:2006, Proposition 3.6.]) Let R be a Gorenstein ring.
The following are equivalent:

1. RR (or RR) is Artinian;

2. (GP ,P) is a cotilting cotorsion pair;

3. RR is a cotilting module and ⊥∞(RR) = GP(R).

Corollary 304. ([AHT:2006, Corollary 3.8.]) An Artin algebra R is Goren-
stein if and only if there is a cotilting module C ∈ Rmod, such that GP(R) =
⊥∞C.

Lemma 305. ([AHT:2006, Lemma 3.9.]) Let R be an Artin algebra with a
duality D : Rmod→ modR. The following are equivalent:

1. inj.dim.(RR) <∞;

2. D(RR)⊥∞ is a tilting class in MR;

3. ⊥∞(RR) is a cotilting class in RM.
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Theorem 306. ([AHT:2006, Proposition 3.10.]) Let R be an Artin algebra
such that inj.dim.(RR) < ∞ with a duality D : Rmod → modR. Then the
following are equivalent:

1. R is Gorenstein;

2. D(RR)⊥∞ = (P<∞R )⊥∞ ;

3. The pre-partial tilting module D(RR) admits a tilt-complement of finite
injective dimension;

4. The pre-partial cotilting module RR admits a cotilt-complement of finite
projective dimension;

5. Every (finitely presented) module in D(RR)⊥∞ is generated by D(RR);

6. Every (finitely presented) module in ⊥∞(RR) is cogenerated by RR;

7. GP(R) = ⊥∞(RR).

Theorem 307. ([Trl:2007, Example 2.6.]) Let R be an n-Gorenstein ring
and consider a minimal injective coresolution of RR

0→ RR→ I0 → I1 → ...→ In → 0.

Then TIG :=
n⊕
k=0

Ik is an n-tilting left R-module and

T⊥∞IG = {RM |M is Gorenstein injective}.

Theorem 308. ([Trl:2007, Theorem 4.14.]) Let R be a Gorenstein ring of
injective dimension ≤ 1. Then all cotilting R-modules are of cofinite type.
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4.7 Special Constructions

Theorem 309. ([Fuj:1992]) Let R be a basic semiperfect Noetherian ring and
consider the quotient ring R := R/Jac(R). Let e be a primitive idempotent
of R such that

Ext1
R(eR, eR) = 0 and ExtiR(eR,R) = 0 for 0 ≤ i < l.

Then for each i, 1 ≤ i ≤ l, there exists a left R-module Yi with local endo-
morphism ring such that R(1− e)⊕ Yi is an i-tilting left R-module.

Lemma 310. If R is a von Neumann regular ring, then every strongly finitely
presented left (right) R-module is projective.

Proposition 311. ([AHT:2006, Example 2.4. (ii)]) Let R be von Neumann
regular.

1. A left R-module RT is (classical) 1-tilting if and only if RT is a projec-
tive generator (a progenerator). Moreover, RM is the only tilting class
in RM.

2. A left R-module RC is 1-cotilting of cofinite type if and only if RC is
an injective cogenerator. Moreover, RM is the only cotilting class in

RM of cofinite type.
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Theorem 312. ([CF:2004, Theorems 2.4.6, 2.4.7.], [CDT:1997, Theorem
1.5.]) For an (R,S)-bimodule RPS we have:

1. The following are equivalent:

(a) RP is a progenerator;

(b) RM
HomR(P,−)
≈

P⊗S−
SM and S := End(RP )op;

(c) MS

HomS(P,−)
≈
−⊗RP

MR and R ' End(PS);

(d) PS is a progenerator.

2. The following are equivalent:

(a) RP is a quasi-progenerator (i.e. P is progenerator in σ[RP ]);

(b) σ[RP ]
HomR(P,−)
≈

P⊗S−
SM and S := End(RP )op (and Gen(RP ) = σ[RP ]);

(c) σ[PS]
HomS(P,−)
≈
−⊗RP

MR and R := End(PS) (and Gen(PS) = σ[PS]);

(d) PS is a quasi-progenerator (i.e. P is progenerator in σ[PS]).

3. The following are equivalent for an (R,S)-bimodule RPS :

(a) RT is classical 1-tilting and S = End(RT )op;

(b) There exists a torsion class RX ⊆ RM and a torsion-free class

SY ⊆ SM, such that

RINJ ⊆ RX
HomR(T,−)
≈

T⊗S−
SY ⊇ SP0;

(c) There exists a torsion class XS ⊆ MS and a torsion-free class
YR ⊆MR, such that

(INJ )S ⊆ XS
HomS(T,−)
≈
−⊗RT

YR ⊇ (P0)R;

(d) TS is classical 1-tilting and R ' End(TS).
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4.8 Tilting (Cotilting) Theorems

In this section we show how tilting modules generalize classical progen-
erators and include some of the main tilting theorems.

To the end of this section, we keep the following setting: RT is an
R-module, S := End(RT )op and we consider the covariant functors

HomR(T,−) : RM→ SM and T ⊗S − : SM→ RM.

In order that tilting (cotilting) modules induce equivalences (dualities)
between full subcategories of module categories, suitable finiteness conditions
should be assumed.

Tilting Theorems

The following is called the Brenner-Butler Theorem or the (Fundamental)
Tilting Theorem :

Theorem 313. ([BB:1980], [HR:1982]) If RT is a classical 1-tilting left R-
module, then

1. (RT
⊥1 ,Ker(HomR(T,−))) and (Ker(T ⊗S −),⊥1 TS) are torsion pairs.

2. T induces a pair of category equivalences

Ker(Ext1
R(T,−))

HomR(T,−)
≈

T⊗S−
Ker(TorS1 (T,−));

Ker(HomR(T,−))
Ext1R(T,−)
≈

TorS
1 (−,T )

Ker(T ⊗S −).
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The following is a generalization of the fundamental tilting theorem
to the case n > 1 :

Theorem 314. ([Miy:1986, Theorem 1.16.]) If RT is classical n-tilting, then
for all 0 ≤ i ≤ n there are equivalences of categories⋂

j≤n,j 6=i

Ker(ExtjR(T,−))
Exti

R(T,−)
≈

TorS
i (−,T )

⋂
j≤n,j 6=i

Ker(TorSj (−, T )).

Theorem 315. ([Wis:1998, 5.5.]) For an R-module T with S := End(RT )op,
we have

RT is self-small 1-self-tilting4 ⇔ Gen(RT )
HomR(T,−)
≈

T⊗S−
Cogen(dST ).
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Cotilting Theorems

In what follows, we include some of the main cotilting theorems that can
be considered (in some sense) as dual to the fundamental tilting theorem 313.

Theorem 316. ([Wis:2002, 4.10.]) For an R-module C with S := End(RC)op

we have

RC is f-cotilting ⇔ cogen(RC)
HomR(−,C)

�
HomS(−,C)

Mf.g.
S ∩ Cogen(CS).

To the end of this section, we keep the following setting: RCS is a
bimodule and we consider the functors

∆R
C := HomR(−, C) : RM → MS ; ∆S

C := HomS(−, C) : MS → RM;
ΓRC := Ext1

R(−, C) : RM → MS ; ΓSC := Ext1
S(−, C) : MS → RM.

Moreover, we set

RX := Ker(HomR(−, C)) ∩ f.g.
R M; RY := Cogen(RC) ∩ f.g.

R M;

XS := Ker(HomS(−, C)) ∩Mf.g.
S ; YS := Cogen(CS) ∩Mf.g.

S .

Definition 317. ([Ang:2000]) We call an R-module C a Colby-module, iff

1. f.p.
R M ⊆ Ker(Ext2

R(−, C));

2. Ext1
R(C,C) = 0;

3. Ker(HomR(−, C)) ∩Ker(Ext1
R(−, C))∩ f.p.

R M = 0;

4. RC is finitely generated and the functor HomR(−, C) : RM→MEnd(RC)op

restricts to a functor

HomR(−, C) : f.g.
R M→Mf.g.

End(RC)op .

Definition 318. ([Ang:2000]) We call an (R, S)-bimodule RCS a Colby-
bimodule, iff RCS is faithfully balanced and RC,CS are Colby-modules.

Remark 319. Let R be left Noetherian and S be right Noetherian. The
Colby-bimodules defined above coincide with the cotilting bimodules in the
sense of [Col:1989].
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Proposition 320. ([Ang:2000, Proposition 4.3.]) The following are equiva-
lent for an (R,S)-bimodule RCS :

1. RCS is a Colby-(R,S)-bimodule;

2. R is left coherent, RC is finitely presented, RC is a Colby-module and
S ' End(RC)op.

In view of Remark 319, the following cotilting theorem generalizes
that of Colby [Col:1989]:

Theorem 321. ([Ang:2000, Theorem 4.4.]) Let RCS be a Colby-bimodule.

1. (RX ,R Y) and (XS,YS) are torsion theories.

2. RY ⊆ f.p.
R M, YS ⊆Mf.p.

S and we have dualities

RY
HomR(−,C)

�
HomS(−,C)

YS and RX ∩ f.p.
R M

Ext1R(−,C)

�
Ext1S(−,C)

XS ∩Mf.p.
S .

3. We have

(ΓSC ◦∆R
C)(f.g.R M) = 0 = (ΓRC ◦∆S

C)(f.g.S M);

(∆S
C ◦ ΓRC)(f.p.R M) = 0 = (∆R

C ◦ ΓSC)(f.p.S M).

Definition 322. Let RCS be an (R,S)-bimodule. We say
a left R-module RM is C-reflexive, iff M ' Hom−S(HomR−(M,C), C)

canonically;
a right S-module NS is C-reflexive, iff N ' HomR−(Hom−S(N,C), C)

canonically.

Definition 323. A bimodule RCS is said to define a finitistic generalized
Morita duality, iff

1. RR and SS are C-reflexive;

2. R
C(f.g.R M) ⊆Mf.g.

R and ∆S
C(Mf.g.

R ) ⊆ f.g.
R M;

3. Every finitely generated submodule of a finitely generated C-reflexive
module is C-reflexive;
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4. Any extension of a finitely generated C-reflexive module by a finitely
generated C-reflexive module is C-reflexive.

Theorem 324. ([Ang:2000, Theorem 4.6.]) The following are equivalent for
an (R,S)-bimodule RCS :

1. RCS is a Colby-bimodule;

2. RCS is faithfully balanced and satisfies the properties 1-3 in Theorem
321.

3. RCS defines a finitistic generalized Morita duality.
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Morita Rings

Definition 325. R is said to be a left Morita ring (a right Morita ring),
iff R is left Artinian and the minimal injective cogenerator RI is finitely
generated (R is right Artinian and the minimal injective cogenerator IR is
finitely generated).

Theorem 326. ([Ang:2000, Theorem 3.3.]) Let R,A be rings and consider
an (R,A)-bimodule RIA, which is faithfully balanced, an injective cogenerator
on both sides, and induces a duality

f.g.
R M

HomR(−,I)
�

HomA(−,I)
Mf.g.

A .

If R is a left Morita ring, then the following are equivalent for a left R-module
C :

1. There is a classical 1-tilting right S-module TA such that RC ' D(TA);

2. RC is finitely generated and the following conditions are satisfied

(a) inj.dim.(RC) ≤ 1;

(b) Ext1
R(C,C) = 0;

(c) There exist C0, C1 ∈ add(RC) fitting in a short exact sequence of
left R-modules

0→ C1 → C2 → W → 0.

3. RC is a Colby-module;

4. RC is finitely cotilting.

Under these conditions, CS is a finitely presented finitely cotilting S-
module, where S := End(TA).

Theorem 327. ([Ang:2000, Proposition 3.5.]) Let R be a hereditary left
Morita ring. The following are equivalent for a left R-module C with S :=
End(RC)op :

1. RC is finitely cotilting;

2. RC is 1-cotilting with RC and CS finitely generated;

3. RC is a classical 1-tilting module.
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Chapter 5

Tilting (Cotilting) Modules
over Commutative Rings

In this chapter we restrict our attention to the structure of tilting (cotilt-
ing) modules over commutative rings. Our main references for the theory of
modules over commutative rings, in addition to the classical books in Com-
mutative Algebra, are [FS:2000] and [Mat:2004].

Throughout this chapter, R denotes a commutative ring with 1R 6= 0R.

5.1 Finitely generated tilting modules over

commutative rings

Over commutative rings, ∗1-modules turn out to be quasi-progenerators
and classical tilting modules are progenerators.

Lemma 328. ([CM:1993], [Trl1994, Theorem 1, Corollary 5]) Let R be a
commutative ring. An R-module T is a ∗1-module if and only if RT is a
quasi-progenerator.

It was pointed out by Y. Miyashita in the introduction of his paper
[Miy:1992] that it is a “fact that usual tilting modules of finite projective
dimension over a commutative ring are necessarily projective”.
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However, we could not find any explicit proof for this fact in the published
literature!! I thank both Prof. J. Trlifaj and Prof. S. Bazzoni for providing
me with two proofs of this fact1:

Proposition 329. Let R be a commutative ring. If RT is a finitely generated
tilting R-module, then RT is projective.

Combining Propositions 312, 329 with Lemma 328, we get

Proposition 330. Let R be a commutative ring. For an R-module T the
following are equivalent:

1. RT is classical n-tilting for some n ∈ N;

2. RT is classical 1-tilting;

3. RT is a faithful ∗1-module;

4. RT is faithful and a quasi-progenerator;

5. RT is faithful, finitely generated and projective;

6. RT is a progenerator.

Remark 331. The assumption that the ring R in Proposition 330 is commu-
tative is essential. In fact, R. Colpi et. al. gave in [CDT:1997] examples of
faithful ∗1-modules (over non-commutative algebras) that are neither quasi-
progenerators nor classical 1-tilting.

Proposition 332. ([AHT:2006, Example 2.4. (ii)]) Let R be a (commuta-
tive) von Neumann regular ring.

1. An R-module RT is 1-tilting if and only if RT is a projective generator.
Moreover, RM is the only tilting class in RM.

2. An R-module RC is 1-cotilting of cofinite type if and only if RC is an
injective cogenerator. Moreover, RM is the only cotilting class in RM of
cofinite type.

1in December 2006.
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Corollary 333. ([Trl:2007], [GT:2006]) Let R be a commutative ring. All
1-cotilting R-modules are equivalent to duals of 1-tilting R-modules, if (for
example):

1. R is Artinian;

2. R is Noetherian and hereditary (e.g. R is a Dedekind integral domain);

3. R is 1-Iwangsawa-Gorenstein;

4. R is a strongly discrete valuation integral domain.
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5.2 Fuchs-Salce Divisible Modules

The following construction was introduced by L. Fuchs and L. Bazzoni
[FS:2000] as a generalization of the divisible Fuchs module ∂ := ∂<R×>
introduced in [Fuc:1984] for an integral domain R.

334. Let R be an integral domain and S ⊆ R× an admissible multiplicatively
closed set. The Fuchs-Salce S-divisible module ∂<S> is the free R-module
with free basis the set of all tuples

{( ), (s1, ..., sk) | k ≥ 1, si ∈ S for i = 1, ..., k},

where $ := ( ) denotes the empty tuple, and with defining relations

(s1, ..., sk)sk := (s1, ..., sk−1), k ≥ 1 and (s)s := $.

Proposition 335. Let R be an integral domain, S ⊆ R× an admissible
multiplicatively closed set and ∂<S> the corresponding Fuchs-Salce S-divisible
module.

1. proj.dim.(∂<S>) = 1;

2. the torsion submodule τ(∂<S>) is S-torsion and fits in a short exact
sequence of R-modules

0→ τ(∂<S>)→ ∂<S> → RS → 0; (5.1)

3. the sequence (5.1) splits if and only if proj.dim.(RS) ≤ 1;

4. Gen(∂<S>) = DI(S);

5. The factor module ∂<S>/R$ is isomorphic to a direct summand of
∂<S>;

6. An R-module M is S-divisible if and only if Ext1
R(∂<S>,M) = 0, i.e.

∂⊥1
<S> = DI(S).

7. ∂<S> is a 1-tilting R-module.
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Theorem 336. ([Fac:1988, Theorems 2.3., 3.6.]) Let R be an integral do-
main, ∂ := ∂<R×> be the Fuchs module over R, E := End(∂R), Z(E) the
center of E and ∂◦ := Ext1

R(∂,R) Then

Z(E) ' R ' End(∂◦E).

Definition 337. Let R be an integral domain, ∂ := ∂<R×> the Fuchs module,
E := End(∂R) and I := {f ∈ E | f($) = 0} C E.

1. Let M be a right E-module and consider the canonical morphism

ψM : M ⊗E I →M, m⊗E f 7→ f(m).

The right E-module M is called:

(a) I-torsion-free, iff ψM is injective;

(b) I-divisible, iff ψM is surjective;

2. a right E-module N is called

(a) I-reduced, iff N is cogenerated by ∂dE;

(b) I-cotorsion, iff HomE(M,N) = 0 = Ext1
E(M,N) for every I-

divisible I-torsion-free right E-module M.

Notation. Let R be an integral domain, ∂ := ∂<R×> the Fuchs module,
E := End(∂R) and I := {f ∈ E | f($) = 0} C E. Moreover, we set

DI(I) := {ME |M is I-divisible}; T F(I) := {ME |M is I-torsion-free}.
R(I) := {NE | N is I-reduced}; C(I) := {NE | N is I-cotorsion};

Theorem 338. ([Fac:1987, Page 2237], [Fac:1988]) Let R be an integral do-
main. Consider the divisible Fuchs module ∂ := ∂<R×>, E := End(R∂) and
I := {f ∈ E | f($) = 0}.

1. The functors HomR(∂,−) and − ⊗E ∂ induce an equivalence of cate-
gories

RDI ≈ R(I) ∩ C(I).

2. The functors Ext1
R(∂R,−) and TorE1 (−, ∂R) induce an equivalence of

categories

RR ≈ DI(I) ∩ C(I).

117



5.3 Tilting (Cotilting) Modules & Localiza-

tion

Tilting modules

Theorem 339. ([AHT:2006, Proposition 4.3.]) Let R be a commutative ring,
T an n-tilting R-module, and T := T⊥∞ be the corresponding n-tilting class.

1. Let S ⊆ Rreg be an admissible multiplicatively closed set. Then TS is an
n-tilting RS-module and the corresponding n-tilting class of RS-modules
is

T⊥∞S = T ∩ RS
M = TS := {MS 'M ⊗R RS for some M ∈ T }.

2. Let N ∈ RM. Then N ∈ T if and only if Nm ∈ Tm for every m ∈
Max(R).

Example 340. ([Sal:2004, Page 3]) Let R be a Matlis domain. Then for any
cardinal numbers γ and δ we have a 1-tilting module (called the Matlis
tilting module):

T := Q(γ) ⊕ (Q/R)(δ).

Definition 341. Let R be a commutative ring and S ⊆ Rreg be an admissible
multiplicatively closed set. Then RS is called a Matlis localization, iff
proj.dim.(RS) ≤ 1.

The following result characterizes Matlis localizations using tilting
modules:

Theorem 342. ([AHT:2005, Theorem 1.1.]) Let R be a commutative ring
and S ⊆ Rreg an admissible multiplicatively closed set. Then the following
are equivalent:

1. proj.dim.(RS) ≤ 1 (i.e. RS is a Matlis localization);

2. T := RS ⊕RS/R is a 1-tilting module;

3. Gen(RS) = (RS/R)⊥1 .
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4. Gen(RS) = DI(S).

5. RS/R decomposes into a direct sum of countably presented R-submodules.

6. RS/R decomposes into a direct sum of countably generated modules
{Mλ | λ < κ} such that for each α < κ we have ⊕β<αMβ = RSα/R for
a submonoid Sα ⊆ S.

7. R has an S-divisible envelope.

Cotilting modules

Proposition 343. ([Baz, Proposition 2.2.]) Let f : R → R̃ be a mor-

phism of commutative rings. If RC is 1-cotilting with Ext1
R(R̃, C) = 0, then

HomR(R̃, C) is pure-injective as an R-module and 1-cotilting as an R̃-module.

The following result of S. Bazzoni shows that, up to equivalence, the
study of 1-cotilting modules over integral domains can be restricted to the
local case.

Theorem 344. ([Baz, Theorem 2.4.]) Let R be an integral domain. If C is
a 1-cotilting R-module, then

1. for every maximal ideal m C R, the Rm-module Cm := HomR(Rm, C)
is 1-cotilting.

2.
∏

m∈Max(R)

Cm is a cotilting R-module that is equivalent to C.
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5.4 Tilting (Cotilting) Modules over Prüfer

Domains

The following two results play an essential role by characterizing tilting
(cotilting) modules over Prüfer domains.

Theorem 345. ([Sal:2005, Theorem 1.8]) Let R be a Prüfer domain and T
a tilting R-module. Then D(T ) is a finitely generated localizing system.

Theorem 346. ([Baz, Proposition 7.4.], [BGS:2005, Theorem 3.3.]) Let R
be a Prüfer domain. Then every tilting (cotilting) R-module is 1-tilting (1-
cotilting).

Tilting modules

Theorem 347. ([BET:2005, Theorem 4.4.]) Let R be a Prüfer domain and
T a tilting torsion class. Then T = S⊥1 , where

S = {RM | RM is cyclic} ∩ f.p.
R M ∩ ⊥1T .

Theorem 348. ([Sal:2005, Corollary 2.2.]) Let R be a Prüfer domain and
T = T⊥1 be a tilting torsion class. Then

T = {RM | IM = M for all I ∈ D(T )}.

Theorem 349. ([Sal:2005, Theorem 2.5., Corollary 2.6.]) Let R be a Prüfer
domain.

1. If T is a tilting R-module, then T := T/τ(T ) is a projective RD(T )-
module.

2. If T is a torsion-free tilting R-module, then RD(T ) = R; in particular

RT is projective.

Theorem 350. ([Sal:2005, Proposition 2.7.]) Let R be a Prüfer domain and

R ⊆ R̃ ⊆ Q be an overring of R. If proj.dim.(RR̃) ≤ 1, then R̃ ⊕ R̃/R is
tilting.
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The Fuchs-Salce divisible module ∂<S> associated to an admissible
multiplicatively closed set S ⊆ R× (of an integral domain R) was generalized
by L. Salce [Sal:2005] as follows:

351. ([Sal:2005], [GT:2006]) Let R be a Prüfer domain

Proposition 352. ([Sal:2005]) Let R be a Prüfer domain, F a finitely gen-
erated localizing filter of R-ideals and consider the R-module ∂F. Then

1. proj.dim.(∂F) ≤ 1;

2. ∂F is F-divisible;

3. DI(F) ⊆ Gen(∂F);

4. DI(F) ⊆ ∂⊥1
F ;

5. RF is an epic image of ∂F;

6. ∂F/∂0 is isomorphic to a direct summand of ∂F;

7. ∂F is a tilting R-module.

Theorem 353. ([Sal:2005, Theorem 2.8.], [GT:2006, Theorems 6.2.15., 6.2.19.])
Let R be a Prüfer domain.

1. There is a bijective correspondence

{T := T⊥1 | RT is tilting} ←→ {F | F is a f.g. localizing system of R},

given by

T 7→ {J C R | ∃I C R s.t. 0 6= I ⊆ J and R/I ∈ (⊥1T )<ω};
L 7→ {RM | IM = M for all I ∈ L}.

2. The set of Salce tilting modules

{δL | L is a finitely generated localizing system of ideals of R}

is a representative set (up to equivalence) of the class of all tilting R-
modules.

Theorem 354. ([Sal:2005, Corollary 2.9.]) Let R be a Prüfer domain. If
T is a tilting R-module, then T is a direct summand of the D(T )-divisible
R-module ∂D(T ).
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Cotilting modules

Since all cotilting modules over a Prüfer domain are 1-cotilting by The-
orem 346, we restate Theorem 344 for Prüfer domains:

Theorem 355. ([Baz, Corollary 2.6.]) Let R be a Prüfer domain. If C is a
cotilting R-module, then

1. for every maximal ideal m C R, the Rm-module Cm := HomR(Rm, C)
is cotilting .

2.
∏

m∈Max(R)

Cm is a cotilting R-module equivalent to C.

Remark 356. Theorem 355 means that the study of cotilting modules over
Prüfer domains can be reduced to the case of valuation domains.

Theorem 357. ([Baz, Theorem 6.10.]) Over Prüfer domains, every cotilting
module is equivalent to a cotilting module that is a direct product of indecom-
posable pure-injective modules.

Theorem 358. ([GT:2006, Corollary 8.2.12.]) Let R be a Prüfer domain.

1. There is a bijective correspondence

{C | C is cotilting of cofinite type} ←→ {F | F is a f.g. L.S.2 of R},

given by

C 7→ {J C R | ∃I C R s.t. 0 6= I ⊆ J and R/I ∈ (ᵀ1C)<ω};
L 7→ {RM |M is I-torsion-free for all I ∈ L ∩modR}.

2. Up to equivalence, cotilting R-modules of cofinite type are the duals of
the Salce tilting modules {δL | L is a finitely generated localizing system
of ideals of R}.

Remark 359. Theorem 358 does not classify all cotilting classes and modules
over Prüfer domains, as there exist valuation domains with cotilting modules
not of cofinite type. An example of such valuation domains is due to S.
Bazzoni (see Proposition 382).
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Proposition 360. ([AHT:2006, Example 2.4 (ii)]) Let R be an elementary
divisor domain (e.g. a semilocal Prüfer domain).

1. A class T of R-modules is tilting (of finite type) if and only if there
exists S ⊆ R such that T = DI(S);

2. A class C of R-modules is cotilting of cofinite type if and only if there
exists a set S ⊆ R such that C = T F(S).
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5.5 Tilting (Cotilting) Modules over Goren-

stein Rings

In this section we consider the results that are known - so far - about
the structure of 1-tilting (1-cotilting) modules over commutative Gorenstein
rings.

Proposition 361. ([Baz, Proposition 7.2.]) Let R be an integral domain. If
inj.dim.(R) = 1, then every tilting R-module is 1-tilting.

In what follows, we set of any commutative 1-Gorenstein ring R :

P0 := {q ∈ Spec(R) | ht(q) = 0} and P1 := {p ∈ Spec(R) | ht(p) = 1}.

Setting Q̃ :=
⊕
q∈P0

E(R/q), it follows by Proposition 201 that R has a minimal

injective coresolution

0→ R→ Q̃
π→

⊕
p∈P1

E(R/p)→ 0.

Moreover, for any subset A ⊆ P1 we define

F(A) :=
⊕
p∈A

E(R/p), G(A) :=
⊕

p∈P1\A

E(R/p) and R(A) := π−1(F(A)) ⊆ Q̃.

(5.2)

Lemma 362. ([AHT:2006, 4.1.], [EJ:2000, 9.1.10., 9.3.3.]) Let R be a com-
mutative 1-Gorenstein ring and A ⊆ P1.

1. We have a short exact sequence of R-modules

0→ R→ Q̃
π→

⊕
p∈P1

E(R/p)→ 0.

2. We have a short exact sequence of R-modules

0→ R→ R(A) → F(A) → 0.

3. We have a short exact sequence of R-modules

0→ R(A) → Q̃→ G(A) → 0.

4. flat.dim.(G(A)) ≤ 1 and RQ̃ is flat, hence R(A) is also flat.
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Tilting modules

363. ([AHT:2006, Section 4]) For any 1-Gorenstein commutative ring R we
have a tilting R-module (called the Bass tilting module) given by:

T :=
⊕
q∈P0

E(R/q)⊕
⊕
p∈P1

E(R/p).

Theorem 364. ([AHT:2006, 4.1.]) Let R be a commutative 1-Gorenstein

ring, A ⊆ P1 and consider the injective cogenerator I :=
⊕

p∈P0∪P1

E(R/p).

1. We have a 1-tilting R-module

T(A) := R(A) ⊕
⊕
p∈A

E(R/p).

Moreover, the corresponding 1-tilting class is

T⊥1

(A) = {RM | Ext1
R(E(R/p),M) = 0 for every p ∈ A}.

2. We have a torsion class of R-modules

Gen(R(A)) = Gen(T(A)) = T⊥1

(A) = (
⊕
p∈A

E(R/p))⊥1 .

Cotilting modules

Theorem 365. ([AHT:2006, 4.1.]) Let R be a commutative 1-Gorenstein

ring, A ⊆ P1 and consider the injective cogenerator I :=
⊕

p∈P0∪P1

E(R/p).

Then we have a 1-cotilting R-module

C(A) := T d(A) = Rd
(A) ⊕

∏
p∈A

Jp,

where
Jp := EndR(E(R/p))

is the p-adic module and

Rd
(A) '

⊕
p′∈P1\A

E(R/p′)⊕ (
⊕
q∈P0

E(R/q)(αq)) for some set {αq | αq ≥ 1}q∈P0 .
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5.6 Tilting (Cotilting) Modules over Dedekind

Domains

In this section we consider the structure of tilting (cotilting) modules
over arbitrary Dedekind domains.

Tilting modules

Tilting modules over small3 Dedekind domains were completely charac-
terized by J. Trlifaj and S. Wallutis in [TW:2002, Theorem 12] and [TW:2003,
Proposition 4] assuming Gödel’s Axiom of Constructibility V = L. However,
it has been shown recently by S. Bazzoni et. al. that this set theoretic
assumption can be removed:

Theorem 366. ([BET:2005, Theorem 5.3.]) Let R be an arbitrary Dedekind
domain and consider the minimal injective coresolution of R

0→ R→ Q
π→ Q/R→ 0.

1. For every A ⊆ Max(R) we have a tilting R-module

T(A) := R(A) ⊕
⊕
p∈A

E(R/p),

where

R(A) := π−1(
⊕
p∈A

E(R/p)) ⊆ Q.

2. We have

T⊥∞(A) = (
⊕
p∈A

E(R/p))⊥∞

= {RM | pM = M for each p ∈ A}.

3An integral domain R is called small, iff |R| ≤ 2ω and |Spec(R)| ≤ ω.
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Theorem 367. ([BET:2005, Theorem 5.3.], [GT:2006]) Let R be a Dedekind
domain.

1. There is a bijective correspondence

{T | T ⊆ RM is tilting} ←→ PS(Max(R)),

given by

T 7→ {P ∈ Max(R) | PM = M for all M ∈ T };
A 7→ {RM | PM = M for all P ∈ A}.

2. The set of all tilting R-modules (up to equivalence) is given by the Bass
tilting modules

{T(A) | A ⊆ Max(R)}.

Cotilting modules

Theorem 368. ([ET:2000, Theorem 16]) Let R be a Dedekind domain and
C be a class of cotorsion R-modules.

1. There is a set AC ⊆ Spec(R) such that

⊥1C = {RM | ∀ p ∈ AC, R/p " A}.

In fact

AC = {p ∈ Spec(R) | ∃ C ∈ C such that R/p /∈ ⊥1C}.

2. There exists a class U of pure-injective R-modules such that ⊥1C = ⊥1U.

3. ⊥1C is a cotilting torsion-free class and every R-module M has a ⊥1C-
cover4.

Theorem 369. ([ET:2000], [Trl:2007], [Baz]) Let R be a Dedekind domain.

4see [GT:2006] for the definition of (pre-)covers
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1. For every A ⊆ Max(R), we have a cotilting R-module

C(A) := Q⊕
⊕

p∈Max(R)\A

E(R/p)⊕
∏
p∈A

Jp,

where Jp := End(E(R/p)R).

2. We have
⊥∞C(A) =

⋂
p∈A

{RM | TorR1 (C,R/p) = 0}.

Theorem 370. ([Baz], [GT:2006, Theorem 8.2.9.]) Let R be a Dedekind
domain.

1. A class C of R-modules is cotilting if and only if there exists a set of
maximal R-ideals A ⊆ Max(R), such that

C = {RM | TorR1 (R/m,M) = 0 for all m ∈ A}.

2. The set of all cotilting R-modules (up to equivalence) is given by the

{C(A) | A ⊆ Max(R)}.
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5.7 Tilting (Cotilting) Modules over Valua-

tion Domains

In this section we consider the structure of tilting (cotilting) modules
over arbitrary Dedekind domains.

Tilting modules

Proposition 371. ([Sal:2004, 4.1.-4.5. & 4.13.]) Let R be a valuation do-
main, T a tilting R-module, T := T/τ(T ) and S := DR(T ) be the divisibility
set of T.

1. τ(T ) is S-divisible and S-torsion;

2. T# = T
#
;

3. Ext1
R(T, T

(κ)
) = 0 for all cardinals κ;

4. T ' T ⊗R RT# ; whence proj.dim.(R
T#
T ) ≤ 1;

5. If T ' R
(γ)

T# ⊕ (RT#/R)(δ) for some γ, δ 6= 0, then RT is tilting.

Theorem 372. ([Sal:2004, 3.4., 3.6, 3.8., 4.6., 4.13.]) Let R be a valuation
domain, T a tilting R-module and T := T/τ(T ). Assume moreover that RT

is of countable rank, or that V = L and
∣∣∣R̂∣∣∣ ≤ 2ℵ0 .

1. Let RT be torsion-free.

(a) If proj.dim.(RT ) ≤ 1 and N is an R-module with T# ⊆ N#, then

Ext1
R(T,N (ω)) = 0⇔ T is free as an RN#-module.

(b) RT is tilting if and only if RT is free.

2. If proj.dim.(RT#) ≤ 1, then RT is tilting if and only if

T ' R
(γ)

T# ⊕ (RT#/R)(δ) for some non-zero cardinals γ, δ.
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3. If RT is tilting, then:

(a) T is free as an RT#-module;

(b) Gen(RT ) = Gen(R∂).

Theorem 373. ([Sal:2004, Theorem 4.7.]) Let R be a valuation domain, ∂ be
the Fuchs divisible R-module and T a divisible R-module with proj.dim.(RT ) =
1. Then

1. RT is tilting if and only if RT is mixed.

2. If RT is tilting, then Gen(R∂) = Gen(RT ).

Definition 374. A non-empty subset ∅ 6= A ⊆ R is said to be saturated,
iff

aa′ ∈ A⇒ a ∈ A or a′ ∈ A for all a, a′ ∈ R.

Lemma 375. ([GT:2006, Lemma 6.2.20.]) Let R be a valuation domain. A
subset A ⊆ R is a saturated and an admissible multiplicatively closed set if
and only if R\A ∈ Spec(R).

Theorem 376. ([GT:2006, Theorem 6.2.21.]) Let R be a valuation domain.

1. There is a bijection

{T | T ⊆ RM is tilting} ←→ Spec(R),

given by

T 7→
⋃

M∈T
M# := {s ∈ R | sM $ M for some M ∈ T };

P 7→ DI(R\P ) := {RM | sM = M for every s ∈ R\P}.

2. The set of Fuchs-Salce tilting R-modules {δR\P}P∈Spec(R) is a represen-
tative set (up to equivalence) of the class of all tilting R-modules.
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Cotilting modules

377. Let R be an integral domain and C a 1-cotilting R-module. We asso-
ciate to C the set

G = G(C) := {I C R | R/I ∈ ⊥∞C} = {I C R | R/I ∈ Cogen(RC)}

and
G ′ := G ∩ (Spec(R)\{0}).

For p1, p2 ∈ G ′, we say p2 covers p1 in G (and write p2 m p1), iff p2 % p1 and
there is no p ∈ G ′ lying properly between p2 and p1.

378. Let R be a valuation domain, C a cotilting R-module and G := G(C).
For every non-empty subclass ∅ 6= H ⊆ G we set

supH :=
∑
I∈H

I and (in case H 6= {0}) infH :=
⋂

0 6=I∈H

I

and define

φ : G ′ → G, p 7→ inf{N ∈ G ′ | RN/p ∈ ⊥∞C};
ψ : G ′ → G ′, p 7→ sup{N ∈ G ′ | Rφ(p)/N ∈ ⊥∞C}.

Remark 379. Let R be a valuation domain and C a cotilting R-module. By
[Baz, Lemma 3.3.], supG(C) = C# and inf G(C) are idempotent prime ideals.
For every p ∈ G ′, φ(p) is an idempotent prime ideal (that might be 0).

Proposition 380. ([Baz, Proposition 4.1.]) Let R be a valuation domain
with maximal ideal m. If RC is torsion-free and cotilting, then

1. ⊥∞C is the class of all torsion-free R-modules.

2. C is equivalent to Q⊕ m̂;

3. RC is of cofinite type.

Proposition 381. ([Baz, Proposition 4.3.]) Let R be a valuation domain
with maximal ideal m, C a cotilting R-module and 0 6= W := C#. Then the
following are equivalent:

1. RC is of cofinite type;
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2. ⊥∞C = {RM | ∀ 0 6= m ∈M, annR(m) ⊆ W};

3. E(Q/W )⊕ m̂/W is a cotilting R-module equivalent to C.

Proposition 382. ([Baz, Proposition 4.5.]) Let R be a valuation domain
with maximal ideal m and 0 6= p ∈ Spec(R) be idempotent. Then

1. The following R-module is cotilting:

C := Q⊕ R̂p ⊕ R̂p/p⊕ m̂/p.

2. We have

⊥∞C = {RM | ∀ 0 6= m ∈M, annR(m) = 0 or annR(m) = p};

3. RC is not of cofinite type.

Theorem 383. ([Baz, Corollary 4.6.]) The following are equivalent for a
valuation domain R :

1. R is strongly discrete;

2. All cotilting R-modules are equivalent to duals of tilting R-modules;

3. All cotilting R-modules are of cofinite type.

Proposition 384. ([Baz, Proposition 5.2., Lemma 5.3.]) Let R be a valuation
domain with maximal ideal m. Let C be a cotilting R-module with associated
set G := G(C) and 0 6= p := supG and p0 := inf G. Then

1. C is equivalent to the cotilting R-module

Q⊕ R̂p0 ⊕ HomR(Rp/p0, C)⊕ m̂/p;

and moreover, the Rp/p0-module HomR(Rp/p0, C) is cotilting.

2. If R̃ is a maximal immediate extension of R, then HomR(R̃, C) is an

cotilting R-module and an R̃-cotilting module; and moreover, the cotilt-
ing R-modules C and HomR(R̃, C) are equivalent.
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Remark 385. Let R be a valuation domain with maximal ideal m. Accord-
ing to Proposition 384, to characterize the cotilting R-modules, we may re-
strict ourselves to those cotilting modules C for which supG(C) = m and
inf G(C) = 0; and one may assume (without loss of generality) that R is a
maximal valuation domain.

Lemma 386. ([Baz, Lemma 6.7.]) Let R be a maximal valuation domain
with maximal ideal m. Let C be a cotilting R-module and G := G(C). For
every N ∈ G ′ with φ(N) 6= 0 one and only one of the following is satisfied:

1. φ(N) = inf G ′ (i.e. φ(N) m 0);

2. φ(N) = sup{ψ(p) | p ∈ G ′, p $ φ(N)};

3. there exists p ∈ G ′ such that φ(N) m ψ(p).

Theorem 387. ([Baz, Theorem 6.9.]) Let R be a maximal valuation domain
with maximal ideal m. Let C be a cotilting R-module, G := G(C) and assume
supG = m and inf G = 0. Then C is equivalent to the cotilting R-module

E := Q
⊕ ∏

φ(p)∈G

Rφ(p)

ψ(p)

⊕ ∏
φ(N)mψ(p)

Rφ(N)

ψ(p)

⊕
φ(N)m0

Rφ(N).
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5.8 Tilting (Cotilting) Abelian Groups

In this section we consider the structure of tilting (cotilting) Abelian
groups, i.e. tilting (cotilting) Z-modules. The structure of tilting (cotilt-
ing) Abelian groups was completely described by R. Göbel and J. Trlifaj in
[GT:2000] assuming Gödel’s Axiom of Constructibility V = L. Since Z is a
Dedekind domain, it follows that the results of Section 5.6 hold for tilting
(cotilting) Abelian groups without any extra set theoretic assumptions.

We begin with restating Theorem 346 for R = Z :

Theorem 388. All tilting (cotilting) Abelian groups are 1-tilting (1-cotilting).

Tilting modules

Theorem 389. ([GT:2000, Theorem 2.3., Corollary 2.4.], [EM:2002, Propo-
sition XVI.1.13.]) For every A ⊆ P, let R(A) ⊆ Q be the subring generated by
Z ∪ {1

p
| p ∈ A}. Then

1. the class of all partial tilting Abelian groups is

{
⊕
p∈A

Z(αp)
p∞ ⊕R

(β)
(A) | A ⊆ P, αp, β are cardinals and αp 6= 0}.

2. The class of all tilting Abelian groups is

{
⊕
p∈A

Z(αp)
p∞ ⊕R

(β)
(A) | A ⊆ P, αp 6= 0, β 6= 0 are cardinals}.

3. A torsion class of Abelian groups T is tilting if and only if there is
some A ⊆ P, such that

T = {G | pG = G for all p ∈ A}.
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Cotilting modules

Theorem 390. ([GT:2000, Theorem 2.1., Corollary 2.2.], [EM:2002, Propo-
sition XVI.1.14.]) Denote by P the set of primes in Z.

1. The class of all partial cotilting Abelian groups is

{
⊕
p∈A

Z(αp)
p∞ ⊕Q(γ) ⊕

∏
q∈B

Ĵ(βq)
q | A,B ⊆ P, A ∩B = ∅, αp, βq 6= 0}.

2. The class of all cotilting Abelian groups is

{
⊕
p∈A

Z(αp)
p∞ ⊕Q(γ)⊕

∏
q∈P\A

Ĵ(βq)
q | A ⊆ P, αp, βq 6= 0 & (γ > 0 or A = ∅)}.

3. A torsion-free class of Abelian groups T F is cotilting if and only if
there is B ⊆ P, such that

T F = {G | p(G) = 0 for all p ∈ B},

where p(G) is the p-component of G.
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Chapter 6

Historical Remarks

The interest in tilting (cotilting) modules stems mainly from the fact
that they allow generalization of the classical Morita equivalences (dualities)
as well as being a main tool in the study of the representation theory of finite
dimensional and Artin algebras.

In what follows we present a brief literature review of Tilting and Cotilt-
ing Modules with emphasis on the case where the ground ring is commuta-
tive1. Although we go through many of the main articles related to the topic
of the report, no attempt or claim is made to be encyclopedic.

6.1 Tilting Modules

• Tilting Theory originated with the study of reflection functors by I.
Bernstein, I. Gelfand and V. Ponomarev [BGP:1973].

• The first instance of a tilting module goes back to the work by M. Aus-
lander, M. Platzeck and I. Reiten on a module-theoretic interpretation
of Coxeter functors [APR:1979]. These modules (referred to nowadays
as the APR-tilting modules) were constructed using projective resolu-
tions of a suitable simple modules.

1In addition to referring to most of the articles and preprints in the list of references
at the end of this report, several parts of this literature review are prepared with the help
of reviews for the cited articles in Mathematical Reviews and ZentralBlattMath.

137



• The construction of the APR-tilting modules was extended by S. Bren-
ner and M. Butler [BB:1980], who introduced, in a rather restrictive
way, tilting modules of finite dimensional algebras over base fields. In
fact, they were the first to begin an axiomatic approach to the study
of tilting modules.

• The theory of tilting modules was generalized and extensively devel-
oped by D. Happel and C. Ringel [HR:1982], who gave the generally
accepted set of axioms of a tilting modules over (finite dimensional,
Artin) algebras.

• Direct proofs for the main results on tilted algebras obtained by D. Hap-
pel and C. Ringel were provided by K. Bongartz [Bon:1981], who gave
also various applications of the theory, in particular to representation-
finite algebras.

• In [Miy:1986], Y. Miyashita considered strongly finitely presented tilting
modules of arbitrary finite projective dimension and studied the equiv-
alences of categories induced by them. Later, Miyashita’s construction
of strongly finitely presented tilting modules of finite projective dimen-
sion was (properly) generalized by H. Fujita [Fuj:1992].

• An infinitely generated tilting module of projective dimension 1 over
an arbitrary commutative integral domain R is the so called Fuchs
divisible module ∂ due to L. Fuchs [Fuc:1984]. This module was
investigated intensively by A. Facchini in [Fac:1987] and [Fac:1988],
who showed that ∂ has the tilting property and proved equivalences
between suitable subcategories of MR and MEnd(R∂).

• In [Wak:1988], T. Wakamatsu provided a generalization of tilting mod-
ules : an R-module RW (possibly with infinite projective dimension)
is said to be a Wakamatsu tilting module, iff RW is faithfully balanced
and

ExtiR(W,W ) = 0 = ExtiEnd(RW )op(W,W ) for all i ≥ 1.

Wakamatsu tilting modules were investigated by several authors (e.g.
F. Mantese and I. Reiten in [MR:2004]).

• As a further generalization of progenerators, the notion of ∗1-modules
was introduced by C. Menini and A. Orsatti in [MO:1989] (and named
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later ∗-modules in [Col:1990]). Such modules were shown to be finitely
generated by J. Trlifaj in [Trl1994]. For the relation between ∗1-
modules and other classes of modules, one may consult [CF:2004].

• In [Miy:1992], Y. Miyashita extended the tilting theorems he obtained
earlier for classical n-tilting modules in [Miy:1986] to more general ones.
In particular, the new extended versions contained the theorems in
[Mat:1964] and [Fac:1987] on equivalences of categories of modules re-
lated to divisible modules as special cases.

• The notion of arbitrary (infinitely generated) tilting modules over ar-
bitrary rings was introduced by R. Colpi and J. Trlifaj in [CT:1995] for
the one dimensional case.

• The class of (finitely generated) 1-quasi-tilting modules was presented
by R. Colpi et. al. [CDT:1997] and their relations with ∗1-modules was
clarified.

• R. Wisbauer considered in [Wis:1998] arbitrary (possibly infinitely gen-
erated) 1-quasi-tilting modules and called them 1-self-tilting modules.
A 1-self-tilting R-module T can be thought of (roughly speaking) as
a 1-tilting object in the associated Grothendieck category σ[RT ] (of
T -subgenerated R-modules). In particular, it was pointed out that
∗1-modules coincide with the self-small 1-self-tilting modules.

• L. Angeleri-Hügel and F.U. Coelho extended in [AC:2001] both the
notions of infinitely generated 1-tilting modules and strongly finitely
presented n-tilting modules by introducing the notion of infinitely gen-
erated n-tilting modules.

• R. Göbel and J. Trlifaj gave in [GT:2000] a complete description of (par-
tial) tilting Abelian groups assuming Gödel’s Axiom of Constructability
V = L.

• In [GT:2001], E. Gregorio and A. Tonolo introduced several notions of
finitely generated modules inducing a tilting equivalence (e.g. weakly
tilting modules, fc-tilting modules, e-tilting modules).

• In [TW:2002] (and [TW:2003]), J. Trlifaj and S. Wallutis extended
in a natural way the characterizations of tilting Z-modules to tilting
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modules over small Dedekind domains assuming Gödel’s Axiom of Con-
structibility V = L. Recently, S. Bazzoni et. al. obtained in [BET:2005]
the same characterizations of tilting modules over arbitrary Dedekind
domains without assuming V = L.

• In [BS:2001], S. Bazzoni and L. Salce investigated cotorsion theories
over integral domains. In particular, they showed that there is a strong
connection between the Whitehead modules over an integral domain R
and the cotorsion theory generated by Q/R. In case R is an IC-domain
(i.e. an anti-maximal valuation domain R such that proj.dim.(RQ) = 1
and GL.dim.(R) = 2), they showed (assuming V = L) that the co-
torsion theory generated by the divisible R-module Q/R coincides
with the cotorsion theory cogenerated by the Fuchs tilting R-module
∂ := ∂<R×>.

• In [Sal:2004], L. Salce investigated the structure of tilting modules over
valuation domains. Assuming T is a module (of countable type) over

a valuation domain R, or that
∣∣∣R̂∣∣∣ ≤ 2ℵ0 and V = L, sufficient and

necessarily conditions are given for RT to be tilting in case RT is torsion-
free or proj.dim.(RT#) ≤ 1.

• The relation between classical 1-tilting modules and other classes of
modules related to equivalences between (sub)categories of modules
(e.g. ∗1-modules, quasi-progenerators and progenerators) was investi-
gated in details in [CF:2004]. Moreover, the authors established the
important fundamental tilting theorem induced by a classical 1-tilting
module RT and clarified its consequences on the relations between the
global dimensions of the rings R and S := End(RT )op in addition to
their Grothendieck groups.

• In [Baz], S. Bazzoni considered tilting modules over Prüfer domains.
She showed, in particular, that all tilting modules over Prüfer domains
are of projective dimension at most 1, i.e. 1-tilting.

• Making use of results in [Baz], the structure of tilting modules over
Prüfer domains was investigated by L. Salce [Sal:2005]. In particular,
he showed that the tilting torsion classes over a Prüfer domain R cor-
respond bijectively to finitely generated localizing systems (i.e. Gabriel
filters) of R-ideals. For such a system F, a generalized Fuchs divisible
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module ∂F is constructed which turns out to be tilting and to generate
the corresponding tilting torsion class.

• In [AHT:2005], L. Angeleri Hügel et. al. studied the relation between
localizations and tilting modules. In particular, they showed that if R
is any ring and O ⊆ Rreg is a left Ore set, then proj.dim.(O−1R) ≤ 1 if
and only if O−1R⊕O−1R/R is a tilting R-module. To each such subset,
they constructed a divisible module ∂O that extends the Fuchs-Salce
divisible module to the case of non-commutative rings.

• So far, all known tilting modules were known to be of finite type. Tilt-
ing modules over special classes of ground rings were shown to be of
finite type by several authors (e.g. [Baz]). Making use of the crucial
reduction to the countable case by J. Štoviček and J. Trlifaj [ST], it
was shown recently by S. Bazzoni and J. Štoviček [BS] that over any
ground ring “all tilting modules are of finite type”.

• In a number of recent papers (e.g. [HHTW:2003], [Wei:2005b]), J. Wei
et. al. generalized the notions of (self-small) ∗1-modules to those of
(self-small) n-star modules, where n > 1, and clarified their relations
with (classical) n-tilting modules.

• In [Wei:2005b] J. Wei generalized the notions of self-small n-star mod-
ules (classical n-tilting modules) to self-small ∗∞-modules (∞-tilting
modules of possibly infinite projective dimension). He showed in par-
ticular, that classical n-tilting modules in the sense of Y. Miyashita
[Miy:1986] are precisely the ∞-tilting modules of finite projective di-
mension ≤ n; and that Miyashita’s generalization of the Brenner-
Butler’s Tilting Theorem holds for ∞-tilting modules.

• In their recent monograph [GT:2006], R. Göbel and J. Trlifaj consid-
ered arbitrary tilting modules from the point view of approximations of
modules. Making use of recent developments in the theory of cotorsion
pairs and the key result of S. Bazzoni and J. Štoviček [BS] that over
any ground ring “all tilting modules are of finite type”, new proofs of
several results in the theory of tilting modules are provided. Moreover,
making use of results in [Sal:2005], [Baz] and [AHT:2006], a classifi-
cation (up to equivalence) of all tilting modules over Prüfer domains,
Dedekind domains and valuation domains is given.
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• The recent monograph [AHK:2007] contains a number of interesting
articles on Tilting Theory including (in addition to the introduction)
an interesting short article by the editors on the “Basic Results in
Tilting Theory”, a very useful survey on Infinite dimensional tilting
modules and cotorsion pairs by J. Trlifaj and an appendix on the origin,
relevance and future of Tilting Theory by C.M. Ringel.
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6.2 Cotilting Modules

“Cotilting Theory” extends Morita duality in analogy to the way that
tilting theory extends Morita equivalences. In particular, cotilting modules
generalize injective cogenerators similarly as tilting modules generalize pro-
generators.

• Cotilting modules appeared first, as vector space duals of tilting mod-
ules over finite dimensional (Artin) algebras, see e.g. [Hap:1988, IV.7.8.].

• A central point in cotilting theory is to obtain a dual of the tilting
theorem of S. Brenner and M. Butler [BB:1980]. Several cotilting theo-
rems were obtained by different authors using different notions of cotilt-
ing modules satisfying suitable conditions (e.g. [Col:1989], [CF:1990],
[Ang:2000], [Wis:2002]).

• The first work aiming to generalize the cotilting modules in the repre-
sentation theory of Artin algebras is due to R. Colby [Col:1989]. He
also defined a cotilting bimodule as a faithfully balanced bimodule RUS
that is cotilting on both sides and obtained a “Cotilting Theorem”
dual to that of the Brenner-Butler theorem in case the ground ring is
Noetherian.

• A second approach to cotilting modules is that of R. Colpi et. al.
[CDT:1997] who gave a definition of 1-cotilting modules by dualizing
the definition of 1-tilting modules as given in [CT:1995].

• In [Col:2000], R. Colpi defined a cotilting bimodule as a faithfully bal-
anced bimodule RUS that is cotilting (in the sense of [CDT:1997]) on
both sides. Moreover, he investigated dualities induced by such bimod-
ules as a generalization of the classical theory of Morita dualities and
obtained some sort of cotilting theorem. That theorem was recovered,
under weaker conditions, by F. Mantese in [Man:2001].

• In her attempt to bridge the two main approaches to cotilting modules
mentioned above, L. Angeleri Hügel [Ang:2000] presented the notions
of finitely cotilting modules and Colby-modules over arbitrary ground
rings. She showed that finitely cotilting modules and cotilting modules
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in the sense of R. Colby [Col:1989] coincide over Morita rings ; and
that a module RC that is finitely generated and product complete is
finitely cotilting if and only if RC is cotilting in the sense of [CDT:1997].
Moreover, she obtained a cotilting theorem for Colby-bimodules over
arbitrary ground rings (showing that there is no need for the full power
of the Noetherian assumption in Colby’s cotilting theorem).

• The notion of infinitely generated cotilting modules of arbitrary fi-
nite injective dimension was introduced by L. Angeleri Hügel and F.U.
Coelho [AC:2001] as dual to infinitely generated tilting modules of finite
projective dimension presented in the same paper.

• In [GT:2000], R. Göbel and J. Trlifaj gave a complete description of
(partial) cotilting Abelian groups assuming Gödel’s Axiom of Con-
structability V = L. In [CF:2001], R. Colby and K. Fuller introduced
the notion of costar modules as dual to ∗1-module (in the sense of
[MO:1989]). In case R is a finite-dimensional algebra over a field K,
they showed that a finitely generated R-module is a costar module if
and only if HomK(M,K) is a ∗1-module, and that a faithful costar
module is a cotilting module. The interplay between costar modules
and cotilting modules was investigated further by the two authors in
[CF:2004].

• In [Wis:2002], R. Wisbauer considered various injectivity and cogen-
erating conditions for objects in Grothendieck categories which result
from dualizing notions of interest in the study of (self)-tilting objects.
In particular, for a given module RC and R := R/annR(C), he con-
sidered cotilting modules in the category π[RM ] = RM. Moreover, he
introduced the notion of f-cotilting modules and showed that such an
R-module RC induces a duality between suitable subcategories of RM
and MEnd(RC)op .

• In [Baz], S. Bazzoni studied cotilting modules over commutative rings
and showed that one can restrict himself to cotilting modules over lo-
cal commutative rings. Moreover, she showed that all cotilting modules
over Prüfer domains are 1-cotilting; and that the study of their struc-
ture can be reduced to the study of a special class of cotilting modules
over maximal valuation domains. Moreover, she showed that all cotilt-
ing modules over a valuation domain R are of cofinite type if and only
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if R is strongly discrete. For strongly discrete valuation domains and
maximal valuation domains, a complete description (up to equivalence)
for the structure of cotilting modules was given.

• The relation between cotilting modules and pure-injectivity was investi-
gated by several authors. For example, S. Bazzoni showed in [Baz:2003,
Theorem 2.8] that 1-cotilting modules over any ground ring are pure-
injective; and in [Baz:2004(a)] that all cotilting modules are pure-
injective in case the base ring R is a Prüfer domain or is a countable
commutative ground ring. Recently, J. Štoviček [Sto:2006, Sto:2006]
proved that over any ground ring “all cotilting modules are pure-injective”.

• In [GT:2006], R. Göbel and J. Trlifaj suggested two possible directions
for the classification of cotilting modules, namely showing that cotilting
modules over specific rings are dual to tilting modules (whence of cofi-
nite type), or using known classification of pure-injective modules over
particular rings. They presented results in either direction and gave,
as an application, a classification (up to equivalence) of all cotilting
modules over Dedekind domains.

• The recent monograph [AHK:2007] contains a number of interesting
articles on cotilting modules including an interesting article on cotilting
dualities by R. Colpi and K. Fuller.
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Part III

Open Problems
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In this part, we include some open problems about the structure of
tilting and cotilting modules over commutative rings that we formulated after
an intensive literature review. Some of these problems are also highlighted
in the literature (e.g. [GT:2006]).

Recently Solved Problems:

First of all, we point out that two of the long standing open problems in
the theory of tilting (cotilting) modules over arbitrary associative rings were
solved recently.

All known tilting modules were noticed to be of finite type and it was
conjectured that all tilting modules are of finite type. Recently S. Bazzoni
and J. Štoviček proved the conjecture in the affirmative:

First Solved Problem: ([BS, Theorem 4.2.]) Over any associative ring,
all tilting modules are of finite type.

The relation between cotilting and pure-injective modules was investi-
gated by many authors. Several classes of cotilting modules were known to
be pure-injective. Recently, J. Štoviček settled this problem:

Second Solved Problem: ([Sto:2006, Theorem 13]) Over any associa-
tive ring, all cotilting modules are pure-injective.

Main Goal and Main Problem:

Main Goal: Developing a “Multiplicative Ideal Theory”-approach to
study the structure of tilting (cotilting) modules over commutative rings.

Main Problem: Characterizing the tilting (cotilting) modules over dif-
ferent classes of (non Prüfer) integral domains and commutative rings.
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Some Observations:

In what follows we answer the question that was the main motivation
for investigating tilting modules over commutative rings:

Characterize the commutative rings R, for which non-zero

finitely generated ideals are classical 1-tilting R-modules?

As a consequence of Proposition 329, we get the following character-
ization of Dedekind (Prüfer) domains:

Theorem 391. A commutative ring R is a Dedekind (Prüfer) domain if
and only if every non-zero (finitely generated) ideal 0 6= I C R is n-tilting
for some n ∈ N.
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Open Problems on Tilting Modules:

Problem 1: Characterize, up to equivalence, the 1-tilting modules over
special classes of (non-Prüfer) integral domains (e.g. Matlis domains, Krull
domains and their generalizations). Extend such characterizations to n-
tilting modules for n > 1.

Problem 2: Characterize, up to equivalence, all 1-tilting modules over
commutative 1-Gorenstein rings. Extend such characterizations to n-tilting
modules over n-Gorenstein rings for n > 1.

Remark 392. By [Baz], for n ≥ 1, all n-tilting modules over 1-Prüfer domains
are 1-tilting, hence completely characterized as in [Sal:2005].

The remark above suggests:

Problem 3: Fine an upper bound for the projective dimension of n-
tilting modules over n-Prüfer domains (in the sense of Costa [Cos:1994]). Is
n such an upper bound?

Problem 4: For n ≥ 2, characterize, up to equivalence, all n-tilting
modules over n-Prüfer domains.

Problem 5: Characterize the commutative rings for which every (finitely
generated) ideal is a 1-self-tilting module (∗1-modules). Extend such charac-
terizations to n > 1.

Remark 393. The class of ∗1-modules (i.e. self-small 1-star modules) coin-
cides with the class of ∗-modules in the sense of [MO:1989], whence finitely
generated as shown by J. Trlifaj in [Trl1994]. For n ≥ 2, self-small n-
star modules are not necessarily finitely generated as shown by J. Wei in
[Wei:2006].

By Proposition 245, self-small 1-self-tilting modules coincide with
the ∗1-modules (which are in fact finitely generated). This suggests:

Problem 6: Extend the definition of (self-small) 1-self-tilting modules
to (self-small) n-self-tilting modules for n > 1 and clarify its relation with
(self-small) n-star modules.
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The ∗1-module modules over valuation rings were characterized by
P. Zanardo in [Zan:1990]. This suggests:

Problem 7: Characterize, up to equivalence, all (self-small) 1-star mod-
ules over special classes of commutative rings. Extend such characterizations
to (self-small) n-star modules for n > 1.
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Open Problems on Cotilting Modules:

Being a progenerator in it its own category of modules, every ring R
is a tilting left (right) R-module. However, for an arbitrary ring R, the left
(right) R-module RR (RR) is not necessarily an injective cogenerator and not
even cotilting in general.

Definition 394. We call the ring R
(n-)cotilting ring, iff RR and RR are (n-)cotilting modules;
partial (n-)cotilting ring, iff RR and RR are partial (n-)cotilting mod-

ules;
finitely cotilting ring, iff RR and RR are finitely cotilting modules;
f-cotilting ring, iff RR and RR are f -cotilting modules;
Colby-ring, iff RRR is a Colby-bimodule.

Example 395. By Theorem 303, every (commutative) Artinian n-Gorenstein
ring is an n-cotilting ring.

Example 396. (Trlifaj, see [Ang:2000, Examples 2.1., 2.4.]) The ring of inte-
gers Z is finitely cotilting that is not cotilting. For a prime number p ∈ P,
the complete discrete valuation ring Jp of all p-adic integers is a Colby-ring
that is not finitely cotilting.

Problem 1. Investigate the new classes of rings defined above. In par-
ticular, construct examples of (partial) cotilting rings, finitely cotilting rings,
f -cotilting rings and Colby-rings.

Problem 2. Give a complete description, up to equivalence, for the
structure of the 1-cotilting modules over commutative 1-Gorenstein rings.
Extend the results to n-Gorenstein rings for n ≥ 2.

Problem 3. Give a complete description, up to equivalence, for the
structure of self-cotilting modules over special classes of commutative rings
and domains (e.g. Prüfer domains, Dedekind domains, valuation domains).

In light of Theorems 301 and 299 an open problem (raised by J.
Trlifaj in [Trl:2007, 4.20.] and [GT:2006]) is:

Problem 4. Characterize the rings over which all cotilting modules are
equivalent to duals of tilting modules.
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Problem 5. ([GT:2006]) Characterize the structure of cotilting modules
over Matlis domains.

S. Bazzoni gave in [Baz] a complete description for the structure of
cotilting modules of cofinite type over Prüfer (valuation) domains. However,
not much is known about the structure of n-cotilting modules over non-Prüfer
domains:

Problem 6. Characterize the 1-cotilting modules (of cofinite type) over
special classes of non-Prüfer commutative rings. Extend the results to n-
cotilting modules over for n > 1.
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Part IV

Appendix: (Co)Homology
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Complexes

In this appendix we recall the basic definitions and results concerning
the Ext and Tor functors that are needed in this report. Our main reference
for the basics of “Homological Algebra” will be [Osb:2000] (in addition to
[Rot:1979], [HS:1970] and [Wei-2003]).

Throughout R,S denote associative rings with non-zero units. All
modules are assumed to be unitary. With Ab we denote the category of
Abelian groups, with RM,SM the categories of left R-module, left S-modules,
respectively, and with MR, MS the categories of right R-modules, right S-
modules respectively.

397. With a degree-k morphism between Z-indexed sequences of R-modules
ϕ : {An}n∈Z → {A′n}n∈Z we mean a set of R-linear morphisms {ϕn : An →
An+k}n∈Z. The class of Z-indexed sequences of R-modules along with degree-
0 morphisms between them form an additive category, which we denote with
LZ
R.

Chain Complexes:

398. A chain complex C = (C, ∂) := {Cn, ∂n}n∈Z over R consists of a set
{Cn}n∈Z of R-modules along with a set of R-linear morphisms {∂n : Cn →
Cn−1}n∈Z

...→ Cn+1
∂n+1→ Cn

∂n→ Cn−1 → ...

such that ∂n ◦ ∂n+1 = 0 for all n ∈ Z. The maps {∂n}n∈Z are called differ-
entials (or boundary operators). For each n ∈ Z, we set Zn := Ker(∂n)
(called the nth-cycle) and Bn := Im(∂n) (called the nth-boundary).
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399. For two chain complexes (C, ∂) and (C̃, ∂̃), a morphism of chain

complexes φ : C→ C̃ consists of a class of R-linear morphisms {φn : Cn →
C̃n}, such that φn−1 ◦ ∂n = ∂̃n ◦ φn for all n ∈ Z. The class of all chain com-
plexes over R with morphisms of chain complexes form an Abelian category,
which we denote by ChR. Moreover, if R,S are two rings and F : RM→ SM
is an additive covariant functor, then for every chain complex {Cn, ∂n}n∈Z
over R we have a chain complex over S given by {F (Cn), F (∂n)}n∈Z.

400. Let {Cn, ∂n}n∈Z be a chain complex over R. The homology modules2

associated to C are

Hn(C) := Zn/Bn = Ker(∂n)/Im(∂n+1) for all n ∈ Z, (6.1)

and measure the deviation from exactness for the chain complex C. It’s clear
that we have a Z-indexed sequence of R-modules H(C) := {Hn(C)}n∈Z.
Every morphism φ : C → D of chain complexes over R induces a degree-
0 morphism of Z-indexed sequences of R-modules H(φ) : H(C) → H(D).
Hence, we have a functor, the so called homology functor

H : ChR → LZ
R, C 7→ {Hn(C)}n∈Z. (6.2)

Definition 401. A chain complex

C := ...→ Cn+1
∂n+1→ Cn

∂n→ Cn−1 → ...→ C1
∂1→ C0

∂0→ ∂ → 0

is said to be
projective, iff Cn is projective for each n ≥ 0;
acyclic, iff Hn(C) = 0 for each n ≥ 1; equivalently, iff the following long

sequence is exact:

...→ Cn+1
∂n+1→ Cn

∂n→ Cn−1 → ...→ C2
∂2→ C1

∂1→ C0
π→ H0(C)→ 0

Cochain Complexes

402. A cochain complex C = (C, δ) := {Cn, δn+1}n∈Z over R consists of a
class of R-modules {Cn}n∈Z and a class of R-linear morphisms {δn+1 : Cn →
Cn+1}n∈Z

...→ Cn−1 δn

→ Cn δn+1

→ Cn+1 → ...
2called also Homology groups in case R = Z
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such that δn+1 ◦ δn = 0 for all n ∈ Z. The maps {δn}n∈Z are called differen-
tials (or coboundary operators). For each n ∈ Z we set Zn := Ker(δn+1)
(called the nth-cocycle) and Bn := Im(δn) (called the nth-coboundary).

403. For two cochain complexes (C, δ) and (C̃, δ̃) a morphism of cochain

complexes ψ : C → C̃ consists of a class of R-linear morphisms {ψn :

Cn → C̃n}, such that ψn+1 ◦ δn+1 = δ̃
n+1
◦ ψn for all n ∈ Z. The class of

all cochain complexes over R with morphisms of cochain complexes form an
Abelian category, which we denote by CChR. Moreover, if R,S are two rings
and F : RM → SM is an additive covariant functor, then for every cochain
complex {Cn, δn+1}n∈Z over R we have a cochain complex over S given by
{F (Cn), F (δn+1)}n∈Z.

Remark 404. For every chain complex (C, ∂) := {Cn, ∂n}n∈Z we can con-
struct a cochain complex (D, δ) := {Dn, δn+1}n∈Z = {C−n, ∂−n}n∈Z (and
vice versa).

405. Let {Cn, δn+1}n∈Z be a cochain complex over R. The cohomology
modules3 associated to C are

Hn(C) := Zn/Bn = Ker(δn+1)/Im(δn) for all n ∈ Z,

and measure the deviation from exactness of the cochain complex C. It’s clear
that we have then a Z-indexed sequence of R-modules H(C) := {Hn(C)}n∈Z.
Every morphism ψ : C→ D of cochain complexes over R induces a degree-
0 morphism of Z-indexed sequences of R-modules H(ψ) : H(C) → H(D).
Hence, we have a functor, the so called cohomology functor

CH : CChR → LZ
R, C 7→ {Hn(C)}n∈Z.

Definition 406. A cochain complex of R-modules

C : 0→ δ
δ0→ C0 δ1→ C1 δ2→ C2 → ...→ Cn−1 δn

→ Cn δn+1

→ Cn+1 → ...

(with Cn = 0 for all n < 0) is called
injective, iff Cn is injective for all n ≥ 0;
acyclic, iff the cohomology module Hn(C) = 0 for each n ≥ 0, equiva-

lently iff the following long sequence is exact

0→ H0(C)
ι→ C0 δ1→ C1 δ2→ ...→ Cn−1 δn

→ Cn δn+1

→ Cn+1 → ...

3In case R = Z, these are called the cohomology groups
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Homological Dimensions

Definition 407. Let A be an R-module. A short exact sequence of R-
modules

0→ K → P
π→ A→ 0 (6.3)

with PR free (respectively projective, flat) is called a free (respectively pro-
jective, flat) presentation of A.

Lemma 408. Every R-module has a free (respectively projective, flat) pre-
sentation.

Definition 409. A projective (flat) resolution of an R-module A is a
long exact sequence

P : ...→ Pn+1
∂n+1→ Pn

∂n→ Pn−1 → ...→ P1
∂1→ P0

π→ A→ 0, (6.4)

where Pn is projective (flat) for all n ≥ 0. We usually write

PA := ...→ Pn+1
∂n+1→ Pn

∂n→ Pn−1 → ...→ P1
∂1→ P0

(so that P can be rewritten as PA
π→ A→ 0) and

PÃ := PA → 0 : ...→ Pn+1
∂n+1→ Pn

∂n→ Pn−1 → ...→ P1
∂1→ P0

∂0→ 0.

Remark 410. Let A be an R-module with a projective (flat) resolution P
(6.4). Then

H0(PÃ) = Ker(∂0)/ Im(∂1) = P0/Ker(π) ' A.

So a projective (flat) resolution of A is a projective (flat) acyclic chain com-
plex

C := ...→ Cn+1
∂n+1→ Cn

∂n→ Cn−1 → ...→ C1
∂1→ C0

(for which Cn = 0 for n < 0) together with an isomorphism of R-modules
H0(C) ' A.

Lemma 411. Every R-module A has a free (projective, flat) resolution.
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Definition 412. Let B be an R-module. A short exact sequence of R-
modules

0→ B
ι→ E → G→ 0 (6.5)

with RE injective is called an injective copresentation of B.

Lemma 413. Every R-module has an injective copresentation.

Definition 414. An injective coresolution of an R-module B is a long
exact sequence

E : 0→ B
ι→ E0 δ1→ E1 → ...→ En−1 δn

→ En δn+1

→ En+1 → ... (6.6)

where En is injective for all n ≥ 0. We usually write

EB : E0 δ1→ E1 → ...→ En−1 δn

→ En δn+1

→ En+1 → ...

(so that E can be rewritten as 0→ B
ι→ EA) and

EB̃ := 0→ EB : 0
δ0→ E0 δ1→ E1 δ2→ E2 → ...→ En δn+1

→ En+1 → ...

Remark 415. Let B be an R-module with an injective coresolution E (6.6).
Then

H0(EB̃) = Ker(δ1)/ Im(δ0) ' Ker(δ1) = Im(ι) = B. (6.7)

So an injective coresolution of B is an injective acyclic cochain complex

C : C0 δ1→ C1 δ2→ C3 → ...→ Cn−1 δn

→ Cn δn+1

→ Cn+1 → ...

(for which Cn = 0 for n < 0) together with an isomorphism of R-modules
H0(C) ' B.

Lemma 416. Every R-module B has an injective coresolution.
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Derived Functors

In what follows we introduce the notions of left and right derived func-
tors of additive functors. Let R,S be rings. The reader should be warned that
different authors interchange the definitions of left and right derived func-
tors (especially those of contravariant functors). In what follows we follow
[Osb:2000].

Definition 417. A covariant functor F : RM→ SM is called

additive, iff F (
n⊕
j=1

Mj) =
n⊕
j=1

F (Mj) for any finite set of R-modules

{M1, ...,Mn};
strongly additive, iff F (

⊕
Λ

Mλ) =
⊕

Λ

F (Mλ) for any set of R-modules

{Mλ}Λ.

Left Derived Covariant Functors

418. Let F : RM→ SM be an additive covariant functor. For an R-module
M pick a projective resolution of M :

...→ Pn+1
∂n+1→ Pn

∂n→ Pn−1 → ...→ P1
∂1→ P0

π→M → 0.

Applying F to the chain complex of R-modules

PM̃ : ...→ Pn+1
∂n+1→ Pn

∂n→ Pn−1 → ...→ P1
∂1→ P0

∂0→ 0,
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we get a chain complex of S-modules:

...→ F (Pn+1)
F (∂n+1)→ F (Pn)

F (∂n)→ F (Pn−1)→ ...→ F (P1)
F (∂1)→ F (P0)

F (∂0)→ 0

Define

LnF (M) := Hn(F (PM̃)) := Ker(F (∂n))/ Im(F (∂n+1)), for n ≥ 0.

It can be shown that S-modules LnF (M) are (up to isomorphism) inde-
pendent of the projective resolution of M used to compute them; and that,
moreover, we have additive covariant functors (called the left derived func-
tors of F ):

LnF (•) : RM→ SM, for n ≥ 0.

Remark 419. Let F : RM→ SM be an additive right exact covariant functor.
If M is an R-module, then applying F to a projective resolution P : PM →
M → 0 of M yields an exact sequence of S-modules

F (P1)
F (∂1)→ F (P0)

F (π)→ F (M)→ 0;

and applying it to the chain complex of R-modules PM̃ := PM
∂0→ 0 yields

the chain complex of S-modules

...→ F (P1)
F (∂1)→ F (P0)

F (∂0)→ 0.

Consequently, we get isomorphisms of S-modules

L0F (M) := H0(F (PM̃)) = Ker(F (∂0))/Im(F (∂1))
= F (P0)/Ker(F (π)) ' F (M).�

(6.8)
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Left Derived Contravariant Functors

420. Let G : RM → SM be an additive contravariant functor. For an R-
module M pick a projective resolution of M :

...→ Pn+1
∂n+1→ Pn

∂n→ Pn−1 → ...→ P1
∂1→ P0

π→M → 0.

Applying G to the chain complex

PM̃ : ...→ Pn+1
∂n+1→ Pn

∂n→ Pn−1 → ...→ P1
∂1→ P0

∂0→ 0,

we get a cochain complex of S-modules:

0
G(∂0)→ G(P0)

G(∂1)→ G(P1)→ ...→ G(Pn−1)
G(∂n)→ G(Pn)

G(∂n+1)→ G(Pn+1)→ ...

Define

LnG(M) := Hn(G(PM̃)) := Ker(G(∂n+1))/ Im(G(∂n)), for n ≥ 0. (6.9)

It can be shown that the S-modules LnG(M) are (up to isomorphism) inde-
pendent of the projective resolution of M used to compute them and that,
moreover, we have additive contravariant functors (called the left derived
functors of G):

{LnG(•) : RM→ SM, for n ≥ 0.

Remark 421. Let G : RM → SM be an additive left exact contravariant
functor. If M is an R-module, then applying G to a projective resolution
P : PM →M → 0 of M yields a short exact sequence of R-modules

0→ G(M)
G(π)→ G(P0)

G(∂1)→ G(P1);

and applying it to the cochain complex of R-modules PM̃ := PM
∂0→ 0 yields

the cochain complex of S-modules

0
G(∂0)→ G(P0)

G(∂1)→ G(P1)→ ...

Consequently, we get isomorphisms of S-modules

L0G(M) := H0(G(PM̃)) = Ker(G(∂1))/Im(G(∂0))
:= Ker(G(∂1)) = Im(G(π))
= G(M).�

(6.10)

165



Right Derived Covariant Functors

422. Let F : RM→ SM be an additive covariant functor. For an R-module
M pick an injective coresolution

E : 0→M
ι→ E0 δ1→ E1 → ...→ En−1 δn

→ En δn+1

→ En+1 → ...

Applying F to the cochain complex of R-modules

EM̃ : 0
δ0→ E0 δ1→ E1 → ...→ En−1 δn

→ En δn+1

→ En+1 → ...,

we get a cochain complex of S-modules

0
F (δ0)→ F (E0)

F (δ1)→ F (E1)→ ...→ F (En−1)
F (δn)→ F (En)

F (δn+1)→ F (En+1)→ ...

Define

RnF (M) := Hn(F (EM̃)) := Ker(F (δn+1))/ Im(F (δn)), for n ≥ 0. (6.11)

It can be shown that the S-modules RnF (M) are (up to isomorphism) inde-
pendent of the injective coresolution of M used to compute them and that,
moreover, we have additive covariant functors (called the right derived
functors of F ):

RnF (•) : RM→ SM, for n ≥ 0.

Remark 423. Let F : RM→ SM be an additive left exact covariant functor.
If M is an R-module, then applying F to an injective coresolution E : 0

ι→
M → EM , yields an exact sequence

0→ F (M)
F (ι)→ F (E0)

F (δ1)→ F (E1);

and applying it to EM̃ := 0
δ0→ E0 δ1→ E1 → ... yields the cochain complex

0
F (δ0)→ F (E0)

F (δ1)→ F (E1)→ ...

Consequently, we get isomorphisms of S-modules

R0F (M) := H0(F (EM̃)) = Ker(F (δ1))/ Im(F (δ0))
= Ker(F (δ1)) = Im(F (ι))
= F (M).�
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Right Derived Contravariant Functors

424. Let G : RM → SM be an additive contravariant functor. For an R-
module M pick an injective coresolution

E : 0→M
ι→ E0 δ1→ E1 → ...→ En−1 δn

→ En δn+1

→ En+1 → ...

Applying G to the cochain complex

EM̃ : 0
δ0→ E0 δ1→ E1 → ...→ En−1 δn

→ En δn+1

→ En+1 → ...

we get a cochain complex of S-modules

G(En+1)
G(δn+1)→ G(En)

G(δn)→ G(En−1)→ ...→ G(E1)
G(δ1)→ G(E0)

G(δ0)→ 0

Define

RnG(M) := Hn(G(EM̃)) := Ker(G(δn))/ Im(G(δn+1)), for n ≥ 0. (6.12)

It can be shown that the S-modules RnG(M) are (up to isomorphism) inde-
pendent of the injective coresolution of M used to compute them and that,
moreover, we have additive contravariant functors (called the right derived
functors of G):

RnG(•) : RM→ SM, for n ≥ 0.

Remark 425. Let G : RM → SM be an additive right exact contravariant
functor. For any RM, applying G to an injective coresolution E : 0→M

ι→
EM yields an exact sequence

G(E1)
G(δ1)→ G(E0)

G(ι)→ G(M)→ 0;

and applying it to the cochain complex of R-modules EM̃ := 0
δ0→ E0 δ1→

E1 → ... yields the cochain complex of S-modules

...→ G(E1)
G(δ1)→ G(E0)

G(δ0)→ 0

Consequently, we get isomorphisms of S-modules

R0G(M) := H0(G(EM̃)) = Ker(G(δ0))/ Im(G(δ1))
= G(E0)/Ker(G(ι)) ' G(M).�
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Ext and Tor Functors

For an R-module M we set

PM̃ := ...→ Pn+1
∂n+1→ Pn

∂n→ Pn−1 → ...→ P1
∂1→ P0 −→ 0

(obtained from a projective resolution PM̃ →M → 0);

FM̃ := ...→ Fn+1
∂n+1→ Fn

∂n→ Fn−1 → ...→ F1
∂1→ F0 −→ 0;

(obtained from a flat resolution FM̃ →M → 0);

EM̃ := 0→ E0 δ1→ E1 → ...→ En−1 δn

→ En δn+1

→ En+1 → ...
(obtained from an injective coresolution 0→M → EM̃);

PM := 0→ X → P
π→M → 0 (a projective presentation of RM);

FM := 0→ X → F
π→M → 0 (a flat presentation of RM);

EM := 0→M
ι→ E → Z → 0 (an injective copresentation of RM);

The following table provides a summary of the definitions presented in the
sequel:

ExtnR(•, B) := (LnHomR(−, B))(•), ExtnR(A,B) = Hn(HomR(PÃ, B));

Ext
n

R(A, •) := (RnHomR(A,−))(•), Ext
n

R(A,B) = Hn(HomR(A,EB̃));

TorRn (•, B) := (Ln(−⊗R B))(•), TorRn (A,B) = Hn(PÃ ⊗R B));

Tor
R

n (A, •) := (Ln(A⊗R −))(•), Tor
R

n (A,B) = Hn(A⊗R PB̃));

torRn (A, •) := Hn(FÃ ⊗R −)), torRn (A,B) = Hn(FÃ ⊗R B));

tor
R
n (•, B) := Hn(A⊗R FB̃)), tor

R
n (A,B) = Hn(A⊗R FB̃));

(6.13)
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The ext-functors

The Functor extR(A, •) :

426. Let A be an R-module. For any R-module B, applying HomR(−, B) to
an arbitrary projective presentation of A :

0 −→ K
ι−→ P

π−→ A→ 0.

we get the exact sequence of Abelian groups

0 −→ HomR(A,B)
−◦π−→ HomR(P,B)

−◦ι−→ HomR(K,B).

We define

extR(A,B) := coker(− ◦ ι) = HomR(K,B)/Im(− ◦ ι), (6.14)

i.e. extR(A,B) is the Abelian group that yields an exact sequence of Abelian
groups

0 −→ HomR(A,B)
−◦π−→ HomR(P,B)

−◦ι−→ HomR(K,B) −→ extR(A,B) −→ 0.
(6.15)

It can be shown that Abelian groups extR(A,B) are (up to isomorphism)
independent of the projective resolution of RA used to compute them; and
that, moreover, we have an additive covariant functor

extR(A, •) : RM→ Ab.

Remark 427. Let A,B be R-modules and pick a projective presentation of
A :

0→ K
ι−→ P

π−→ A −→ 0.

Define an equivalence relation on HomR(K,B) :

ϕ1 ∼ ϕ2 ⇔ ϕ1 − ϕ2 = ψ ◦ ι for some ψ ∈ HomR(P,B).

Then extR(A,B) can be shown to be isomorphic to the Abelian group of
equivalence classes HomR(K,B)/ ∼, i.e.

extR(A,B) ' HomR(K,B)/ ∼ = {[ϕ] | ϕ ∈ HomR(K,B) }.
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The Functor extR(A, •) :

428. Let B be an R-module and

0 −→ B
ι−→ E

π−→ G −→ 0

be an injective copresentation. For an R-module A, applying HomR(A,−)
yields an exact sequence of Abelian groups

0 −→ HomR(A,B)
ι◦−−→ HomR(A,E)

π◦−−→ HomR(A,G)

We define

extR(A,B) := coker(π ◦ −) = HomR(A,G)/Im(π ◦ −); (6.16)

i.e. extR(A,B) is the Abelian group that yields an exact sequence of Abelian
groups

0 −→ HomR(A,B)
ι◦−−→ HomR(A,E)

π◦−−→ HomR(A,G) −→ extR(A,B) −→ 0.
(6.17)

It can be shown that Abelian groups extR(A,B) are (up to isomorphism)
independent of the injective copresentation of RB used to compute then; and
that, moreover, we have an additive covariant functor

extR(•, B) : RM→ Ab.
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Ext and Extensions

Definition 429. Let A,B be R-modules. An extension of B by A4 is a
short exact sequence of R-modules

0→ B → E → A→ 0.

430. Two extensions 0→ B → E → A and 0→ B → E ′ → A→ 0 of B by
A are equivalent, iff there exists a commutative diagram

0 → B
ι→ E

π→ A → 0
q ↓' q

0 → B
ι′→ E ′

π′→ A → 0

(6.18)

With ExtR(A,B) we denote the set of extensions of B by A.

Definition 431. An extension of B by A is said to be split, iff it’s equivalent
to the canonical extension

0→ B
ιB→ A⊕B πA→ A→ 0. (6.19)

With S(A,B) we denote the class of split extensions of B by A.

Lemma 432. If A,B are R-modules with ExtR(A,B) = 0, then every ex-
tension of B by A splits.

Theorem 433. For any R-modules A,B we have a bijection

ExtR(A,B)
Θ←→ extR(A,B). (6.20)

Corollary 434. Given two R-modules A,B, the set ExtR(A,B) has the

structure of an Abelian group with neutral element S(A,B)
Θ←→ 0extR(A,B).

4Some authors would say, E is an extension of A by B
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Theorem 435. For any R-modules A,B we have isomorphisms of Abelian
groups

ExtR(A,B) ' extR(A,B) ' extR(A,B).

Lemma 436. Let A,B be R-modules and {Mλ}Λ be a class of R-modules.
For every n ≥ 0, we have isomorphisms of Abelian groups

ExtR(
⊕
λ∈Λ

Mλ, B) =
∏
λ∈Λ

ExtR(Mλ, B) and ExtR(A,
∏
λ∈Λ

Mλ) =
∏
λ∈Λ

ExtR(A,Mλ).

(6.21)

Theorem 437. ([HS:1970, Theorem III.5.2.]) Consider an exact sequence
of R-modules

0 −→ L −→M −→ N → 0.

1. For every R-module A, we have a connecting morphism β : HomR(A,N) 99K
ExtR(A,L) such that the following sequence of Abelian groups is exact

0 −→ HomR(A,L) −→ HomR(A,M) −→ HomR(A,N)
β

99K ExtR(A,L) −→ ExtR(A,M) −→ ExtR(A,N)

2. For every R-module B, we have a connecting morphism β : HomR(A,N) 99K
ExtR(A,L) such that the following sequence of Abelian groups is exact

0 −→ HomR(N,B) −→ HomR(M,B) −→ HomR(L,B)
γ

99K ExtR(N,B) −→ ExtR(M,B) −→ ExtR(L,B).

Theorem 438. The following are equivalent for an R-module A :

1. AR is projective;

2. HomR(A,−) is (right) exact;

3. ExtR(A,M) = 0 for every R-module M.

Theorem 439. The following are equivalent for an R-module B :

1. B is injective;

2. HomR(−, B) is (right) exact;

3. ExtR(M,B) = 0 for every R-module M.
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The Functors Extn
R(•, B) :

440. Let B be an R-module and consider the additive left exact contravariant
functor HomR(−, B) : RM → Ab. Associated to B is a class of additive
contravariant functors

ExtnR(•, B) := LnHomR(−, B)(•), n ≥ 0. (6.22)

As clarified above, to find ExtnR(A,B) := LnHomR(−, B)(A) for some R-
module A, we pick a projective resolution PA of A and compute the coho-
mology groups

ExtnR(A,B) := Hn(HomR(PÃ, B)), n ≥ 0.

It follows directly from Remark 421 that we have

Proposition 441. Consider an R-module B. For every R-module A we have
a natural isomorphism of Abelian groups Ext0

R(A,B) ' HomR(A,B).

The Functors Ext
n
R(A, •) :

442. Let A be an R-module and consider the additive left exact covariant
functor HomR(A,−) : RM → Ab. Associated to A is a set of additive co-
variant functors

Ext
n

R(A, •) := RnHomR(A,−)(•), n ≥ 0. (6.23)

As clarified above, to compute Ext
n

R(A,B) for some R-module B, pick an
injective coresolution EB of B and find the cohomology groups

Ext
n

R(A,B) := Hn(HomR(A,EB̃)), n ≥ 0.

It follows directly from Remark 423 that we have

Proposition 443. Let A be an R-module. For any R-module B we have a

natural isomorphism of Abelian groups Ext
0

R(A,B) ' HomR(A,B).
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Proposition 444. For any R-modules A,B, we have natural isomorphisms
of Abelian groups

Ext
n

R(A,B) ' ExtnR(A,B), for n ≥ 0. (6.24)

Lemma 445. Let A,B be R-modules and {Mλ}Λ be a class of R-modules.
For every n ≥ 0, we have isomorphisms of Abelian groups

ExtnR(
⊕
λ∈Λ

Mλ, B) =
∏
λ∈Λ

ExtnR(Mλ, B) and ExtnR(A,
∏
λ∈Λ

Mλ) =
∏
λ∈Λ

ExtnR(A,Mλ).

(6.25)

Proposition 446. For any R-modules A,B, we have natural isomorphisms
of Abelian groups

Ext1
R(A,B) ' ExtR(A,B) ' Ext

1

R(A,B)
' extR(A,B) ' extR(A,B).
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Theorem 447. Consider a short exact sequence of R-modules

0→ L→M → N → 0.

1. For every R-module A, we have a sequence of connecting morphisms of
Abelian groups {βn : Extn−1

R (A,N) 99K ExtnR(A,L)}n≥1 such that the
following long sequence of Abelian groups is exact:

0 → HomR(A,L) → HomR(A,M) → HomR(A,N)
β1

99K Ext1
R(A,L) → Ext1

R(A,M) → Ext1
R(A,N)

β2
99K Ext2

R(A,L) → Ext2
R(A,M) → Ext2

R(A,N)
99K ... → ... → ...
βn−1

99K Extn−1
R (A,L) → Extn−1

R (A,M) → Extn−1
R (A,N)

βn
99K ExtnR(A,L) → ExtnR(A,M) → ExtnR(A,N)
βn+1

99K Extn+1
R (A,L) → Extn+1

R (A,M) → Extn+1
R (A,N)

99K ... → ... → ...

2. For every R-module B, we have a sequence of connecting morphisms
{γn : Extn−1

R (L,B) → ExtnR(N,B)}n≥1 such that the following long
sequence of Abelian groups is exact:

0 → HomR(N,B) → HomR(M,B) → HomR(L,B)
γ1

99K Ext1
R(N,B) → Ext1

R(M,B) → Ext1
R(L,B)

γ2

99K Ext2
R(N,B) → Ext2

R(M,B) → Ext2
R(L,B)

99K ... → ... → ...
γn−1

99K Extn−1
R (N,B) → Extn−1

R (M,B) → Extn−1
R (L,B)

γn

99K ExtnR(N,B) → ExtnR(M,B) → ExtnR(L,B)
γn+1

99K Extn+1
R (N,B) → Extn+1

R (M,B) → Extn+1
R (L,B)

99K ... → ... → ...
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The Projective (Injective) Dimension:

Definition 448. The projective dimension of an R-module A is defined
as

proj.dim.(RA) := inf{n | Extn+1
R (A, •) ≡ 0}.

Theorem 449. ([Wei-2003, Lemma 4.1.6.]) The following are equivalent for
an R-module A and n ≥ 0 :

1. proj.dim.(A) ≤ n;

2. Extn+l
R (A,M) = 0 for every R-module M ;

3. Extn+l
R (A,M) = 0 for all l ≥ 1 and all R-modules M ;

4. There exist projective R-modules P0, ..., Pn fitting in an exact sequences
of R-modules

0→ Pn
fn→ ...→ P0

f0→ A→ 0;

5. In any projective resolution

...→ Pn+1
∂n+1→ Pn

∂n→ Pn−1 → ...→ P0
∂0→ A→ 0,

of A, the nth syzygy module Kn := Ker(∂n) is projective.

Definition 450. The injective dimension of an R-module B is defined as

inj.dim.(RB) := inf{n | Extn+1
R (•, B) ≡ 0}.

Theorem 451. ([Wei-2003, Lemma 4.1.6.]) The following are equivalent for
an R-module B :

1. inj. dim(B) ≤ n;

2. Extn+l
R (M,B) = 0 for all l ≥ 1 and all R-modules M ;

3. Extn+1
R (M,B) = 0 for every R-module M ;

4. Extn+1
R (R/I,B) = 0 for every left R-ideal I;
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5. There exist injective R-modules E0, ..., En fitting in an exact sequences
of R-modules

0→ B
ι→ E0 g1→ E1 → ...→ En−1 gn

→ En → 0;

6. In any injective coresolution

0→ B
ι→ E0 δ1→ E1 → ...→ En−1 δn

→ En δn+1

→ En+1 →

of B, the nth cozyzygy module Cn := Coker(δn) is injective.
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The Functor torR(A, •) :

452. Let A be a right R-module and pick a flat presentation

0
ι−→ K −→ F

π−→ A→ 0.

of AR. For any left R-module RB, applying the right exact functor −⊗R B,
yields the exact sequence of Abelian groups

K ⊗R B
ι⊗idB−→ F ⊗R B

π⊗idB−→ A⊗R B → 0.

We define
tor

R
(A,B) := Ker(ι⊗ idB), (6.26)

i.e. torR(A,B) to be the Abelian group that yields an exact sequence of
Abelian groups

0 −→ torR(A,B) −→ K ⊗R B
ι⊗idB−→ F ⊗R B

π⊗idB−→ A⊗R B −→ 0. (6.27)

In fact, for each left R-module B, the Abelian groups torR(A,B) are (up to
isomorphism) independent of the flat presentations of AR used to compute
them; and, moreover, we have an additive covariant functor

torR(A, •) : RM→ Ab.

Theorem 453. The following are equivalent for a right R-module A :

1. AR is flat;

2. A⊗R − : RM→ Ab is (left) exact;

3. torR(A,M) = 0 for every left R-module M.
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The Functor tor
R
(•, B) :

454. Let B be a left R-module and pick a flat presentation of B

0→ S
ι−→ U

π−→ B → 0.

For any right R-module A, applying the right exact functor A ⊗R − yields
the exact sequence of Abelian groups

A⊗R S
idA⊗ι−→ A⊗R U

idA⊗π−→ A⊗R B −→ 0.

We define
tor

R
(A,B) := Ker(idA ⊗ ι), (6.28)

i.e. tor
R
(A,B) is the Abelian group that yields an exact sequence of Abelian

groups

0 −→ tor
R
(A,B) −→ A⊗R S

idA⊗ι−→ A⊗R U
idA⊗π−→ A⊗R B −→ 0. (6.29)

It can be shown that for any rightR-moduleAR, the Abelian groups tor
R
(A,B)

are (up to isomorphism) independent of the flat presentation of RB used to
evaluate them; and that, moreover, we have an additive covariant functor

tor
R
(•, B) : MR → Ab.

Theorem 455. The following are equivalent for a left R-module B :

1. RB is flat;

2. −⊗R B : MR → Ab is (left) exact;

3. tor
R
(M,B) = 0 for every right R-module M.
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The functor torR
n (A, •) :

456. Let A be a right R-module and pick a flat resolution of AR :

...→ Fn+1
dn+1→ Fn

dn→ Fn−1 → ...→ F1
d1→ F0

π→ A→ 0. (6.30)

For any left R-module B, applying the right exact functor −⊗R B to (6.30)
yields a complex chain of Abelian groups

FÃ⊗RB : ...→ Fn+1⊗RB → Fn⊗RB → Fn−1⊗RB → ...→ F0⊗RB → 0.

We define

torRn (A,B) := Hn(FÃ ⊗R B) = Ker(dn ⊗R idB)/Im(dn+1 ⊗R idB). (6.31)

It can be shown that the Abelian groups torRn (A,B) are (up to isomorphism)
independent of the flat resolution of AR used to compute them; and that,
moreover, we have an additive covariant functor

torRn (A, •) := Hn(FÃ ⊗R •) : RM→ Ab.

The Functors tor
R
n (•, B) :

457. Let B be a left R-module and pick a flat resolution of RB :

FB : ...→ Fn+1
dn+1→ Fn

dn→ Fn−1 → ...→ F1
d1→ F0

π→ B → 0. (6.32)

For any right R-module AR, applying the right exact functor A⊗R − to the
chain complex of R-modules FB̃ yields a complex chain of Abelian groups

A⊗R FB̃ : ...→ A⊗R Fn+1 → A⊗R Fn → A⊗R Fn−1 → ...→ A⊗R F0 → 0.

We define

tor
R
n (A,B) := Hn(A⊗R FB̃) = Ker(idA ⊗R dn)/Im(idA ⊗R dn+1). (6.33)

It can be shown that for each RB the Abelian groups tor
R
n (A,B) are (up

to isomorphism) independent of the flat resolution of RB used to compute
them; and that, moreover, we have covariant functors

tor
R
n (•, B) := Hn(• ⊗R FB̃) : MR → Ab, for n ≥ 0.
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The Functors Torn
R(•, B) :

458. Let B be a left R-module and consider the additive right exact covariant
functor −⊗R B : MR → Ab. Associated to RB is a set of functors

TorRn (•, B) := Ln(−⊗R B)(•), n ≥ 0. (6.34)

As shown above, to compute TorRn (A,B) := Ln(−⊗R B)(A), for some right
R-module A, pick some projective resolution PA of A and find the homology
groups

TorRn (A,B) = Hn(PÃ ⊗R B), for n ≥ 0.

As a consequence of Remark 419 we get

Proposition 459. Let B be a left R-module. For every right R-module A
we have TorR0 (A,B) = A⊗R B.

The Functors Tor
n
R(A, •) :

460. Let A be a right R-module and consider the right exact covariant func-
tor A⊗R − : RM→ Ab. Associated to A is a set of functors

Tor
R

n (A, •) := Ln(A⊗R −)(•), for n ≥ 0. (6.35)

As shown above, to compute Tor
R

n (A,B) for any left R-module B, pick a
projective resolution PB of B and find the homology groups

Tor
R

n (A,B) := Hn(A⊗R PB̃), for n ≥ 0.

As a consequence of Remark 419 we get

Proposition 461. Let A be a right R-module. For every left R-module B

we have Tor
R

0 (A,B) ' A⊗R B.

Proposition 462. For any n ≥ 0 and any A ∈ MR and B ∈ RM we have
natural isomorphisms of Abelian groups

TorRn (A,B) ' tor
R
n (A,B) ' torRn (A,B) ' Tor

R

n (A,B), for n ≥ 0.
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Lemma 463. For any A ∈MR and B ∈ RM we have a natural isomorphism
of Abelian groups

TorR1 (A,B) ' Tor
R

1 (A,B) '
' torR1 (A,B) ' tor

R
1 (A,B)

torR(A,B) ' tor
R
(A,B).

Lemma 464. Let A be a right R-module and B a left R-module.

1. Let {Mλ}Λ be a class of left R-modules. For every n ≥ 0, we have
isomorphisms of Abelian groups

TorRn (A,
⊕
λ∈Λ

Mλ) =
⊕
λ∈Λ

TorRn (A,Mλ). (6.36)

2. Let {Nλ}Λ be a class of right R-modules. For every n ≥ 0, we have
isomorphisms of Abelian groups

TorRn (
⊕
λ∈Λ

Nλ, B) =
⊕
λ∈Λ

TorRn (Nλ, B).

183



Theorem 465. 1. Consider a short exact sequence of left R-modules

0→ L→M → N → 0.

For every right R-module AR, we have a sequence of connecting mor-
phisms {κn : TorRn (A,N) → TorRn−1(A,L)}n≥1 such that the following
long sequence of Abelian groups is exact:

... → ... → ... 99K

TorRn+1(A,L) → TorRn+1(A,M) → TorRn+1(A,N)
κn+1

99K

TorRn (A,L) → TorRn (A,M) → TorRn (A,N)
κn
99K

TorRn−1(A,L) → TorRn−1(A,M) → TorRn−1(A,N)
κn−1

99K
... → ... → ... 99K

TorR1 (A,L) → TorR1 (A,M) → TorR1 (A,N)
κ1

99K
A⊗R L → A⊗RM → A⊗R N → 0

2. Consider a short exact sequence of right R-modules

0→ L→M → N → 0.

For every left R-module RB, we have a sequence of connecting mor-
phisms {κn : TorRn (N,B) → TorRn−1(L,B)}n≥1 such that the following
long sequence of Abelian groups is exact:

... → ... → ... 99K

TorRn+1(L,B) → TorRn+1(M,B) → TorRn+1(N,B)
λn+1

99K

TorRn (L,B) → TorRn (M,B) → TorRn (N,B)
λn
99K

TorRn−1(L,B) → TorRn−1(M,B) → TorRn−1(N,B)
λn−1

99K
... → ... → ... 99K

TorR1 (L,B) → TorR1 (M,B) → TorR1 (N,B)
λ1

99K
L⊗R B → M ⊗R B → N ⊗R B → 0
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Proposition 466. Let n ≥ 0. For any right R-module AR and any left R-
module RB, we have a natural isomorphism of Abelian groups

TorRn (A,B) ' TorR
op

n (B,A).

Proposition 467. If R is a commutative ring, then we have for any n ≥ 0
and any R-modules A,B a natural isomorphism of R-modules

TorRn (A,B) ' TorRn (B,A).
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The Flat Dimension:

Definition 468. We define the
flat dimension of a right R-module AR as

flat.dim.(AR) := inf{n | Torn+1
R (A, •) ≡ 0};

the flat dimension of a left R-module RB as

flat.dim.(RB) := inf{n | Torn+1
R (•, B) ≡ 0};

Theorem 469. ([Wei-2003, Lemma 4.1.6.]) The following are equivalent for
a left R-module RB and n ≥ 0 :

1. flat.dim.(RB) ≤ n;

2. TorRn+l(M,B) = 0 for all l ≥ 1 and all right R-modules M ;

3. TorRn+1(M,B) = 0 for every right R-module M ;

4. TorRn+1(R/I,B) = 0 for every finitely generated left R-ideal I;

5. There exist flat R-modules F0, ..., Fn fitting in an exact sequences of
R-modules

0→ Fn
fn→ ...→ F0

f0→ B → 0;

6. In any flat resolution

...→ Fn+1
∂n+1→ Fn

∂n→ Fn−1 → ...→ F0
∂0→ B → 0,

of B, the nth syzygy module Kn := Ker(∂n) is flat.
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Global and Weak Dimensions

Definition 470. For the ring R, we define the
left global dimension of R as

LG.dim.(R) := sup{proj.dim.(RM) |M is a left R-module};

right global dimension of R as

RG.dim.(R) := sup{proj.dim.(MR) |M is a right R-module};

left weak dimension of R as

LW.dim.(R) := sup{flat.dim.(RM) |M is a left R-module};

right weak dimension of R as

RW.dim.(R) := sup{flat.dim.(MR) |M is a right R-module}.

Remarks 471. 1. There exist ringsR for which LG.dim.(R) 6= RG.dim.(R).

2. For any ring, LW.dim.(R) = RW.dim.(R) (called the weak dimension
of R and denoted by W.dim.(R)).

Theorem 472. 1. We have

LG.dim.(R) := sup{proj.dim.(RM) |M is a left R-module};
= inf{n ≥ 0 | Extn+1

R (•, •) ≡ 0};
= sup{inj.dim.(RM) |M is a left R-module};
= sup{proj.dim.(R/I) | I is a left ideal of R};

2. If LG.dim.(R) > 0, then

LG.dim.(R) = 1 + sup{proj.dim.(RI) | I is a left ideal of R};
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3. We have

W.dim.(R) := sup{flat.dim.(RM) |M is a left R-module};
= sup{flat.dim.(R/I) | I is a left ideal of R};
= inf{n ≥ 0 | TorRn+1(•, •) ≡ 0};
= sup{flat.dim.(NR) | N is a right R-module};
= sup{flat.dim.(R/I) | I is a right ideal of R};

4. If W.dim.(R) > 0, then

W.dim.(R) = 1 + sup{flat.dim.(RI) | I is a f.g. left ideal of R};
= 1 + sup{flat.dim.(RI) | I is a f.g. right ideal of R}.

Corollary 473. For the ring R we have

1. LG.dim.(R) ≤ 1 if and only if every left R-ideal is projective;

2. W.dim.(R) ≤ 1 if and only if every finitely generated left (right) R-
ideal is flat.
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[KS:1998] H. Krause and M. Saoŕın, On minimal approximations of
modules; in “Trends in the representation theory of finite-
dimensional algebras (Seattle, WA, 1997)”, 227-236, Contemp.
Math. 229, Amer. Math. Soc., Providence, RI (1998).

[Lam:1999] T.Y. Lam, Lectures on Moduels and Rings, Springer (1999).

[Man:2001] F. Mantese, Generalizing cotilting dualities, J. Algebra 236
(2001), 630-644.

[Mat:1964] E. Matlis, Cotorsion Modules, Mem. Amer. Math. Soc. 49
(1964).

[Mat:1972] E. Matlis, Torsion-free Modules, The University of Chicago
Press (1972).

[Mat:2004] H. Matsumura, Commutative Ring Theory. Cambridge Uni-
versity Press (2004).

[Miy:1986] Y. Miyashita, Tilting modules of finite projective dimension,
Math. Z. 193 (1986), 113-146.

[Miy:1992] Y. Miyashita, Generalized tilting modules and applications to
module theory, Math. J. Okayama Univ. 34 (1992), 75-98.

[Miy:2001] Y. Miyashita, Tilting modules associated with a series of idem-
potent ideals, J. Algebra 238 (2001), 485-501.

[MO:1989] C. Menini and A. Orsatti, Representable equivalences between
categories of modules and applications. Rend. Sem. Mat. Univ.
Padova 82 (1989), 203-231.

[Mor:1958] K. Morita, Duality for modules and its applications to the the-
ory of rings with minimum condition. Sci. Rep. Tokyo Kyoiku
Daigaku Sect. A 6 (1958), 83-142.

195



[MR:2004] F. Mantese and I. Reiten, Wakamatsu tilting modules, J. Al-
gebra 278(2) (2004), 532-552.

[Nau:1990] S.K. Nauman, Static modules, Morita contexts, and equiva-
lences. J. Algebra 135 (1990), 192-202.

[Osb:2000] M. Osborne, Basic Homological Algebra, Springer (2000).

[Ren:1996] R. Rentschler, Sur les modules M tels que Hom(M,−) com-
mute avec les sommes directes, C. R. Acad. Sci. Paris Sér. A-B
268 (1969).

[Rot:1979] J. Rotman, An Introduction to Homological Algebra, Academic
Press (1979).

[Sal:1979] L. Salce, Cotorsion theories for abelian groups, Symposia
Math. 21 (1979), 1-21.

[Sal:2004] L. Salce, Tilting modules over valuation domains, Forum
Math. 16 (2004), 539-552.

[Sal:2005] L. Salce, F-divisible modules and tilting modules over Prüfer
domains, J. Pure Appl. Algebra 199 (2005), 245-259.

[Sma:1984] S. Smal∅, Torsion theories and tilting modules. Bull. London
Math. Soc. 16 (1984), 518-522.
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closed under products, 82
cotilting, 92
definable, 99
hereditary, 25
of cofinite type, 99
of countable type, 99
of finite type, 99
partial cotilting, 92
partial tilting, 76
pre-partial n-tilting, 76
pre-partial cotilting, 92
pre-partial tilting, 76
pretorsion, 25
pretorsion-free, 25
product-complete, 28
resolving, 99
tilting, 76
torsion, 25
torsion-free, 25

Coboundary Operators, 159
Cochain

acyclic complex cochain, 159
cochain complex, 158
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injective complex cochain, 159
morphism of cochain complexes,

159
Cohomology

functor, 159
groups, 159
modules, 159

Commutative Ring
Gorenstein, 65
integrally closed, 58
Prüfer, 62
valuation, 64

Compliment
cotilt-compliment, 92
tilt-compliment, 77

Cotilting Modiules
partial n-cotilting, 92
partial cotilting, 92
pre-partial n-cotilting, 92
pre-partial cotilting, 92

Cotilting Modules, 90
n-cotilting, 90
Colby-bimodule, 108
Colby-module, 108
equivalent, 92
f-cotilting, 93, 108
finitely cotilting, 95
self 1-cotilting, 93

Cotilting Theorems, 108
Cotorsion Pair, 96

n-cotilting, 96
n-tilting, 96
cogenerator of, 96
complete, 96, 98
generator of, 96
hereditary, 96, 97
Kernel of a cotorsion pair, 96

Cozyzygy Module, 178

Derived Functors
left derived contravariant func-

tors, 165
left derived covariant functors,

164
right derived contravariant func-

tors, 167
right derived covariant functors,

166
Diagonal Reduction, 64
Differentials, 157, 159
Dimension

flat dimension, 186
injective dimension, 177
Krull, 52
left (right) global, 39
left global dimension, 187
left weak dimension, 187
projective dimension, 177
right global dimension, 187
right weak dimension, 187
weak dimension, 187

Divisibility Set, 48, 129
DVR

iscrete rank 1 valuation domain,
65

EDR, 64
Equivalence Bimodule, 56
Equivalent Matrices, 64
Extensions

equivalent, 172
split, 172

Faithfully Balanced Bimodule, 46
Finitistic Generalized Morita Du-

ality, 109
Flat Presentation, 160

200



Fractional ideal
invertible, 57

Fundamental Tilting Theorem, 106

Gabriel Filter, 50
Generalized S-Transform, 50
Generalized Multiplicative System,

50

Height of a Prime Ideal, 52
Homology

functor, 158
groups, 158
modules, 158

Ideal
fractional, 57
itegral, 57
pre-fractional, 57

Idealizer of an ideal, 58
idempotent

basic, 33
local, 32
primitive, 32

idempotents
orthogonal, 32

Injective Copresentation, 161
Injective Coresolution, 161
Integral

closure, 58
element, 58

Integral Domain
Dedekind, 66
discrete, 65
discrete rank 1, 65
elementary divisor, 64
elementary divisor domain (EDR),

123
Matlis, 62

maximal, 62
Prüfer, 54, 62
strongly discrete, 65
valuation, 64

Intermediate Extension, 65

Localizing System, 50
finitely generated, 50
principal, 50

Matlis Localization, 118
Module

I-cotorsion, 117
I-divisible, 51, 117
I-reduced, 117
I-torsion-free, 117
U -reflexive, 45
U -semi-reflexive, 45
U -torsionless, 45
Y -injective, 12
Y -projective, 12∑

-quasi-projective, 17

κ-generated, 12
S-divisible, 48
S-reduced, 48
S-torsion, 48
S-torsion-free, 48
hS-divisible, 50
k −

∑
-quasi-projective, 16

n-splitting, 17
S-divisible, 50
U -cogenerated, 12
U -generated, 12
U -injective, 15
U -projective, 15
Ext-injective in U , 15
Ext-projective in U , 15
adstatic, 37
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Artinian, 24
cofaithful, 26
cogenerator, 12
coherent, 21
cotorsion, 49
cotorsion-free, 49
countably generated, 12
cyclically presented, 12
definable, 99
divisible, 49
dually slender, 22
faithful, 14
faithfully projective, 39
finitely generated, 12
finitely presented, 21
FP-injective, 13
freely separable, 18
Fuchs module, 116
Fuchs-Salce module, 116
generator, 12
Gorenstein-flat, 36
Gorenstein-injective, 36, 102, 103
Gorenstein-projective, 36
injective, 13
injective in U , 15
locally projective, 17
mixed, 49
Noetherian, 24
of cofinite type, 99
of countable type, 99
of finite type, 99
primitive, 33
progenerator, 39, 104, 105, 114
projective, 13
projective on U , 15
projectively separable, 18
pure-injective, 16
pure-projective, 16

quasi-injective, 12
quasi-Progenerator, 105
quasi-progenerator, 39, 113
quasi-projective, 12
reduced, 49
reflexive, 109
self-cogenerator, 12
Self-generator, 12
self-small, 22
semisimple, 20
simple, 20
small, 22
splitting, 17
static, 37

strictly
∑

-quasi-projective, 17

strictly k−
∑

-quasi-projective,
16

strictly w-
∑

-quasi-projective,
17

subgenerator, 26
torsion, 49
torsion-free, 49
torsionless, 18
trace module, 18
universally torsionless, 18

w-
∏

-quasi-injective, 17

w-
∑

-quasi-projective, 17

weak subgenerator, 26
weakly Y -injective, 12

Morita
bimodule, 46
context, 40
equivalent rings, 39
morphisms between Morita con-

texts, 40
morphisms between Morita semi-
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contexts, 40
semi-context, 40
theorem for equivalences, 39

Non-degenerate
(pre-)fractional ideal, 57

Overring, 48

Picard Group, 56
relative Picard group, 56

PIR
Principal Ideal Ring, 62

Prüfer p-group, 68
Prüfer Domain, 120–122
Prime Ideal

associated, 52
branched, 49
unbranched, 49

Projective Presentation, 160
Projective Resolution, 160
Pure-exact Sequence, 16

Quotient Field, 47

Rank, 49
constant, 59
countable, 49
finite, 49

Regular
(pre-)fractional ideal, 57
element, 47

Reject, 11
Ring

n-Gorenstein, 35
n-cotilting ring, 153
Artinian, 30
Bézout, 62
basic, 33

coherent, 29
Colby ring, 153
f-cotilting ring, 153
finitely cotilting ring, 153
finitely pseudo-Frobenius, 34, 54
Gorenstein, 35, 100, 102, 103,

125
Gorenstein ring, 125
hereditary, 31
local,, 62
Morita Ring, 111
Noetherian, 30
of p-Adic Integers, 68
partial n-cotilting ring, 153
perfect, 33
pirincipal ideal ring, 62
pseudo-Frobenius, 34, 53
quasi-Frobenius (QF ring), 34
semihereditary, 31
semilocal,, 62
semiperfect, 32
steady, 30
strongly coherent, 29
strongly von Neumann regular,

31
von Neumann regular, 31, 54,

104

Saturated Set, 130
Set of idempotents

basic, 33
complete, 33
pairwise orthogonal, 33

Similar Rings, 39
Socle, 20
Splitter, 73
Star Modules, 78
∗-module, 78
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∗n-Module, 78
n-star, 78
classical ∗-module, 78
classical ∗n-module, 78
weak ∗-module, 78
weak ∗n-module, 78

Subcategory
closed, 26
finitely closed, 26

Subgroup
torsion, 67

Submodule
K-copure, 38
K-pure, 38
S-divisible, 48
S-torsion submodule, 48
essential (large), 20
pure, 16
superflous (small), 20
tight, 49
torsion, 25

Syzygy Module, 177, 186

Tilted Algebra, 74
Tilting Modules, 73

n-quasi-tilting, 78
n-self-tilting, 78
n-tilting, 74, 79, 80
1-self-tilting, 82
Bass tilting module, 125
classical 1-tilting, 105
classical n-tilting, 74, 80
classical partial n-tilting, 76
classical partial tilting, 76
classical pre-partial n-tilting, 76
classical pre-partial tilting, 76
classical tilting, 74
equivalent, 74

Fuchs-Salce tilting modules, 130
Matlis tilting module, 118
partial n-tilting, 76
partial tilting, 76
pre-partial n-tilting, 76
pre-partial tilting, 76
quasi-tilting, 78
Salce tilting module, 121
self-tilting, 78

Tilting Theorem, 106
Torsion Theory, 25
Total Quotient Ring, 47
Trace, 11
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