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1. Introduction

The bivariate beta distribution has found application in areas such as voting analysisi of
political issues of two competing candidates and research on soil strength (see Hutchinson and
Lai, 1990, 104). In this paper we derive some important centered moments that are important
in studying further properties of the distribution. The product moment of order a and b for two
random variables X and Y are defined by a,b

′  EXaYb while the centered product moments
(sometimes called central product moments, corrected moments or central mixed moments) are
defined by

a,b  EX − EXaY − EYb.

Interested readers may go through Johnson, Kotz and Kemp (1993, 46) or Johnson, Kotz and
Balakrishnan (1997, 3). The former is often called product moments of order zero or raw
product moments. Evidently a,0

′  EXa is the a-th moment of X, and 0,b
′  EYb is the

b-th moment of Y. In case X and Y are independent a,b
′  EXaEYb  a,0

′ 0,b
′ .

The correlation coefficient  −1    1 between Xand Y is denoted by
X,Y 

1,1

2,00,2
. (1.1)

Note that 2,0  EX − EX2  20 which is popularly denoted by 1
2 while the central

product moment, 1,1  EX − EXY − EY denoted popularly by 12, is in fact the
covariance between X and Y.
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The importance of evaluating central moments of a bivariate distribution cannot be
overlooked. In a series of papers, Mardia (1970, 1974, 1975) defined and discussed the
properties of measures for kurtosis and skewness based on Mahalanobis distance. As it is
difficult to derive distribution of Mahalanobis distance for many distributions and calculate
moments thereof, Joarder (2006) derived Mahalanobis moments (or simply, standardized
moments) in terms of central product moments. He showed that the central moments can be
used as an alternative way to describe further important characteristics of a bivariate
distribution such as Mahalanobis moments which includes bivariate skewness and kurtosis
coefficients that are very difficult to derive. It should be mentioned that the central moments
derived in this paper required meticulous calculation and cross-checking and, in and of itself, a
formidable task to complete.

2. The Bivariate Beta Distribution

The bivariate Dirichlet is an extension of a univariate Beta distribution. The probability
density function of the bivariate Dirichlet distribution is given by

fx,y  Γm  n  p
ΓmΓnΓp xm−1yn−11 − x − yp−1, (2.1)

where m,n,p  0, x ≥ 0, y ≥ 0, and x  y ≤ 1.

Proof. Let A  x,y ∈ R2 : x  0,y  0 and x  y  1 and for m,n,p  0

Im,n,p   
A

xm−1yn−11 − x − yp−1dxdy.

With the transformation u  x
1 − y , v  y and Jacobian Jx,y → u,v  1 − v in the above

integral, we have


0

1 
0

1−y xm−11 − x − yp−1dx yn−1dy
 

0

1 
0

1
u1 − vm−1vn−11 − u1 − vp−11 − vdv du,

 Bm,p 
0

1 vn−11 − vmp−1dv
 Bm,pBn,m  p

where Bm,n  ΓmΓn/Γm  n. This proves that the function in (2.1) is a joint
probability density function.

Theorem 2.1 Let X and Y have the joint pdf given by (2.1). Then the marginal probability
density functions of the bivariate beta distribution with pdf in (2.1) are given by:

(i) X  Betam,n  p,
(ii) Y  Betan,m  p. (2.2)

Proof. The marginal p.d.f. of Y is given by
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hy  
−

 fx,ydx

 
−

 Γm  n  p
ΓmΓnΓp xm−1yn−11 − x − yp−1dx

 1
Bn,m  p yn−11 − ymp−1.

Thus Y follows Betan,m  p. Similarly, X follows Betam,n  p.

We note that the mean and variance of Y are given by

EY  n
m  n  p ,VY  nm  p

t  1t2

respectively, where t  m  n  p. mean and variance of X are given by

EX  n
m  n  p ,VX  mn  p

t  1t2 .

Theorem 2.2 Let X and Y have the joint pdf given by (2.1). Then the conditional p.d.f. of Y
given X  x is given by

ky  1 − x
Bn,p

y
1 − x

n−1
1 − y

1 − x
p−1

, 0  y  1 − x,0  x  1. (2.3)

Proof. The conditional p.d.f. k2 of Y given X  x is defined as

fx,y/hx  Γm  n  p
ΓmΓnΓp xm−1yn−11 − x − yp−1 1

Bm,n  p xm−11 − xnp−1
−1

 Γm  n  p
ΓmΓnΓpBm,n  p yn−11 − x − yp−1/1 − xnp−1

which can be written as (2.3).

Thus, from (2.3), it can be seen that the conditional distribution of Y/1 − X given X  x
is Betan,p which implies that EY ∣ X  x  1 − xn/n  p which can also be written
as

EY ∣ X  x  − n
n  p x  n

n  p (2.4)

in the regular regression format. Thus the regression of Y on X is linear. Also

Var Y ∣ X  x  1 − x2np/n  p2n  p  1

which is not free from x. This means that the conditional variance for the linear regression of
Y on X is not homoscedastic. The linear regression suggests that Y is not independent of X.

Theorem 2.3 Let X and Y have the joint pdf given by (2.1). Then Y/1 − X and X are
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independent.

Proof. Let u  y/1 − x and v  x with Jacobian Jx,y → u,v  −1 − v. The region A is
mapped into the region
u,v : v  0,u1 − v  0,v  u1 − v  1  u,v : 0  u  1,0  v  1. Then the
joint p.d.f. of U,V : Y/1 − X,X is given by

gu,v  1
Bn,p un−11 − up−1. 1

Bm,n  p vm−11 − vnp−1

Then U and V are independent Beta variables.

Theorem 2.4 Let X,Y follow the bivariate Dirichlet distribution with pdf given by (2.1).
Also let U  X  Y and V  X/X  Y. Then U~Betam  n,p is independent of V~
Betam,n.

Proof. Let us make the transformation u  x  y and uv  x . The region A is mapped onto
the region u,v : uv  0,u1 − v  0,u  1  u,v : 0  u  1,0  v  1 with
Jacobian Jx,y → u,v  −u. The theorem then follows in a straightforward manner.

In what follows we will define

a,b  EX − aY − b  (2.5)

where   EX and   EY.

3. Raw Product Moments

For any non-negative integer a, we have Pochhammer factorials defined as
ca  cc  1c  2c  a − 1 and

ca  cc − 1c − 2c − a  1.

with c0  1, c0  1.

Also, the a,b th raw product moment of X and Y of the bivariate Dirichlet distribution is
given by

EXaYb  
0

1 
0

1 xaybfx,ydxdy. (3.1)

Lemma 3.1 Let X and Y have the joint pdf given by (2.1). Then
(i) the marginal density function of X  Betam,n  p, has an expected value of

EXa 
ma
ta ,

(ii) the marginal density function of Y  Betan,m  p, has an expected value of
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EYb 
nb
tb ,

(iii) and the raw product moment of order (a,b) is

EXaYb 
manb

tab
, where t  m  n  p.

Lemma 3.1 gives rise to some useful raw moments that will be used further in this article.
In particular, some specific raw moments that are needed for the calculation of centered
moments, bivariate skewness and kurtosis are given below.

EY  n
t ,

EY2  nn  1
tt  1 ,

EY3  nn  1n  2
tt  1t  2 ,

EY4  nn  1n  2n  3
tt  1t  2t  3 ,

EY5  nn  1n  2n  3n  4
tt  1t  2t  3t  4 ,

EY6  nn  1n  2n  3n  4n  5
tt  1t  2t  3t  4t  5 ,

EXY  mn
tt  1 ,

EXY2  mnn  1
tt  1t  2 ,

EXY3  mnn  1n  2
tt  1t  2t  3 ,

EXY4  mnn  1n  2n  3
tt  1t  2t  3t  4 ,

EXY5  mnn  1n  2n  3n  4
tt  1t  2t  3t  4t  5 ,

EX2Y2  mm  1nn  1
tt  1t  2t  3 ,

EX2Y3  mm  1nn  1n  2
tt  1t  2t  3t  4 ,

EX2Y4  mm  1nn  1n  2n  3
tt  1t  2t  3t  4t  5 ,

EX2Y  mm  1n
tt  1t  2 ,

EX3Y  mm  1m  2n
tt  1t  2t  3 ,

EX4Y  mm  1m  2m  3n
tt  1t  2t  3t  4 ,

EX5Y  mm  1m  2m  3m  4n
tt  1t  2t  3t  4t  5 ,

EX3Y2  mm  1m  2nn  1
tt  1t  2t  3t  4 ,
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EX3Y3  mm  1m  2n  2n  1n
tt  1t  2t  3t  4t  5 ,

EX4Y2  mm  1m  2m  3n  1n
tt  1t  2t  3t  4t  5 ,

EX  m
t ,

EX2  mm  1
tt  1 ,

EX3  mm  1m  2
tt  1t  2 ,

EX4  mm  1m  2m  3
tt  1t  2t  3 ,

EX5  mm  1m  2m  3m  4
tt  1t  2t  3t  4 ,

EX6  mm  1m  2m  3m  4m  5
tt  1t  2t  3t  4t  5 .

4. Centered Moments

The centered product moments of a bivariate Dirichlet distribution, a,b can be obtained by
directly evaluating the following integral.

E X1 − EX1aX2 − EX2b  
0

1 
0

1
X1 − EX1aX2 − EX2bfx,ydxdy.

For illustration, we derive the central moment 1,2 below.
1,2  E X − EX1Y − EY2

 
0

1 
0

1 x − m
t y − n

t
2
fx,ydxdy

 
0

1 
0

1 xy2 − 2xy n
t  x n

t
2
− y2 m

t  2y n
t

m
t −

n
t

2 m
t fx,ydxdy

 
0

1 
0

1 xy2fx,ydxdy − 2 n
t 0

1 
0

1 xyfx,ydxdy  n
t

2 
0

1 
0

1 xfx,ydxdy
− m

t 0
1 

0

1 y2fx,ydxdy  2 mn
t2 0

1 
0

1 yfx,ydxdy − n2m
t3 0

1 
0

1 fx,ydxdy

 mnn  1
tt  1t  2 − 2 n

t
mn

tt  1 
n
t

2 m
t − m

t
nn  1
tt  1

 2 m
t

n
t

2
− n2m

t3

 mnn  1
tt  1t  2 − 2 mn2

t2t  1
 mn2

t3 − mnn  1
t2t  1

 2 mn2

t3 − mn2

t3

 − 2t − 2nmn
t  1t  2t3 .

The higher order moments generally require more meticulous integration and
cross-checking of calculations. Some centered product moments of order a  b  2,3,4,5,6 are
given below:

0,2 
t − nn
t  1t2 ,

6



0,3  2 t − 2nt − nn
t  1t  2t3 ,

0,4  3t − nn t2n  2 − nn  6t  6n2

t  1t  2t  3t4 ,

0,5  4t − 2nt − nn t25n  6 − n5n  12t  12n2

t  1t  2t  3t  4t5 ,

0,6 
5t − nn

t  1t  2t  3t  4t  5t6

 t43n2  26n  24 − 2n3n2  56n  60t3

 n23n2  172n  240t2 − 2n343n  120t  120n4,

1,1  − nm
t  1t2 ,

1,2  −2
t − 2nmn

t  1t  2t3 ,

1,3  −3 mn
t4t  1t  2t  3

n  2t2 − nn  6t  6n2,

1,4  −4
mnt − 2n

t5t  1t  2t  3t  4
12n2 − 12  5nnt  6  5nt2,

1,5  −5 mn
t6t  1t  2t  3t  4t  5
 3n2  26n  24t4 − 2n3n2  56n  60t3

 n23n2  172n  240t2 − 2n343n  120t  120n4,

2,2  mn t3 − m  nt2  32m  2n  mnt − 18mn
t  1t  2t  3t4 ,

2,3  2mn t4 − t3m  6n  12m  15mn  5n2t2 − 4n9m  3n  5mnt  48mn2

t  1t  2t  3t  4t5 ,

2,4  mn
t6t  1t  2t  3t  4t  5

t53n  6  t4−6m − 40n − 3mn − 6n2

 t3120m  164mn  120n2  3n3  18mn2  t2−480mn − 86n3 − 516mn2 − 15mn
 t120n3  720mn2  430mn3 − 600mn3,

3,3  mn
t  1t  2t  3t  4t  5t
 4 − 3 10m  10n  3mn

t 
26n2  m29n  26  9mnn  20

t2

− 3 2n243m  20  m286n  5n2  40
t3

 10 mn36m  36n  43mn
t4 − 600 m2n2

t5 

Similar expressions for moments b,a  EX − bY − a  are provided below.

2,0 
t − mm
t  1t2 ,

3,0  2 t − 2mt − mm
t  1t  2t3 ,
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4,0  3t − mm t2m  2 − mm  6t  6m2

t  1t  2t  3t4 ,

5,0  4t − mt − 2mm t25m  6 − m5m  12t  12m2

t  1t  2t  3t  4t5 ,

6,0 
5t − mm

t  1t  2t  3t  4t  5t6

 3m2  26m  24t4 − 2m3m2  56m  60t3

 m23m2  172m  240t2 − 2m343m  120t  120m4,

2,1  −2
mnt − 2m

t3t  1t  2
,

3,1  −3mn m  2t2 − mm  6t  6m2

t  1t  2t  3t4 ,

4,1  −4t − 2mmn 5m  6t2 − 12m  5m2t  12m2

t  1t  2t  3t  4t5 ,

5,1  −5 mn
t6t  1t  2t  3t  4t  5

 3m2  26m  24t4 − 2m3m2  56m  60t3

 m23m2  172m  240t2 − 2m343m  120t  120m4,

3,2  2mn t4 − t36m  n  12n  5mm  3nt2 − 4mm5n  3  9nt  48m2n
t  1t  2t  3t  4t5 ,

4,2  mn
t6t  1t  2t  3t  4t  5
 3m  6t5 − 6m2  m3n  40  6nt4

 3m3  63n  20m2  4n41m  30t3

− mm215n  86  12n43m  40t2

 10m212m  72n  43mnt − 600m3n.

5. Correlation for the Bivariate Beta Distribution

Theorem 5.1 Let X and Y have the joint pdf given by (2.1). Then the product moment
correlation coefficient between X and Yis given by

  − mn
n  pm  p .

Proof. Substituting the moments from Section 4 in  2,00,2  1,1we have the theorem.

Note that Theorem 5.1 is a special case of results in Kotz, Balakrishnan & Johnson (2000,
488).

For a special case of a bivariate Dirichlet distribution defined in (2.1) where m  n, that is
t  2m  p then the product moment correlation coefficient is   −m/m  p. Note that
when m  n, we have the case when the two bivariate marginal probability density functions
are identical.

Another special case of a bivariate Dirichlet distribution defined in (2.1) occurs when
m  n  p, that is t  3m. In this case then the product moment correlation coefficient
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  − 1
2 .Note that when m  n  p, we have special case of Theorem 5.1 when the two

bivariate marginal pdfs are identical with p  m.

It is also easy to check that

CovX,Y  EXY − EXEY  −mn
t  1t2

since EXY  EXEY|X  E 1 − X
nn  p  mn

tt  1 .

Consequently, the product moment correlation  between X and Y is given by what we
have in the theorem.
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