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Abstract

In this paper we consider the semilinear viscoelastic equation

utt −∆u+
] t

0
g(t− τ)∆u(τ)dτ = 0,

in a bounded domain, and establish a general decay estimate for weak solutions.
This result generalizes and improves earlier ones in the literature.
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1 Introduction
In this paper we consider the following problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

utt(x, t)−∆u(x, t) +
tU
0
g(t− τ)∆u(x, τ)dτ = 0, in Ω× (0,∞)

u(x, t) = 0, x ∈ ∂Ω , t ≥ 0
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.1)

where Ω is a bounded domain of IRn (n ≥ 1) with a smooth boundary ∂Ω and g is a
positive nonincreasing function defined on IR+. Cavalcanti et al. [5] studied (1.1) in
the presence of a localized damping cooperating with the dissipation induced by the
viscoelastic term. Under the condition

−ξ1g(t) ≤ g�(t) ≤ −ξ2g(t), t ≥ 0,
with ||g||L1((0,∞)) small enough, they obtained an exponential rate of decay. Berrimi et
al. [2] improved Cavalcanti’s result by showing that the viscoelastic dissipation alone
is enough to stabilize the system. To achieve their goal, Berrimi et al. introduced a
different functional, which allowed them to weaken the conditions on g as well as on
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the localized damping. This result has been later extended to a situation, where a
source is competing with the viscoelastic dissipation, by Berrimi et al. [2]. Cavalcanti
et al. [6] considered

utt − k0∆u+
t]
0

div[a(x)g(t− τ)∇u(τ )]dτ + b(x)h(ut) + f(u) = 0,

under similar conditions on the relaxation function g and a(x) + b(x) ≥ δ > 0
and improved the result in [5]. They established an exponential stability when g is
decaying exponentially and h is linear and a polynomial stability when g is decaying
polynomially and h is nonlinear. Though both results in [1] and [6] improve the
earlier one in [5], the approaches are different. Another problem, where the damping
induced by the viscosity is acting on the domain and a part of the boundary, was
also discussed by Cavalcanti et al. [5]. An xistence and uniform decay rate results
were established. A related problem, in a bounded domain, of the form

|ut|ρutt −∆u−∆utt +
] t

0
g(t− τ)∆u(τ )dτ − γ∆ut = 0, (1.2)

for ρ > 0, was also studied by Cavalcanti et al. [4]. A global existence result for γ ≥ 0,
as well as an exponential decay for γ > 0, has been established. This last result has
been extended to a situation, where a source term is competing with the strong
mechanism damping and the one induced by the viscosity, by Messaoudi and Tatar
[8]. In their work, Messaoudi and Tatar combined the well depth method with the
perturbation techniques to show that solutions with positive, but small, initial energy
exist globally and decay to the rest state exponentially. Furthermore, Messaoudi
and Tatar [11], [12] considered (1.2), for γ = 0, and established exponential and
polynomial decay results in the absence, as well as in the presence, of a source term.
We also mention the work of Kawashima and Shibata [7], in which a global existence
and exponential stability of small solutions to a nonlinear viscoelastic problem has
been established.
For nonexistence, Messaoudi [9] considered

utt −∆u+

t]
0

g(t− τ)∆u(τ)dτ + aut|ut|m = b|u|γu, in Ω× (0,∞)

and showed, under suitable conditions on g, that solutions with negative energy blow
up in finite time if γ > m and continue to exist if m ≥ γ. This blow-up result has
been pushed to some situations, where the initial energy is positive, by Messaoudi
[10]. A similar result has been also obtained by Wu [13] using a different method.
In the present work we generalize our earlier decay result to solutions of (1.1).

Precisely, we show that the solution energy decays at a similar rate of decay of the
relaxation function, which is not necessarily decaying in a polynomial or exponential
fashion. In fact, our result allows a larger class of relaxation functions. The paper
is organized as follows. In Section 2, we present some notations and material needed
for our work and state a global existence theorem, which can be proved following
exactly the arguments of [5]. Section 3 contains the statement and the proof of our
main result.
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2 Preliminaries
In this section we present some material needed in the proof of our main result. Also,
for the sake of completeness we state, without a proof, the global existence result of
[5] and [6]. We use the standard Lebesgue space Lp(Ω) and the Sobolev space H1

0 (Ω)
with their usual scalar products and norms.
For the relaxation function g we assume

(G1) g : IR+ → IR+ is a differentiable function such that

g(0) > 0, 1−
∞]
0

g(s)ds = l > 0.

(G2) There exists a differentiable function ξ satisfying

g�(t) ≤ −ξ(t)g(t), t ≥ 0,�����ξ
�(t)
ξ(t)

����� ≤ k, ξ(t) > 0, ξ�(t) ≤ 0, ∀t > 0.

Remark 2.1.There are many functions satisfying (G1) and (G2). Examples of such
functions are

g(t) = a(1 + t)ν, ν < −1
g(t) = ae−b(t+1)

p

, 0 < p ≤ 1.

for a and b to be chosen properly.
Remark 2.2. Since ξ is nonincreasing then ξ(t) ≤ ξ(0) =M
Remark 2.3 Condition (G1) is necessary to guarantee the hyperbolicity of the system
(1.1).
Proposition Let (u0, u1) ∈ H1

0 (Ω)× L2 (Ω) be given. Assume that g satisfies (G1).
Then problem (1.1) has a unique global solution

u ∈ C
�
[0, ∞) ;H1

0 (Ω)
�
, ut ∈ C

�
[0, ∞) ;L2 (Ω)

�
. (2.1)

We introduce the ”modified” energy functional

E(t) := 1

2

⎛⎝1− t]
0

g(s)ds

⎞⎠ ||∇u(t)||22 + 12 ||ut||22 + 12(g ◦ ∇u)(t), (2.2)

where

(g ◦ v)(t) =
t]
0

g(t− τ )||v(t)− v(τ )||22dτ . (2.3)
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3 Decay of solutions
In this section we state and prove our main result. For this purpose we set

F (t) := E(t) + ε1Ψ(t) + ε2χ(t), (3.1)

where ε1 and ε2 are positive constants and

Ψ(t) : = ξ(t)
]
Ω

uutdx (3.2)

χ(t) : = −ξ(t)
]
Ω

ut

t]
0

g(t− τ)(u(t)− u(τ))dτdx.

Lemma 3.1 If u is a solution of (1.1), then the ”modified” energy satisfies

E �(t) = 1

2
(g� ◦ ∇u)(t)− 1

2
g(t)||∇u(t)||2 ≤ 1

2
(g� ◦ ∇u)(t) ≤ 0. (3.3)

Proof. By multiplying equation (1.1) by ut and integrating over Ω, using integration
by parts, hypotheses (G1) and (G2) and some manipulations as in [9], we obtain (3.3)
for regular solutions. This inequality remains valid for weak solutions by a simple
density argument.
Lemma 3.2. For u ∈ H1

0 (Ω), we have

]
Ω

⎛⎝ t]
0

g(t− τ )(u(t)− u(τ ))dτ
⎞⎠2 dx ≤ (1− l)C2p(g ◦ ∇u)(t),

where Cp is the Poincaré constant.
Proof.

]
Ω

⎛⎝ t]
0

g(t− τ )(u(t)− u(τ ))dτ
⎞⎠2 dx = ]

Ω

⎛⎝ t]
0

t
g(t− τ )

t
g(t− τ)(u(t)− u(τ))dτ

⎞⎠2 dx.
By applying Cauchy-Schwarz inequality and Poincaré’s inequality, we easily see that

]
Ω

⎛⎝ t]
0

g(t− τ)(u(t)− u(τ))dτ
⎞⎠2 dx

≤
]
Ω

⎛⎝ t]
0

g(t− τ)dτ

⎞⎠⎛⎝ t]
0

g(t− τ )(u(t)− u(τ ))2dτ
⎞⎠ dx ≤ (1− l)C2p(g ◦ ∇u)(t).

Lemma 3.3. For ε1 and ε2 small enough, we have

α1F (t) ≤ E(t) ≤ α2F (t) (3.4)
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holds for two positive constants α1 and α2.
Proof. Straightforward computations, using Lemma 3.2, lead to

F (t) ≤ E(t) + (ε1/2) ξ(t) U
Ω
|ut|2dx+ (ε1/2) ξ(t) U

Ω
|u|2 dx

+(ε2/2) ξ(t)
U
Ω
|ut|2dx+ (ε2/2) ξ(t) U

Ω

#
tU
0
g(t− τ)(u(t)− u(τ))dτ

$2
dx

≤ E(t) + [(ε1 + ε2)/2]M
U
Ω
|ut|2dx+ (ε1/2)C2pM

U
Ω
|∇u|2 dx

+(ε2/2)C
2
pM(1− l)(g ◦ ∇u)(t) ≤ α2E(t).

(3.5)

Similarly,

F (t) ≥ E(t)− (ε1/2) ξ(t) U
Ω
|ut|2dx− (ε1/2) ξ(t)C2p

U
Ω
|∇u|2 dx

− (ε2/2) ξ(t) U
Ω
|ut|2dx− (ε2/2) ξ(t)C2p(1− l)(g ◦ ∇u)(t)

≥ +
k
1
2
−M (ε1 + ε2) /2

l U
Ω
|ut|2dx+ [12 l −M (ε1/2)C

2
p ]
U
Ω
|∇u|2 dx

+[1
2
−M (ε2/2)C

2
p(1− l)](g ◦ ∇u)(t) ≥ α1E(t),

(3.6)

for ε1 and ε1 small enough.
Lemma 3.4 Under the assumptions (G1) and (G2), the functional

Ψ(t) := ξ(t)
]
Ω

uutdx

satisfies, along the solution of (1.1),

Ψ�(t) ≤
%
1 +

k2C2p
l

&
ξ(t)

]
Ω

u2tdx−
l

4
ξ(t)

]
Ω

|∇u|2dx+ (1− l)
2l

ξ(t)(g ◦ ∇u)(t). (3.7)

Proof.
By using equation (1.1), we easily see that

Ψ�(t) = ξ(t)
]
Ω

(uutt + u
2
t )dx+ ξ�(t)

]
Ω

uutdx

= ξ(t)
]
Ω

u2tdx− ξ(t)
]
Ω

|∇u|2dx (3.8)

+ξ(t)
]
Ω

∇u(t).
t]
0

g(t− τ)∇u(τ)dτdx+ ξ�(t)
]
Ω

uutdx.

We now estimate the third term in the RHS of (3.8) as follows:

]
Ω

∇u(t).
t]
0

g(t− τ )∇u(τ)dτdx ≤ 1
2

]
Ω

|∇u(t)|2dx+ 1
2

]
Ω

⎛⎝ t]
0

g(t− τ)|∇u(τ )|dτ
⎞⎠2 dx

≤ 1
2

]
Ω

|∇u(t)|2dx+ 1
2

]
Ω

⎛⎝ t]
0

g(t− τ )(|∇u(τ)−∇u(t)|+ |∇u(t)|)dτ
⎞⎠2 dx. (3.9)
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We then use Lemma 3.2, Young’s inequality, and the fact that
tU
0
g(τ )dτ ≤

∞U
0
g(τ)dτ = 1− l, to obtain, for any η > 0,

]
Ω

⎛⎝ t]
0

g(t− τ)(|∇u(τ )−∇u(t)|+ |∇u(t)|)dτ
⎞⎠2 dx (3.10)

≤ U
Ω

#
tU
0
g(t− τ)(|∇u(τ )−∇u(t)|dτ

$2
dx+

U
Ω

#
tU
0
g(t− τ)|∇u(t)|dτ

$2
dx

+2
U
Ω

#
tU
0
g(t− τ )(|∇u(τ)−∇u(t)|dτ

$#
tU
0
g(t− τ)|∇u(t)|dτ

$
dx

≤ (1 + η)
U
Ω

#
tU
0
g(t− τ)|∇u(t)|dτ

$2
dx+ (1 + 1

η
)
U
Ω

#
tU
0
g(t− τ )(|∇u(τ)−∇u(t)|dτ

$2
dx

≤ (1 + 1
η
)(1− l)(g ◦ ∇u)(t) + (1 + η)(1− l)2 U

Ω
|∇u(t)|2dx.

By combining (3.8)-(3.10) and using]
Ω

uutdx ≤ αC2p

]
Ω

|∇u|2dx+ 1

4α

]
Ω

u2tdx, α > 0,

we arrive at

Ψ�(t) ≤
%
1 +

1

4α

�����ξ
�(t)
ξ(t)

�����
&
ξ(t)

]
Ω

u2tdx+
1

2
(1 +

1

η
)(1− l)ξ(t)(g ◦ ∇u)(t)

−1
2

%
1− (1 + η)(1− l)2 − 2

�����ξ
�(t)
ξ(t)

�����αC2p
&
ξ(t)

]
Ω

|∇u(t)|2dx (3.11)

≤
�
1 +

1

4α
k
�
ξ(t)

]
Ω

u2tdx+
1

2
(1 +

1

η
)(1− l)ξ(t)(g ◦ ∇u)(t)

−1
2

k
1− (1 + η)(1− l)2 − 2kαC2p

l
ξ(t)

]
Ω

|∇u(t)|2dx.

By choosing η = l/(1− l) and α = l/4kC2p , (3.7) is established.
Lemma 3.5 Under the assumptions (G1) and (G2), the functional

χ(t) := −ξ(t)
]
Ω

ut

t]
0

g(t− τ)(u(t)− u(τ))dτdx

satisfies, along the solution of (1.1),

χ�(t) ≤ δξ(t)
k
1 + 2(1− l)2

l ]
Ω

|∇u(t)|2dx

+

%
{2δ + 1

2δ
}(1− l) + C

2
p

4δ
k

&
ξ(t)(g ◦ ∇u)(t) (3.12)

+
g(0)

4δ
C2pξ(t)(−(g� ◦ ∇u)(t) +

⎡⎣δ(k + 1)− t]
0

g(s)ds

⎤⎦ ξ(t) ]
Ω

u2tdx, δ > 0.
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Proof. Direct computations, using (1.1), yield

χ�(t) = −ξ(t)
]
Ω

utt

t]
0

g(t− τ )(u(t)− u(τ))dτdx

−ξ(t)
]
Ω

ut

t]
0

g�(t− τ )(u(t)− u(τ ))dτdx− ξ(t)

⎛⎝ t]
0

g(s)ds

⎞⎠]
Ω

u2tdx

−ξ�(t)
]
Ω

ut

t]
0

g(t− τ )(u(t)− u(τ ))dτdx

= ξ(t)
]
Ω

∇u(t).
⎛⎝ t]
0

g(t− τ)(∇u(t)−∇u(τ))dτ
⎞⎠ dx (3.13)

−ξ(t)
]
Ω

⎛⎝ t]
0

g(t− τ)∇u(τ)dτ
⎞⎠ .

⎛⎝ t]
0

g(t− τ)(∇u(t)−∇u(τ))dτ
⎞⎠ dx

−ξ(t)
]
Ω

ut

t]
0

g�(t− τ )(u(t)− u(τ ))dτdx− ξ(t)

⎛⎝ t]
0

g(s)ds

⎞⎠]
Ω

u2tdx

−ξ�(t)
]
Ω

ut

t]
0

g(t− τ )(u(t)− u(τ ))dτdx.

Similarly to (3.8), we estimates the RHS terms of (3.13). So, by using Young’s
inequality, the first term gives

−
]
Ω

∇u(t).
⎛⎝ t]
0

g(t− τ )(∇u(t)−∇u(τ ))dτ
⎞⎠ dx (3.14)

≤ δ
]
Ω

|∇u|2dx+ 1− l
4δ

(g ◦ ∇u)(t), ∀δ > 0.

Similarly, the second term can be estimated as follows

U
Ω

#
tU
0
g(t− s)∇u(s)ds

$
.

#
tU
0
g(t− s) (∇u(t)−∇u(s)) ds

$
dx

≤ δ
U
Ω

����� tU0 g(t− s)∇u(s)ds
�����
2

dx+ 1
4δ

U
Ω

����� tU0 g(t− s) (∇u(t)−∇u(s)) ds
�����
2

dx

≤ δ
U
Ω

#
tU
0
g(t− s) (|∇u(t)−∇u(s)|+ |∇u(t)|) ds

$2
dx

+ 1
4δ

U
Ω

����� tU0 g(t− s) (∇u(t)−∇u(s)) ds
�����
2

dx

≤
�
2δ + 1

4δ

� U
Ω

#
tU
0
g(t− s) |∇u(t)−∇u(s)| ds

$2
dx+ 2δ (1− l)2 U

Ω
|∇u|2 dx

≤
�
2δ + 1

4δ

�
(1− l)(g ◦ ∇u)(t) + 2δ(1− l)2 U

Ω
|∇u|2 dx.

(3.15)
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As for the third and the fourth terms we have

−
]
Ω

ut

t]
0

g�(t− τ )(u(t)− u(τ ))dτdx ≤ δ
]
Ω

|ut|2 dx− g(0)
4δ
C2p(g

� ◦ ∇u)(t). (3.16)

and

]
Ω

ut

t]
0

g(t− τ )(u(t)− u(τ ))dτdx ≤ δ
]
Ω

|ut|2 dx+
C2p
4δ
(g ◦ ∇u)(t). (3.17)

By combining (3.13)-(3.17), the assertion of the lemma is established.
Theorem 3.6 Let (u0, u1) ∈ H1

0 (Ω)× L2 (Ω) be given. Assume that g and ξ satisfy
(G1) and (G2). Then, for each t0 > 0, there exist strictly positive constants K and
λ such that the solution of (1.1) satisfies

E(t) ≤ Ke−λ
U t
t0

ξ(s)ds
, t ≥ t0. (3.18)

Proof
Since g is positive and g(0) > 0 then for any t0 > 0 we have

t]
0

g(s)ds ≥
t0]
0

g(s)ds = g0 > 0, ∀t ≥ t0. (3.19)

By using (3.1), (3.3), (3.7), (3.12) and (3.19), we obtain for t ≥ t0,

F �(t) ≤ −
%
ε2{g0 − δ(1 + k)}− ε1

#
1 +

k2C2p
l

$&
ξ(t)

]
Ω

u2tdx

+{1
2
− ε2

g(0)

4δ
C2pM}(g� ◦ ∇u)(t)

−
%
ε1l

4
− ε2δ{1 + 2(1− l)2}

&
ξ(t)||∇u||22 (3.20)

+

#
ε1(1− l)
2l

+ ε2

�
2δ +

1

2δ

�
(1− l) + ε2

C2p
4δ
k

$
ξ(t)(g ◦ ∇u)(t).

At this point we choose δ so small that

g0 − δ(1 + k) >
1

2
g0

4

l
δ
k
1 + 2(1− l)2

l
<

1

4
�
1 +

k2C2p
l

�g0.
Whence δ is fixed, the choice of any two positive constants ε1 and ε2 satisfying

g0

4
�
1 + k2Cp

l

�ε2 < ε1 <
g0

2
�
1 +

k2C2p
l

�ε2 (3.21)

8



will make

k1 : = ε2{g0 − δ(1 + k)}− ε1

#
1 +

k2C2p
l

$
> 0

k2 : =
ε1l

4
− ε2δ

k
1 + 2(1− l)2

l
> 0.

We then pick ε1 and ε2 so small that (3.4) and (3.21) remain valid and, further,

k3 :=

#
1

2
− ε2

g(0)

4δ
C2pM

$
−
�
ε1
l
+ ε2{2δ + 1

2δ
}
�
(1− l)− ε2

C2p
4δ
k > 0.

Hence

{1
2
− ε2

g(0)

4δ
C2pM}(g� ◦ ∇u)(t) (3.22)

+

#
ε1(1− l)
2l

+ ε2

�
2δ +

1

2δ

�
(1− l) + ε2

C2p
4δ
k

$
ξ(t)(g ◦ ∇u)(t)

≤ −{1
2
− ε2

g(0)

4δ
C2pM}

]
Ω

t]
0

ξ(t− τ )g(t− τ)|∇u(τ )−∇u(t)|2dτdx

+

#
ε1(1− l)
2l

+ ε2

�
2δ +

1

2δ

�
(1− l) + ε2

C2p
4δ
k

$
ξ(t)(g ◦ ∇u)(t)

≤ −k3ξ(t)(g ◦ ∇u)(t),
since ξ is nonincreasing. Therefore, by using (3.4), (3.20), and (3.22), we arrive at

F �(t) ≤ −β1ξ(t)E(t) ≤ −β1α1ξ(t)F (t) ∀t ≥ t0. (3.23)

A simple integration of (3.23) leads to

F (t) ≤ F (t0)e−β1α1
U t
t0

ξ(s)ds
, ∀t ≥ t0. (3.24)

Thus (3.4), (3.24) yield

E(t) ≤ α2F (t0)e
−β1α1

U t
t0

ξ(s)ds
= Ke

−λ
U t
t0

ξ(s)ds
, ∀t ≥ t0. (3.25)

This completes the proof.
Remark 3.1 This result generalizes and improves the results of [1], [2], [5] and [6].
In particular, it allows some relaxation functions which satisfy g� ≤ −agρ, 1 ≤ ρ < 2.
This improves early works [2] and [6], where it is assumed that 1 ≤ ρ < 3/2.
Remark 3.2 Note that the exponential and the polynomial decay estimates, given
in early works [1], [2], [5] and [6], are only particular cases of (3.25). More precisely,
we obtain exponential decay for ξ(t) ≡ a and polynomial decay for ξ(t) = a(1+ t)−1,
where a > 0 is a constant.
Remark 3.3 Observe that our result is proved without any condition on g�� and g���

unlike what was assumed in (2.4) of [6]. We only need g to be differentiable satisfying
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(G1) and (G2).
Remark 3.4 Estimates (3.18) are also true for t ∈ [0, t0] by virtue of continuity and
boundedness of E(t) and ξ(t).
Remark 3.5 A similar result can be established for the semilinear problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

utt(x, t)−∆u(x, t) +
tU
0
g(t− τ)∆u(x, τ )dτ + b|u|p−2u(x, t) = 0, in Ω× (0,∞)

u(x, t) = 0, x ∈ ∂Ω , t ≥ 0
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(3.26)
where b > 0 and 2 ≤ p ≤ 2(n− 1)/(n− 2), if n ≥ 3.
Acknowledgment: The author would like to express his sincere thanks to King
Fahd University of Petroleum and Minerals for its support. This work has been
funded by KFUPM under Project # MS/DECAY/334.
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