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Abstract

The ‘Hat Problem’ also known as ‘Problème des Rencontres’ is often presented as
follows: At a restaurant n people check their hats in, and when they leave their hats
are returned in a random order. In how many ways can it happen that no one receives
his own hat back, and further what is the probability (for large n) of such an event E?
The surprising answer which is now folklore is P (E) → e−1 (for large n), and the
convergence is very rapid. In this article we give a few generalizations (old and new)
of this problem by associating it with certain semigroups of transformations.

1 Introduction and Preliminaries

The ‘Hat Problem’ also known as ‘Problème des Rencontres’ is often presented as
follows: At a restaurant n people check their hats in, and when they leave their hats
are returned in a random order. In how many ways can it happen that no one receives
his own hat back, and further what is the probability (for large n) of such an event E?
There are now several equivalent formulations to the ‘Hat Problem’, and we give two
different forms. The first, known as the ‘Matching Problem’ may not be relevant to
this article but is popular with students. It says: suppose there are n questions in an
exam and n possible answers to choose from, each question having a unique answer. In
how many ways can a student match these questions and answers so that no question
is matched to its correct answer, and further what is the probability of such an event?
It is now not difficult to see that in the ‘Matching Problem’, the number of ways it
can happen that no question is matched to its correct answer is equal to the number
of ways hats are returned and no one receives his own hat back.

The second, more relevant to the present discourse is the ‘Derangement Problem’.
First, recall that a permutation σ of Xn is a derangement if σ(x) 6= x for all x in Xn.
Again, it is not difficult to see that in the ‘Hat Problem’, the number of ways it can
happen that no one receives his own hat back is equal to the number of derangements
of Xn. As pointed out in [16, p. 85], the ‘Derangement Problem’ was first solved by
Montmort in probabilistic terms (in 1708), and later independently investigated by
Euler. In fact Montmort, Euler and Laplace considered a more general situation, see
Table 1 below.

As long as each person leaving receives exactly one hat, then we are dealing with
partial one-one transformations (equivalently, subpermutations). Thus we can talk of
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partial derangements, or more generally, partial one-one maps with exactly k fixed
points [12].
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Table 1.  Summary

Let Xn = {1, 2, · · · , n}. For a given (partial) mapping or transformation α : Y ⊆
Xn −→ Xn we denote its set of fixed points by F (α) = {x ∈ Y : xα = x}, its
domain Y by Dom α and its image set by Im α. If Domα = Xn then α is called a full
transformation, otherwise it is strictly partial. The height of α is |Im α|. The set of
permutations of Xn more commonly known as the symmetric group is usually denoted
by Sn while the set of partial one-one transformations of Xn more commonly known
as the symmetric inverse semigroup is usually denoted by In.
Let f(n, r, k) be the number of ways in which r (≤ n) persons leave the restaurant such
that only k (≤ r) of them receive their own hats back. It is not difficult to see that

f(n, r, k) = |{α ∈ In : |Im α| = r ∧ |F (α)| = k}|. (1.1)

Moreover, since we can choose the k fixed points in

(

n

k

)

ways and from the remaining

n − k elements of Xn no fixed points are required it follows that

f(n, r, k) =

(

n

k

)

f(n − k, r − k, 0). (1.2)

Thus to compute f(n, r, k) it is sufficient to compute f(n, r, 0). Laradji and Umar [12]
used this fact in showing that

Theorem 1.1 Let f(n, r, k) be as defined in (1.1). Then for n ≥ r ≥ k ≥ 0, we have

f(n, r, k) =
n!

k!(n − r)!

r−k
∑

m=0

(

n − k − m

r − k − m

)

(−1)m

m!
.
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Let E(n, r, k) be the event that when r persons leave the restaurant only k of them
receive their own hats back, and let PE(n, r, k) be the probability of such an event
occurring. It now follows from Theorem 1.1 and the well-known fact that there are n!
permutations of n objects, that

PE(n, n, 0) =
n

∑

m=0

(−1)m

m!
→ e−1

for large n. In fact, it is known (see for example [13]) that

PE(n, n, k) =
1

k!

n−k
∑

m=0

(−1)m

m!
→ (k!e)−1.

Next let E(n, k) be the event that when some persons (at least k of them) leave
the restaurant only k of them receive their own hats back, and let PE(n, k) be the
probability of such an event occurring. If we denote by an,k the number of partial
one-one maps of Xn having exactly k fixed points and bn = |In| then Laradji and Umar
[12] have shown that

PE(n, k) =
an,k

bn

→ (k!e)−1.

for large n.

2 Further Generalizations of the Hat Problem

Now suppose we allow the persons entering and leaving the restaurant to behave more
greedily or less gentlemanly, that’s to have possibly more than one hat when they leave
and let F (n, r, k) be the number of ways in which r (≤ n) persons leave the restaurant
such that only k (≤ r) of them receive their own hats back and perhaps other persons’
else hats, and that all hats are claimed. It is not difficult to see that

F (n, r, k) = |{α ∈ Tn : |Im α| = r ∧ |F (α)| = k}|. (2.1)

where Tn is the semigroup of full transformations of Xn. Note that there is no corre-
sponding result to Eqn.(1.2) above because of the interference by the greedy lot who
take more than one hat. Finding an expression for F (n, r, k) similar to Theorem 1.1 is
our immediate objective. In a private communication, Howie and Giraldes showed us
how they obtained a recurrence for F (n, n − 1, k) via some closely related function.

Proposition 2.1 Let F (n, r, k) be as defined in (2.1). Then for n ≥ r ≥ k ≥ 0, we
have

F (n, r, k) =

(

n

r

) r−k
∑

i=0

F (r, r − i, k)
n−r
∑

j=i

(

n − r

j

)

S(j, i)i!(r − i)n−r−j.
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Proof. Let α (in Tn) be such that |Im α| = r and |F (α)| = k. Then to construct all

such α, first we choose the r elements of Im α from Xn, this can be done in

(

n

r

)

ways.

Now these r images must map into themselves whilst preserving the k fixed points, this
can be done in

∑r−k

i=0
F (r, r− i, k) ways. However, note that there are i ∈ {0, 1, · · · , r−

k} elements of Im α without pre-images thus far, and n − r elements of Xn \ Im α

without images thus far. Next we choose j (n− r ≥ j ≥ i) pre-images (for the i images
without pre-images before now), partition them into i non-empty subsets and tie them

to their i images in a one-one fashion, this can be done in
∑n−r

j=i

(

n − r

j

)

S(j, i)i!.

Note that no new fixed points will arise since the two sets: the i images and the n− r

elements of Xn \ Im α are disjoint. Now there remains n − r − j elements without
images thus far. Finally note that the only way to avoid repetitions is to attach these
n − r − j to the r − i firstly used elements of Im α, this can be done in (r − i)n−r−j

ways. Hence the result follows.

This is not a satisfactory result and therefore needs to be sharpened. Nevertheless, we
can easily deduce the following results each of which is either known or can be proved
directly.

Corollary 2.2 F (n, r, r) =

(

n

r

)

rn−r.

Remark 2.3 From the well-known fact that α (in Tn) is idempotent iff Im α = F (α)
iff |Im α = F (α)|, it follows that F (n, r, r) is the number of idempotents of Tn with r

fixed points and so by Corollary 2.2, we recover the result of
∑n

r=0

(

n

r

)

rn−r is the

number of idempotents of Tn [1, Ex 2.2.2(a)] and [17].

Corollary 2.4 F (n, r, r − 1) =

(

n

r

)

r(r − 1)[rn−r − (r − 1)n−r].

Corollary 2.5 F (n, n − 1, k) = n(n − 1)F (n − 1, n − 1, k) + nF (n − 1, n − 2, k).

We propose an alternative expression for F (n, r, k)

Proposition 2.6 Let F (n, r, k) be as defined in (2.1). Then for n ≥ r ≥ k ≥ 0, we
have

F (n, r, k) =

(

n

r

) r
∑

j=0

(−1)j(r − j)n−r

r
∑

i=j

F (r, r − i, k)

(

i

j

)

.

Remark 2.7 The triangular array of numbers F (n, r, k) (0 ≤ k ≤ r ≤ n) except
F (n, n, k) are not yet listed in [15]. For some selected values of F (n, r, k) (k = 0, 1;
and r = n − 1), see Tables 2-4.
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   r

n

1 2 3 4 5 6 7 ∑ )0,,( rnF

1 0 0

2 0 1 12

3 0 6 2 2
3

4 0 24 48 9 34

5 0 80 480 420 44 4
5

6 0 240 3360 7920 3840 265 56

7 0 672 19320 97440 122640 38010 1854 6
7

8 0 1792 98112 934080 2414720 1893360 407904 14833 78

Table 2. F(n, r,0)

     r

n

1 2 3 4 5 6 7 ∑ )1,,( rnF

1 1 1

2 2 0 2

3 3 6 3 12

4 4 36 60 8 108

5 5 140 630 460 45 1280

6 6 450 4620 9300 4110 264 18750

7 7 1302 27405 119140 137025 39858 1855 326592

8 8 3528 141960 1172360 2780120 2052792 422744 14832 6588344

Table 3. F(n, r,1)

    k

n

0 1 2 3 4 5 6 7 ∑ − ),1,( knnF

1 0 0

2 0 2 2

3 6 6 6 18

4 48 60 24 12 144

5 420 460 240 60 20 1200

6 3840 4110 2040 660 120 30 10800

7 38010 39858 19950 6300 1470 210 42 105840

8 407904 422744 211344 68040 15680 2856 336 56 1128960

Table 4. F(n, n - 1,k)

Now let F (n, k) be the number of full transformations of Xn having exactly k fixed
points. Then it is clear that
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F (n, k) =
n

∑

r=k

F (n, r, k).

Interestingly, a closed formula for F (n, k) exists

Proposition 2.8 Let F (n, k) be the number of full transformations of Xn having ex-

actly k fixed points. Then F (n, k) =

(

n

k

)

(n − 1)n−k.

Proof. Let α (in Tn) be such that |F (α)| = k. Then to construct all such α, first

we choose the k elements of F (α) from Xn, this can be done in

(

n

k

)

ways. The

remaining n−k elements each has n− 1 degrees of freedom (avoiding itself), this gives
rise to (n − 1)n−k possibilities. Hence the result follows.

The corresponding ‘Generalized Hat Problem’ is: Suppose n people check in their
hats in a restaurant, and when some (at least k) of them leave, they each grab at least
one hat in a random order, and all hats are claimed. In how many ways can it happen
that only k (0 ≤ k ≤ n) of them receive their own hats back (and possibly some other
persons’ hat(s) as well), and further what is the probability of such an event occurring
for large n? The combinatorial question has been answered by Proposition 2.8. The
next result provides an answer to the probabilistic question.

Theorem 2.9 Let E(n, k) be the event that n people check in their hats in a restaurant,
and when some (at least k) of them leave, they each grab at least one hat in a random
order, such that all hats are claimed, and let PE(n, k) be the probability of such an
event occurring. Then for large n, we have PE(n, k) → (k!e)−1.

Proof. First note that |Tn| = nn and F (n, k) =

(

n

k

)

(n − 1)n−k. Thus

PE(n, k) =

(

n

k

)

(n − 1)n−k

nn
=

n!

(n − k)!k!

(n − 1)n−k

nn

=
1

k!

n!

(n − 1)k(n − k)!

(

1 −
1

n

)n

→ (k!e)−1

for a fixed k, as n → ∞

Finally, in the above ‘Generalized Hat Problem’ if we relax the condition that
all hats are claimed, that is to: some hats (may be none) may be unclaimed then
we are dealing with partial transformations. Let Pn denote the semigroup of partial
transformations of Xn. Then it is well-known that |Pn| = (n + 1)n. We also have
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Proposition 2.10 Let F ′(n, k) be the number of partial transformations of Xn having

exactly k fixed points. Then F ′(n, k) =

(

n

k

)

nn−k.

Proof. Let α (in Pn) be such that |F (α)| = k. Then to construct all such α, first we

choose the k elements of F (α) from Xn, this can be done in

(

n

k

)

ways. The remaining

n−k elements each has n degrees of freedom: n−1 possible images (avoiding itself) and
the extra freedom of not being in the domain of α, this gives rise to nn−k possibilities.
Hence the result follows.

We again get the surprising result:

Theorem 2.11 Let E ′(n, k) be the event that n people check in their hats in a restau-
rant, and when some (at least k) of them leave, they each grab at least one hat in a
random order, such that some (possibly none) of the hats may be unclaimed, and let
PE ′(n, k) be the probability of such an event occurring. Then for large n, we have
PE ′(n, k) → (k!e)−1.

Proof. First note that |Pn| = (n + 1)n and F ′(n, k) =

(

n

k

)

nn−k. Thus

PE(n, k) =

(

n

k

)

nn−k

(n + 1)n
=

n!

(n − k)!k!

nn−k

(n + 1)n

=
1

k!

n!

nk(n − k)!

(

1 −
1

n + 1

)n

→ (k!e)−1

for a fixed k, as n → ∞
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