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Abstract

Real positive definite Hankel matrices arise in many important applications. They
have spectral condition numbers which exponentially increase with their orders. This
paper gives a structural algorithm for finding positive definite Hankel matrices using
the Cholesky factorization. We also compute it for orders less than or equal to 30 and
compare our result with earlier results.

1 Introduction

An n× n Hankel matrix H is one with constant anti-diagonal elements. It has the following

structure

H =


h1 h2 h3 · · · · · · hn

h2 h3 h4 · · · hn hn+1
... · · · . . . . . . . . .

...
hn hn+1 · · · · · · · · · h2n−1

 .

The general complex-valued elements can be well-conditioned while, real positive definite

Hankel matrices are known to be very ill-conditioned since their spectral condition numbers

increase exponentially with n. The condition number of a positive definite Hankel matrix is

bounded below by 3 · 2(n−6) which is very large even for relatively small orders [10]. Becker-

mann [6] gave a better bound γn−1/(16n) with γ ≈ 3.210. Here, we try to force the condition

number of the constructed matrix to be as small as possible to reach the latter, or at least

the former, experimentally.
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Several other authors have developed algorithms for the factorization or inversion of Han-

kel matrices [7, 9, 11]. In some application areas such as digital signal processing and control

theory it is required to compute the closest, in some sense, positive semidefinite Hankel ma-

trix with no restriction on its rank, to a given data covariance matrix computed from a data

sequence. The problem of preserving the structure while approximating low rank also arises in

many applications ( see [1, 2, 3]). When using the interior point method in solving this prob-

lem, it is important for some algorithms to start from within the cone of positive semidefinite

Hankel matrices, i.e., the initial point must be a positive definite Hankel matrix [4, 5].

In the following, we construct a positive definite Hankel matrix. The Cholesky factorization

theorem [8] states that for any n × n real symmetric positive definite matrix A, there exists

a unique lower triangular matrix L with positive diagonal enteries such that A = LLT . This

provides a means to construct a symmetric positive definite matrix by building up a lower

triangular L with positive diagonal enteries. The martix LLT is certainly symmetric positive

definite but not Hankel. To impose the Hankel structure, we force the anti-diagonal elements

of LLT to be equal. This produces a system of nonlinear equations with infinitely many

solutions depending on the diagonal elements of L and the elements of the first diagonal

(the diagonal just below the main diagonal). A closed formula for finding the elements of

L that makes LLT positive definite Hankel matrix is introduced. An algorithm is proposed

and implemented using MatLab. Finally, some numerical comparisons and experiments are

presented to show how different choices of starting elements affect the smallest eigenvalue and

subsequently the condition number of the resulting Hankel matrix.
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2 Generating Formula

Let us consider the Cholesky factorization H = LLT and write down the product. The

resulting matrix Ln×nL
T
n×n is as follows:

l211 l11l21 l11l31 · · · l11ln1

l11l21 l221 + l222 l21l31 + l22l32 · · · l21ln1 + l22ln2

l11l31 l21l31 + l22l32 l231 + l232 + l233 · · · l31ln1 + l32ln2 + l33ln3
...

...
...

. . .
...

l11ln1 l21ln1 + l22ln2 l31ln1 + l32ln2 + l33ln3 · · · l2n1 + l2n2 + · · ·+ l2nn

 .

This is a dense matrix. Now, we show how to find the elements of L which make LLT positive

definite Hankel.

• First, we assign values to all the elements lii and li i−1.

• Each computed element lij has the form (S −D)/ljj.

• S is composed of summing products of pairs of elements lhslks, where h = [n/2] ([x] the

integer smaller than or equal to x) and k = n− h and the index s runs from 1 to h. So

S is related to i + j.

• D is also a sum of products of pairs ljrlir, where r runs from 1 to j − 1. So D is related

to j only.

• The last two elements ln n−1 and lnn are free in the sense that no other elements depend

on them.

In light of the above insights, the following two steps construct L such that LLT is a positive

definite Hankel matrix

• Assign values to lii and li i−1.

• Copmute the other elements usig the formula

lij =

∑q
s=1 lq,slrs −

∑j−1
t=1 litljt

ljj
, (2.1)
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where j ≤ i− 2 and

q =

{
i+j
2

, if i + j even
i+j−1

2
, if i + j odd

r =

{
q, if i + j even
q + 1, if i + j odd .

(2.2)

3 Algorithm and Implementation

The following algorithm presents formula (2.1) in a more programmable way. It produces all

the elements of L such that LLT is a positive definite Hankel matrix.

Algorithm 3.1 (Constructing Positive Difinite Hankel Matrix)

begin

for i := 1 to n

populate lii and li i−1

for i := 3 to n

for j := 1 to i− 2

set q := [(i + j)/2]

if n is even

set r := q

else

set r := q + 1

set S := 0

set D := 0

for s := 1 to q

S = S + lqslrs

for t := 1 to j − 1

D = D + litljt

set lij := (S −D)/ljj.
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4 Numerical Experiments

The first experiment is to find the highest order of H we can produce. Varah [11] managed

to get up to n = 16, whereas our program managed to construct a positive definite Hankel

matrix H up to n = 30 with smallest eigenvalue e = 5.18 × 10−5. With our program, the

condition number is very large, almost infinity. Hence, we managed with a higher accuracy

to push n to 30.

The remaining experiments will be improving the condition number as much as one can by

choosing different values for lii and li i−1 and the required Hankel matrix will be of the order

20. The lower bound mentioned in [3] for n = 20 is 49152 while the bound in [1] is 3624.29.

We change l11 only and hold the other elements constant (with 1 as initial value). Table 1

shows that the condition number improves when l11 is changed from 1 to 10, but then gets

worse when we go higher.

l11 e cond(H,2)
1 6.27× 10−8 7.55× 1017

10 1.65× 10−7 4.58× 1016

100 1.61× 10−7 7.17× 1016

1000 1.60× 10−7 7.56× 1016

Table 1: Changing l11

Now, we change l11 and L(n, n) togother and hold the other elements constant. Clearly,

from Table 2, the best choice is, l11 = L(n, n) = 10.

l11 L(n, n) e cond(H,2)
10 10 4.20× 10−7 1.80× 1016

100 100 4.09× 10−7 2.82× 1016

1000 1000 4.07× 10−7 2.97× 1016

Table 2: Changing l11 and lnn

After some testing, the following combination in Table 3 seems to give better results:
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a e cond(H,2)
[100000 5000 -90 10 100000] 14.14 9.15× 1014

[1000000 5000 -90 10 1000000] 14.18 9.11× 1014

[10000000 50000 -90 10000 10000000] 1417.8 9.09× 1014

Table 3: Changing All

After testing different values of lii and li i−1 with different n, we find that if we normalize

all values of the matrix L so that all the elements of L and H are less than or equal to

one, then the best condition number can be reached by selecting the elements of li i−1 equal

to either one or zero. The elements of lii are selected according to the following (these are

approximated values and not exact):

l11 ≈ 0.9, l22 ≈ 0.45, l33 ≈ 0.23, l44 ≈ 0.12, . . . .

In other words, lii is made smaller by a factor of f = 0.5 as i increases. However, when i

reaches n/2, the factor should be increased from f = 0.5 to f = 1 when i = 2n/3, and then

we start increasing values of lii such that the value of lnn = 150 ∗ lii when i = 2n/3.

We implement this strategy for the above case (n = 20) and find a remarkable improvement

to the condition number with a small decrease in the smallest eigenvalue as follows:

l11 . . . lnn =

0.9000 0.4500 0.2300 0.1200 0.0600 0.0300 0.0150 0.0080 0.0040 0.0025 0.0020 0.0018 0.0018

0.0020 0.0030 0.0050 0.0100 0.0200 0.0500 0.2500

and the condition number we find is 7.2776 × 108 which is much better while the smallest

eigenvalue is 2.2945 × 10−9. It is worth mentioning that the condition number we find for

n = 3, . . . , 16 is very close to the one found by [11].

5 Conclusion

In this paper, we managed to construct a positive definite Hankel matrix with a smaller

eigenvalue greater than zero, and we improved the condition number by a factor of 100 times.

However, the produced matrices are extremely ill-conditioned and more work needs to be done
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to deduce a pattern that improves the results. Also a higher dimension of H is needed. One

way to do it is to decrease the tolerance by giving the program more accuracy but this will

increase the dimension by one or two since it is clear that the condition number increases

exponentially while the smallest eigenvalue also decreases exponentially.
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