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1. Introduction

The bivariate beta distribution has found application in areas such as voting analysisi of
political issues of two competing candidates and research on soil strength (see Hutchinson and
Lai, 1990, 104). In this paper we derive some important centered moments that are important
in studying further properties of the distribution. The product moment of order aand & for two
random variables X'and Yare defined by u/,, = E(X?Y?) while the centered product moments
(sometimes called central product moments, corrected moments or central mixed moments) are
defined by

Hab = E[X— EX0) Y- E(Y")].

Interested readers may go through Johnson, Kotz and Kemp (1993, 46) or Johnson, Kotz and
Balakrishnan (1997, 3). The former is often called product moments of order zero or raw
product moments. Evidently o = E(X?) is the a-th moment of X; and p, , = £(Y?) is the
b-th moment of Y. In case Xand Yare independent u, = E(X?)E(Y?) = ppolo s

The correlation coefficient p (-1 < p < 1) between Xand Y'is denoted by

;ufl,l
= —t= 1.1
Pxy = = (1.1)

Note that 20 = E(X— E(X))? = o2 which is popularly denoted by o2 while the central
product moment, u11 = A(X- E(X))(Y— E(Y))] denoted popularly by o12, is in fact the
covariance between Xand Y.



The importance of evaluating central moments of a bivariate distribution cannot be
overlooked. In a series of papers, Mardia (1970, 1974, 1975) defined and discussed the
properties of measures for kurtosis and skewness based on Mahalanobis distance. As it is
difficult to derive distribution of Mahalanobis distance for many distributions and calculate
moments thereof, Joarder (2006) derived Mahalanobis moments (or simply, standardized
moments) in terms of central product moments. He showed that the central moments can be
used as an alternative way to describe further important characteristics of a bivariate
distribution such as Mahalanobis moments which includes bivariate skewness and kurtosis
coefficients that are very difficult to derive. It should be mentioned that the central moments
derived in this paper required meticulous calculation and cross-checking and, in and of itself, a
formidable task to complete.

2. The Bivariate Beta Distribution

The bivariate Dirichlet is an extension of a univariate Beta distribution. The probability
density function of the bivariate Dirichlet distribution is given by

r'(m+n+p)
r(mI(nI'(p)

where myn,p>0, x>0, y>0, and x+ y < 1.

x)) = X7y (L= x= P (2.1)

Proof. Let A = {(x,y) e 2 :x>0,y>0and x+y< 1} and for mn,p> 0
Kmnp) =[], x™Ly (1 - x~ y)rtaxay.

With the transformation v = Xy, v = y and Jacobian A x, y - ¢, V) = 1 — vin the above

1-—
integral, we have

Iy I;_yxm(l —X=yPiaxytdy

= IO I;(u(l — )™ (- vl - )Pl - vavay,

= B(m,p) j(l) VL1 — Y™ lgy
= B(m,p)B(n,m+ p)

where B(m, n) = T'(mI"(n)/T"(m+ n). This proves that the function in (2.1) is a joint
probability density function.

Theorem 2.1 Let Xand Y'have the joint pdf given by (2.1). Then the marginal probability
density functions of the bivariate beta distribution with pdf in (2.1) are given by:

(1) X ~ Beta(m,n+ p),
(it) Y ~ Beta(n,m+ p). (2.2)

Proof. The marginal p.d.f. of Yis given by



) = [~ Rxyax
o T(m+n+p)
~ L T YA e

_ 1 m
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Thus Yfollows Beta(n, m+ p). Similarly, X follows Beta(m, n+ p).

We note that the mean and variance of Yare given by

___n _ m+p)
EN = mep M = e

respectively, where = m+ n+ p. mean and variance of Xare given by

B0 = il V0 = Gime

Theorem 2.2 Let X'and Y have the joint pdf given by (2.1). Then the conditional p.d.f. of Y
glven X = xis given by
(1-x

_ B(np)<l X)“( X) L 0<y<l-x0<x<1  (23)

Proof. The conditional p.d.f. k> of Y'given X = xis defined as

T(m+ n+p) -

r(mT(nI(p)

_ C(m+n+p)
F(mI(nI(p) B(m,n+ p)

f(X,y)//’)(X) = Xm_ly’Fl(l—X—y)p_l(+Xm_l(l—X)"+p‘l>

B(m,n+ p)

YL - x— Y)PU(L - x) et

which can be written as (2.3).

Thus, from (2.3), it can be seen that the conditional distribution of Y7(1 — X) given X' = x
is Beta(n, p) which implies that £(Y | X = x) = (1 — x)nl(n+ p) which can also be written
as

Y| X=x=- X+ =11 (2.4)

n+p

n

n+p

in the regular regression format. Thus the regression of Yon Xis linear. Also
Var(Y | X=x) = (1-x°2n0((n+ p)?(n+ p+1))

which is not free from x. This means that the conditional variance for the linear regression of
Y on Xis not homoscedastic. The linear regression suggests that Y'is not independent of X

Theorem 2.3 Let Xand Yhave the joint pdf given by (2.1). Then Y/(1 — X) and Xare



independent.

Proof. Let v = y/(1 — x) and v = xwith Jacobian Ax, y - ¢, V) = —(1 — v). The region Ais
mapped into the region

{(bv):v>0,ul-vV)>0,v+uUl-V <1} ={(4,V) :0<u<10< v<1}. Thenthe
joint p.d.f. of (U, V) = (YI(1 - X), X) is given by

_ 1 101 _ 1 Y
ou,v) = B(n,p)u 11— urt. Bm. i D) V(1 — et

Then Uand Vare independent Beta variables.

Theorem 2.4 Let (X; Y) follow the bivariate Dirichlet distribution with pdf given by (2.1).
Also let U= X+ Yand V= XI(X+ Y). Then U~Beta(m+ n, p) is independent of V~
Beta(m, n).

Proof. Let us make the transformation # = x+ yand vv = x. The region A is mapped onto
the region {(¢, V) : uv>0,1-v) >0, u< 1y ={(4, V) : 0<u<10< v<1}with
Jacobian X, y - v, V) = —u. The theorem then follows in a straightforward manner.
In what follows we will define
fap = E[(X=8)*(Y-0)"] (2.5)
where & = E(X) and 6 = E(Y).

3. Raw Product Moments

For any non-negative integer @, we have Pochhammer factorials defined as
Ca = c(c+1)(c+2)---(c+a-1)and
¢ = o(c-1)(c-2)---(c—a+1).
with Coy = 1, co =1.

Also, the (a, 6)” raw product moment of Xand Y of the bivariate Dirichlet distribution is
given by

EXay?) = | ; [ ;Xa)/’f(x, V) dxay. (3.1)

Lemma 3.1 Let Xand Yhave the joint pdf given by (2.1). Then
(i)  the marginal density function of X ~ Beta(m, n+ p), has an expected value of

B = 2

(i) the marginal density function of Y ~ Beta(n, m+ p), has an expected value of



7]
EY") = 5.

(iii)  and the raw product moment of order (&, b) is

Mg n
EXAY?y = 2200 where t= m+ n+ p.
Larby

Lemma 3.1 gives rise to some useful raw moments that will be used further in this article.
In particular, some specific raw moments that are needed for the calculation of centered
moments, bivariate skewness and kurtosis are given below.
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AX°Y®) = (t+1)(t+2)(t+3)(t+4)(t+5) '
mm+1)(m+2)(m+3)(n+L)n

EX'Y?) = {(t+ 1)(t+ 2)(t+3)(t+ 4)(t+5)

AXx) =
m(m+1)

BX) = ”;‘((r+1)1)(’ )
m+1)(m+

E(XC) = mE(H 11))((t+ 2)2)(’ )
m+1)(m+2)(m+

O = (t+1)(t+2)(t+3)

EXE) = m+ D(m+ 2)(m+ 3)(m -+ 4)
{1+ 1)(1+2)(1+3)(1+4)

mm+ 1) (m+2)(m+3)(m+4)(m+5)
(t+1)(t+2)(t+3)(t+4)(t+5) '

E(XC) =

4. Centered Moments

The centered product moments of a bivariate Dirichlet distribution, w5, can be obtained by
directly evaluating the following integral.

H (G - EX))0G - BX))'] = [ [1(X = BX0) (X - BXG)) Ax y) axdy.

For illustration, we derive the central moment w12 below.

Hi2 = E[(X EX)" (Y- E(Y)) ]

=L G- (v-2) 1x yyavay
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The higher order moments generally require more meticulous integration and
cross-checking of calculations. Some centered product moments of order a+ b = 2,3,4,5,6 are
given below:
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Similar expressions for moments p(b,a8) = E (X - &)?( Y- 0)?] are provided below.

_ (t=mm
20 = "ine

L @=2m(t—mym
BOZ D+ 2)f



P(m+2)— m(m+6)t+ 6m?
(I+ 1[2)(f+ 2 (t+3)F
4t )t 2mym (5m+6) — m(5m+ 12)t+ 12P
Hs0 (t+ 1)1+ 2)(t+ 3)(t+ HF
5(t—mym
(t+ D)(t+2)(t+3)(t+4)(t+5) O
x (3P + 26m+ 24) ¢ — 2m(3mP + 56m+ 60) A
+ MR + 172m+ 240) 2 — 2R (43m + 120) £+ 12077),

pao = 3(L—mym

Heo =

_ o mn(t—2m)
Hal = =28 1)(m;22) ’ ~
. (m+2)tc —m(m+6)t+6
Hat = M S T D B)F

B (5m+6)f — (12m+5m?)t+ 12nmP
Hay = —4(t=2m)mn (L= D+ )+ HE

Hs1 = S E T 2)(r+ 3)(t+4)(1+5)
x (377 + 26m+ 24)£* — 2m(31P + 56+ 60) £
+ mPGBAR + 172m+ 240) 2 — 2mP(43m+ 120)t+ 120mP),

t— £6m+n)+ (12n+5m(m+3n))E — 4m(m(5n+ 3) +9n) t+ 48/772/7
n (t+ D)(t+2)(t+ 3)(t+ 4) P

B+ 1)(t+2)(t+3)(f+ 4)(1+5)
x ((3m+6)f — (6m* + m(3n+40) +6n) ¢t
+ (3P + 6(3n+ 20) P + 4n(41m+ 30)) £
— (P (150 + 86) + 12/(43m + 40)) £
+10m?(12m+ 72n+ 43mn) t— 6001 n).

H32 = 2mn

Hap =

5. Correlation for the Bivariate Beta Distribution

Theorem 5.1 Let Xand Y have the joint pdf given by (2.1). Then the product moment
correlation coefficient between Xand Yis given by

_ mn
p= /(n+p>(m+p> '

Proof. Substituting the moments from Section 4 in p /uz0f02 = pa11we have the theorem.

Note that Theorem 5.1 is a special case of results in Kotz, Balakrishnan & Johnson (2000,
488).

For a special case of a bivariate Dirichlet distribution defined in (2.1) where m = n, that is
(t = 2m+ p) then the product moment correlation coefficient is p = —m/(m+ p). Note that
when m = n, we have the case when the two bivariate marginal probability density functions
are identical.

Another special case of a bivariate Dirichlet distribution defined in (2.1) occurs when
m= n= p,thatis = 3m. In this case then the product moment correlation coefficient



p = —%. Note that when m = n = p, we have special case of Theorem 5.1 when the two

bivariate marginal pdfs are identical with p = m.
It is also easy to check that

CoU X, Y) = E(XY)- EX)E Y) = =11

(t+ 1P
since A(XY) = AXEVX)] = n(ln_+),t(7 ) ) =% ﬁ”l) .

Consequently, the product moment correlation p between Xand Y'is given by what we
have in the theorem.
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