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Abstract 

A class of exponential orthogonal polynomials is introduced which serves as an 

approximating subspace for certain type of constrained approximation problems over 

semi-infinite interval. We shall discuss theoretical as well as computational aspects of 

this class in this report.   
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1. Preliminaries 

We shall introduce exponential polynomials and some relevant concepts in this section. 

This material will lead us to define Orthogonal Exponential Zero-Interpolants (OEZI). 

  

1.1.  Exponential polynomial 

An expression of the form  

0
( ) :

n
jx

n j
j

E x a e−

=

= ∑          (1)  

where ja ’s are real numbers, will be called nth degree exponential polynomials.  

Notation: We shall denote the class of all nth degree exponential polynomials by nχ .   

 

1.2.  Lagrange exponential interpolants 

Let 0 1, ,...., kx x x  be 1k +  distinct nonnegative real numbers. We set 

0

( ) ( )j
k

xx
k

j

W x e e−−

=

= −∏% .        (2) 

The exponential polynomial given by   

0

( )( , ) : ( )
( )( )

j

j

k
x k

k j x x
j k j

W xx f f x e
W x e e

λ −
− −

=

=
′ −

∑
%

%
      (3)  

interpolates a function :[0, )f ∞ →ℜ  at the points 0 1, ,....., kx x x . We shall call (., )k fλ  

the kth degree Lagrange exponential interpolant to f at the points 0 1, ,....., kx x x . Note that 

(., )k kfλ χ∈ .   

For computational purpose, the Lagrange exponential interpolant can be described by 

Newton’s  interpolation formula [28]. If we denote the divided difference1 [5] of order j 

by 0 1[ , ,..., ]jf x x x  then, we have  

                                                 
1 Note that for the points 0 1, ,..., kx x x , the 0-order divided difference [ ]if x is defined as 

[ ]= ( )i if x f x , i = 0,1,…,k; and the mth-order divided difference is by the recursive formula 

0 1 1 1 2
0 1

0

[ , ,..., ] [ , ..., ][ , ,..., ] m m
m

m

f x x x f x x xf x x x
x x
− −

=
−

, m = 1, 2, …,j 
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1

0 0 1
1 0

( , ) [ ] [ , ,..., ] ( )i

jk
xx

k j
j i

x f f x f x x x e eλ
−

−−

= =

= + −∑ ∏ .    (4) 

 

1.3. Exponential zero-interpolants (EZI) 

Let  

0 1: { , ,..., } [0, )k kx x xΛ = ⊂ ∞% .        (5) 

We set 

{ }( ) : :n k k nW E Eχ χΛ = ∈% %         (6) 

where kW%  is given by (2).  

 

Remark 1. ( )n kχ Λ% is the class of exponential polynomials which interpolates the zero-

function at the set of nodes xi, i = 0,1,…,k. Note that ( )n kχ Λ% is an (n + 1) dimensional 

subspace of 1n kχ + + . 

 

Definition 1. An exponential polynomial in ( )n kχ Λ% will be called an exponential zero-

interpolant (EZI) of degree n + k at the set kΛ% . 

 

2. Orthogonal Exponential Zero-Interpolants 

In this section we shall introduce the concept orthogonal exponential zero-interpolant. It 

may be noted that the notion of orthogonality over an interval is always tied up with an 

appropriate weight function. In order to define an orthogonal exponential polynomial, 

say ( )nE x  over the semi-infinite interval [0, )∞ , we shall require a weight function w for 

which  

2

0

( ) ( )nE x w x dx
∞

< ∞∫ .         (7) 

Here, one may consider ( )w x  to be the generalized Laguerre weight function [2] 

, ( ) : xw x x eα β
α β

−=%  where 1 and  0α β> − >  and note that the improper integral 
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2

0

( ) x
nE x x e dxα β

∞
−∫  converges for this choice. Thus,  , ( ) : xw x x eα β

α β
−=%  is a suitable class of 

weight functions in order to define orthogonal exponential polynomials. Following 

definition of inner product will be used frequently: 

, : ( ) ( ) ( )
b

w
a

f g f x g x w x dx= ∫         (8) 

 

Definition 2. An exponential polynomial ( )n n kψ χ∈ Λ%%  will be called an orthogonal 

exponential zero-interpolant (OEZI) at kΛ%  with respect to weight function ,wα β% over the 

interval [0, )∞  if 

(a) nψ%  is a zero-interpolant at kΛ%  in the sense of Section 1.3. 

(b) 
,

, 0 for all ( ), 0,1,... 1.n m kw
E E m n

α β
ψ χ= ∈ Λ = −

%
  

 
2.1 Orthogonal basis of ( )n kχ Λ%   

Since ( )n kχ Λ%  is an n + 1 dimensional subspace of the linear space 1n kχ + + , it is natural to 

look for orthogonal basis, say 0 1" , ,..., "nψ ψ ψ% % % . We can achieve this by using the standard 

3-term recurrence relation [2] as we do in case of classical orthogonal polynomials. More 

specifically, we set 

1 1( ) ( ) ( ) ( ), 1, 2,x
i i i i ix e x x i−
+ −= − − =% % % Kψ α ψ βψ .     (9) 

with  

     0 ( ) ( )kx W x= %%ψ  ,               
,

1 0 0( ) ( ) ( ); ,x
k k k w

x e W x W W−= − =
%

% % %%
α β

ψ α α     

The recursion coefficients in (9) are given by 

     

,

,

,

,
1 1

,
, 1, 2,

,

,
, 1, 2,

,

i i w
i

i i w

i i w
i

i i w

x
i

i
− −

⎫
⎪= =
⎪⎪
⎬
⎪

= = ⎪
⎪⎭

%

%

%

%

% %
K

% %

% %
K

% %

α β

α β

α β

α β

ψ ψ
α

ψ ψ

ψ ψ
β

ψ ψ
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Definition 3. The exponential polynomials 0 1" , ,..., "nψ ψ ψ% % %  defined by the recurrence 

relation (9) will be referred to as an orthogonal basis of ( )n kχ Λ% . 

 

2.2. A useful transformation 

The transformation :[0,1] [0, ) defined as ( ) : lnx t tη η→ ∞ = = − , [0,1]t ∈  plays a key 

role in our study. It converts the exponential polynomials
0

( ) :
n

jx
n j

j

E x a e−

=

= ∑ to algebraic 

polynomials 
0

( )
n

j
n j

j

p t a t
=

=∑ . The following remark relates the zeros of these two types of 

polynomials: 

 

Remark 2 Consider the transformation lnx t−a  and let * *lnx t= − . Then (0, )x∗ ∈ ∞  is 

a zero of an exponential polynomial 
0

( )
n

ix
n i

i
E x a e−

=

= ∑ if and only t∗ is a zero of the 

algebraic polynomial 
0

( )
n

i
n i

i
p t a t

=

= ∑ . To justify this, note that 

 
0

( ln ) *

0 0

 is a zero of exponential polynomial 

( ) 0.

0 ( ) 0 ( ) 0.

n
n

ix
n i

i

n n
i t i

i i n
i i

x E

E x a e

a e a t p t

∗

∗

∗

∗ −

=

− − ∗

= =

⇔ = =

⇔ = ⇔ = ⇔ =

∑

∑ ∑

 

In general,  lnx t−a  transforms an OEZI to an orthogonal algebraic 0-interpolant [1, 

section 5].  

2.3. Some properties of OEZI 

We provide some characteristics of OEZI’s in  

 

Lemma 1. The OEZI mψ% , m = 0,1,2,…, as described in Definition 3 have the following 

properties:  

(A)  for some m m k m mE W Eψ χ∗ ∗= ∈%% .            (10) 
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(B) The factor polynomials mE∗ , m = 0,1,2,…,n, are orthogonal with respect to 2
, kw Wα β
%%  

on [0, )∞ . 

(C) mE∗  has m distinct real zeros lying in the interval (0, )∞ . 

Proof. (A) It follows from the structure of  ( )n kχ Λ%  that 

( ) ( ) ( )m k mx W x E xψ ∗= %%         (11) 

where ( )kW x%  is given by (2) and 

,
0

( )
m

ix
m i m

i
E x a e∗ −

=

=∑          (12) 

for some , , 0,1,...,i ma i m∈ℜ = . 

(B) Since , 0,1,2,....m mψ =% , are orthogonal with respect to ,wα β%  over [0, )∞ , we have  

2
, ,

0 0

0 ( ) ( ) ( ) ( ) ( ) ( ) ( )m l m l kx x w x dx E x E x W x w x dxα β α βψ ψ
∞ ∞

∗ ∗= =∫ ∫ %% % % %     (13) 

when m l≠ . Therefore, the factor exponential polynomials * , 0,1,2,....mE m = , are 

orthogonal with respect to 2
,kW wα β

% %  over [0, )∞ .  

(C) As noted above, the setting ln( )x t= −  for [0, )x∈ ∞ transforms the exponential 

polynomial over [0, )∞  to algebraic polynomials over[0,1] . Thus, 

, ,
0 0

( ) : ( ) :
m m

ix i
m i m m i m

i i

E x a e p t a t∗ − ∗

= =

= =∑ ∑a ,      (14) 

0 0

( ) : ( ) ( ) : ( ) with lni

k k
xx

k k i i i
i i

W x e e W t t t x t−−

= =

= − = − = −∏ ∏% a ,   (15) 

and  
1

, ,( ) : ( ) : lnxw x dx x e dx w t dt t t dtαα β β
α β α β

− −= =% a .     (16) 

Hence, 
1

2
, ,

0 0

( ) ( ) ( ) ( ) ( ) ( ) 0m l k m lp t p t W w t dt x t w t dtα β α βψ ψ
∞

∗ ∗ = =∫ ∫ % % %      (17) 

where m l≠ . This implies that the set of algebraic polynomials { }* : 0,1,...,mp m n=  is 

orthogonal with respect to the weight function 2
,kW wα β  over the interval [0,1] . Thus, each 
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*
mp , except for m = 0, has m real and distinct zeros, say , , 1, 2,...,i mt i m= , in the interval 

(0,1) . Now using the inverse transformation xt e−a , we note that ,
,

i mx
i mt e−= where 

, (0, )i mx ∈ ∞ . Thus, by Remark 2, , , 1, 2,...,i mx i m= , are the m positive and distinct zeros 

of the factor exponential polynomial mE∗ . 

 

3. Computational Aspects 

As observed in (9), the computation of OEZI is entirely based on the recursion 

coefficients  and j jα β  which in fact are quotients of following type of integrals: 

,

,

,
0

,
0

, ( ) ( ) ( ) ,

, ( ) ( ) ( ) .

x x
j j j jw

j j j jw

e e x x w x dx

x x w x dx

α β

α β

α β

α β

ψ ψ ψ ψ

ψ ψ ψ ψ

∞
− −

∞

⎫
= ⎪

⎪
⎬
⎪= ⎪⎭

∫

∫

%

%

% % % % %

% % % % %

     (18) 

Note that the degree of OEZI’s  grow higher and higher with successive applications of 

the recurrence relation (9). Therefore, the propagation of round-off error in the 

computation of the integrals (18) will cause severe ill-conditioning effect on the 3-term 

recurrence relation. This is a similar situation which we encounter in computing the 

classical orthogonal polynomials [3]. To overcome this problem, approximation of inner 

products with a suitable quadrature rule (discretization) is highly recommended [3]. The 

procedure explained below leads to the process of computing the OEZI’s which avoids 

the impact of ill-conditioning. 

 

A. Steiltjes procedure to compute recursion coefficients: The orthogonal exponential 

0-interpolant computed at each stage by the recurrence relation (9) in return is used to 

compute the recursion coefficients for the next stage. This procedure is described in 

subsection 2.1 and is due to Steiltjes [4]. 

 

B. Transformation from infinite to finite interval: The most popular processes of 

discretiztion of integrals involve Chebyshev zeros. Since these zeros lie in the interval        
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(–1,1),  it is appropriate to covert the computations over the interval [0, )∞  to the interval 

[–1,1).  For this, we use the substitution 1( ) : ln  
2

ux h u −
= = − to transform all integrals of 

the form
0

(.)dx
∞

∫  to 
1

1

(.)du
−
∫ . The suggested substitution basically transforms 

1. the weight function , ,
1 1( )  to ( ) ln

2 2
x u uw x x e w u

α β
α β

α β α β
− − −⎛ ⎞ ⎛ ⎞= = ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
% . 

2. the differential dx to  
1
du

u−
 

3. the exponential polynomial 
0

( )
n

jx
n i

j
E x a e−

=

=∑  to an algebraic polynomial 

( )
0

( ) 1
2

n
jj

n j
j

a
p u u

=

= −∑ . 

4. the product 
0 0

( ) to  where 1 2
2

ji

k k
xjxx

j
i i

u u
e e u e−−−

= =

−
− = −∏ ∏  

 

C. Discretization by Fejer quadrature rule: Once the integrals 
0

(.)dx
∞

∫  are transformed 

to 
1

1

(.)du
−
∫ , the inner products in (18) are computed by discretization of  

1

1

(.)du
−
∫  using the 

following quadrature rule [3], [5]:      

1

11

( ) ( ) ( ) ( )
M

M M M
j j j

j
F u u du w F u uω ω

=−

≈∑∫        (19) 

with the following choice of nodes ( 1,1) and weights 0M M
j ju w∈ − > :  

( )� �/ 2

2
1

cos 22: cos ; : 1 2
4 1

MM
iM M M

i i i
j

j
u w

M j
θ

θ
=

⎧ ⎫⎪ ⎪= = −⎨ ⎬−⎪ ⎪⎩ ⎭
∑      (20) 

where 

2 1
2

M
i

i
n

θ −
= .          (21) 
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The method of approximating an integral by (19) is known as Fejer quadrature rule if the 

nodes M
iu and weights M

iw  are based on (20) and (21). 

 

 

D. Computational procedure: In order to implement the suggested computational 

procedure, the following steps may be implemented: 

 

Step 1: Input required: 

i. ( , )α β  = Parameters involved in the weight function , ( ) xw x x e β
α β α

−=%  

ii. NC = Number of Chebyshev points used for Discretization 

iii. NF = Number of points fixed on [0, )∞  for the OEZI’s  

iv. (xi) = NF-vector of fixed points required for interpolation 

v. NOP = Number of Orthogonal polynomials used for approximation 

 
Step 2: Computation of NC Nodes (Chebyshev points) and NC Weights by using (20) 

and (21). 

 

Step 3: Transformation of the following functions by means of  1ln
2

tx −
= −  from [0, )∞   

to [ 1,1)− : 

(i) weight function , ( ) xw x x eα β
α β

−=%  

(ii) 
1

( )j
NF

xx

j

e e−−

=

−∏  

 

Step 4: Discretization of the transformed inner-products by means of (19). 

 

Step 5: Computation of NOP orthogonal 0-intepolants (algebraic) with respect to the 

transformed weight function ,
1( ) ( )

2
uw u h u

β
α

α β
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
. 
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