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Abstract

Consider two Hilbert spaces H and V such that V ⊂ H ⊂ V ′ (dual of
V ). Our aim is to study the asymptotic behavior of solutions of the following
problem

utt(t) + Au(t) −
∫ t
0 g(t − s)Au(s)ds = 0, t > 0

u(0) = u0 ∈ V, ut(0) = u1 ∈ H,

where A : V −→ V ′ is a self-adjoint “differential” operator satisfying

< Au, v >V ′×V =< A1/2u,A1/2v >H×H

and g : IR+ → IR+ is a positive nonincreasing differentiable function. We will
show that the dissipation induced by the integral term is strong enough to have
a uniform stabilization. We also give some applications.
Keywords : exponential decay, hyperbolic, polynomial decay, relaxation func-
tion, viscoelastic.
AMS Classification : 35L90, 35B40 - 35L55.

1 Introduction

Cavalcanti et al. [6] studied the following equation

utt − ∆u +

t∫

0

g(t − τ)∆u(τ)dτ + a(x)ut + |u|γu = 0, in Ω × (0,∞),

for a : Ω → IR+, a function which may vanish on a part ω ⊂ Ω of positive measure.
Under some geometry restrictions on ω and

a(x) ≥ a0 > 0, ∀x ∈ ω,

−ξ1g(t) ≤ g′(t) ≤ −ξ2g(t), t ≥ 0,
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the authors established an exponential rate of decay. Berrimi and Messaoudi [2]
improved Cavalcanti’s result by introducing a different functional which allowed them
to weaken the conditions on both a and g. In particular, the function a can vanish
on the whole domain Ω and consequently the geometry condition has disappeared.
In [7], Cavalcanti et al considered

utt − k0∆u +

t∫

0

div[a(x)g(t − τ)∇u(τ)]dτ + b(x)h(ut) + f(u) = 0,

under similar conditions on the relaxation function g and a(x) + b(x) ≥ ρ > 0,
for all x ∈ Ω. They improved the result of [6] by establishing exponential stability
for g decaying exponentially and h linear and polynomial stability for g decaying
polynomially and h nonlinear. Their proof, based on the use of piecewise multipliers,
is similar to the one in [6]. Though both results in [2] and [7] improve the earlier one
in [6], the approaches as well as the functionals used are different. Another problem,
where the dissipation induced by the integral term is cooperating with a damping
acting on a part of the boundary was also discussed by Cavalcanti et al [4]. Also,
Cavalcanti et al [5] studied, in a bounded domain, the following equation

|ut|ρutt − ∆u − ∆utt +
∫ t

0
g(t − τ)∆u(τ)dτ − γ∆ut = 0, ρ > 0,

and proved a global existence result for γ ≥ 0 and an exponential decay for γ > 0.
This decay result was later pushed by Messaoudi and Tatar [10] to a situation where
a source term is present. A related result is the work of Kawashima [8], in which
he considered a one-dimensional model equation for viscoelastic materials of integral
type where the memory function is allowed to have an integrable singularity. For small
initial data, Muñoz Rivera and Baretto [13] proved that the first and the second-order
energies of the solution to a viscoelastic plate, decay exponentially provided that the
kernel of the memory decays exponentially. Kirane and Tatar [9] considered a mildly
damped wave equation and proved that any small internal dissipation is sufficient to
uniformly stabilize the solution by means of a nonlinear feedback of memory type
acting on a part of the boundary. This result was established without any restriction
on the space dimension or geometrical conditions on the domain or its boundary.
Furthermore, Berrimi and Messaoudi [3] considered

utt − ∆u +
∫ t

0
g(t − τ)∆u(τ)dτ = |u|p−2 u

in a bounded domain and p > 2. They established a local existence result and showed,
under weaker conditions than those in [7], that the local solution is global and decays
uniformly if the initial data are small enough.

Concerning nonexistence, Messaoudi [11] studied

utt − ∆u +
∫ t

0
g(t − τ)∆u(τ)dτ + a |ut|α−2 ut = b |u|p−2 u

and proved a blow up result for solutions with negative initial energy if p > α and
a global result for p ≤ α. This result has been later improved by Messaoudi [12]
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to accommodate certain solutions with positive initial energy. By the end it is also
worthmentionning the work of Aassila et al [1] in which an asymptotic stability and
decay rates, for solutions of the wave equation in star-shaped domains, were estab-
lished by combination of memory effect and damping mechanism.

In this paper, we consider an abstract viscoelastic problem of hyperbolic type of
the form {

utt(t) + Au(t) −
∫ t
0 g(t − s)Au(s)ds = 0, t > 0

u(0) = u0 ∈ V, ut(0) = u1 ∈ H,
(1.1)

where A : V −→ V ′ is a self-adjoint “differential” operator satisfying

< Au, v >V ′×V =< A1/2u, A1/2v >H×H (1.2)

||v||2 ≤ Cp||A1/2v||2, ∀v ∈ V, (1.3)

||.|| denotes the norm in H, and g : IR+ → IR+ is a differentiable function satisfying

g(0) > 0, 1 −
∞∫

0

g(s)ds = l > 0 (1.4)

g′(t) ≤ −ξgp(t), t ≥ 0, 1 ≤ p <
3

2
. (1.5)

We show that the dissipation induced by the integral term is strong enough to stabilize
the system. Precisely, we prove that the decay is exponential if p = 1 and polynomial
if p > 1. As an application to our result we go over some problems related to the
wave eqaution, the Petrovsky system, and the multi-dimensional wave eqaution.
Definition: By a weak solution of (1.1), we mean a function

u ∈ C([0, T ); V ) ∩ C1([0, T ); H)

satisfying, for almost every t ≥ 0 and for every v ∈ V

d

dt
< ut(t), v > + < A1/2u(t), A1/2v > −

∫ t

0
g(t − s) < A1/2u(s), A1/2v > ds = 0

u(0) = u0 ∈ V, ut(0) = u1 ∈ H.

We also define the energy by

E(t) =
1

2


1 −

t∫

0

g(s)ds


 ||A1/2u(t)||2 +

1

2
||ut(t)||2 +

1

2
(g ◦ A1/2u)(t), (1.6)

where

(g ◦ v)(t) =

t∫

0

g(t − τ)||v(t) − v(τ)||2dτ. (1.7)

Remark.1.1. Condition p < 3/2 is made so that
∫ ∞

0
g2−p(s)ds < ∞.
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2 Decay of solutions

In this section we state and prove our main result. For this purpose we set

F (t) := E(t) + ε1Ψ(t) + ε2χ(t), (2.1)

where ε1 and ε2 are positive constants and

Ψ(t) : =< u, ut >H×H (2.2)

χ(t) : = − < ut,

t∫

0

g(t − τ)(u(t) − u(τ))dτ >H×H .

Lemma 2.1 For r > 1 and 0 < θ < 1, we have

t∫

0

g(t−s)||w(s)||2ds ≤




t∫

0

g1−θ(t − s)||w(s)||2ds




1/r 


t∫

0

g(r−1+θ)/(r−1)(t − s)||w(s)||2ds




(r−1)/r

for any w ∈ H.
Proof. It suffice to note that

t∫

0

g(t − s)||w(s)||2ds =

t∫

0

g(1−θ)/r(t − s)||w(s)||2/rg(r−1+θ)/r(t − s)||w(s)||2(r−1)/rds

and apply Holder’s inequality.
Lemma 2.2. Let v(t) be such that A1/2v ∈ L∞((0, T ); H) and g be a continuous
function on [0, T ] and suppose that 0 < θ < 1 and p > 1. Then, there exists a
constant C > 0 such that

t∫

0

g(t − s)||A1/2v(t) − A1/2v(s)||2ds ≤ C


 sup

0<s<T
||A1/2v(s)||2

t∫

0

g1−θ(s)ds




p−1
p−1+θ

×




t∫

0

gp(t − s)||A1/2v(t) − A1/2v(s)||2ds




θ
p−1+θ

. (2.3)

Proof. By using lemma 2.1 with r = (p − 1 + θ)/(p − 1), we obtain

t∫

0

g(t− s)||A1/2v(t)−A1/2v(s)||2ds ≤




t∫

0

g1−θ(t − s)||A1/2v(t) − A1/2v(s)||2ds




p−1
p−1+θ

×




t∫

0

gp(t − s)||A1/2v(t) − A1/2v(s)||2ds




θ
p−1+θ

. (2.4)

It is easy to see that

t∫

0

g1−θ(t − s)||A1/2v(t) − A1/2v(s)||2ds ≤ C sup
0<s<T

||A1/2v(s)||2
t∫

0

g1−θ(s)ds (2.5)
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By combining (2.4) and (2.5), the proof of the lemma is complete.
Lemma 2.3. Let v(t) be such that A1/2v ∈ L∞((0, T ); H) and g be a continuous
function on [0, T ] and suppose that p > 1. Then, there exists a constant C > 0 such
that

t∫

0

g(t − s)||A1/2v(t) − A1/2v(s)||2ds ≤ C


t||A1/2v(t)||2 +

t∫

0

||A1/2v(s)||2ds




(p−1)/p

×




t∫

0

gp(t − s)||A1/2v(t) − A1/2v(s)||2ds




1/p

. (2.6)

Proof. We use (2.5), for θ = 1 to arrive at

t∫

0

g(t − s)||A1/2v(t) − A1/2v(s)||2ds ≤




t∫

0

||A1/2v(t) − A1/2v(s)||2ds




(p−1)/p

×




t∫

0

gp(t − s)||A1/2v(t) − A1/2v(s)||2ds




1/p

. (2.7)

It suffices to note that

t∫

0

||A1/2v(t) − A1/2v(s)||2ds = t||A1/2v(t)||2 +

t∫

0

||A1/2v(s)||2ds

to obtain (2.6). This completes the proof.
Lemma 2.4 If u is the solution of (1.1) then the energy E satisfies

E ′(t) =
1

2
(g′ ◦ A1/2u)(t) − g(t)||A1/2u(t)||2 ≤ 1

2
(g′ ◦ A1/2u)(t) ≤ 0. (2.8)

Proof. By multiplying ”scalarly” equation (1.1) by ut, using (1.2)-(1.5) with some
manipulations as in [11], we obtain (2.8).
Lemma 2.5. For ε1 and ε2 small enough, we have

α1F (t) ≤ E(t) ≤ α2F (t), (2.9)

holds for two positive constants α1 and α2.
Proof. Straightforward computations lead to

F (t) ≤ E(t) + (ε1/2) ||ut||2 + (ε1/2) ||u||2

+ (ε2/2) ||ut||2 + (ε2/2) ||
t∫
0

g(t − τ)(u(t) − u(τ))dτ ||2.
(2.10)
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By using (1.2)-(1.4), we have

||
t∫
0

g(t − τ)(u(t) − u(τ))dτ || =
t∫
0

g(t − τ)||(u(t) − u(τ))||dτ

≤
(

t∫
0

(√
g(t − τ)

)2
||(u(t) − u(τ))||2dτ

)1/2 (
t∫
0

(√
g(t − τ)

)2
dτ

)1/2

=

(
t∫
0

g(t − τ)||(u(t) − u(τ))||2dτ

)1/2 (
t∫
0

g(t − τ)dτ

)1/2

≤
(
(1 − l)(g ◦ A1/2u)(t)

)1/2
.

(2.11)

Therefore (2.10) becomes

F (t) ≤ E(t) + [(ε1 + ε2)/2] ||ut||2 + (ε1/2)Cp||A1/2u||2

+ (ε2/2) Cp(1 − l)(g ◦ A1/2u)(t) ≤ α2E(t).
(2.12)

Similarly we have

F (t) ≥ E(t) − (ε1/2) ||ut||2 − (ε1/2) ||u||2

− (ε2/2) ||ut||2 − (ε2/2)Cp(1 − l)(g ◦ A1/2u)(t)

≥ 1
2
l||A1/2u(t)||2 + 1

2
||ut||2 + 1

2
(g ◦ A1/2u)(t) − [(ε1 + ε2) /2] ||ut||2

− (ε1/2)Cp||A1/2u(t)||2 − (ε2/2)Cp(1 − l)(g ◦ A1/2u)(t) ≥ α1E(t)

(2.13)

for ε1 and ε1 small enough.
Lemma 2.6 Under the asumptions (1.2)-(1.5), the functional

Ψ(t) :=< u, ut >H×H

satisfies, along the solution of (1.1),

Ψ′(t) ≤ ||ut||2 −
l

2
||A1/2u||2 +

1

l




t∫

0

g2−p(τ)dτ


 (gp ◦ A1/2u)(t). (2.14)

Proof By using equation (1.1), we easily see that

Ψ′(t) = ||ut||2 − ||A1/2u||2+ < A1/2u,

t∫

0

g(t − τ)A1/2u(τ)dτ >H×H . (2.15)

We now estimate the third term in the right side of (2.15) as follows:

< A1/2u,

t∫

0

g(t − τ)A1/2u(τ)dτ >H×H≤
1

2
||A1/2u||2 +

1

2
||

t∫

0

g(t − τ)A1/2u(τ)dτ ||2

6



≤ 1

2
||A1/2u||2 +

1

2
||

t∫

0

g(t − τ)A1/2(u(τ) − u(t) + u(t))dτ ||2. (2.16)

We then use Cauchy-Schwarz inequality, Young’s inequality, and the fact that

t∫

0

g(τ)dτ ≤
∞∫

0

g(τ)dτ = 1 − l,

to obtain, for any η > 0,

||
t∫
0

g(t − τ)A1/2(u(τ) − u(t) + u(t))dτ ||2 ≤ ||
t∫
0

g(t − τ)(A1/2u(τ) − A1/2u(t))dτ ||2

+||
t∫
0

g(t − τ)A1/2u(t)dτ ||2 + 2 <
t∫
0

g(t − τ)A1/2(u(τ) − u(t))dτ,
t∫
0

g(t − τ)A1/2u(t)dτ >

≤ (1 + η)||
t∫
0

g(t − τ)A1/2u(t)dτ ||2 + (1 + 1
η
)||

t∫
0

g(t − τ)(A1/2u(τ) − A1/2u(t))dτ ||2.
(2.17)

At this point, we exploit Cauchy-Schwarz inequality, to estimate

||
t∫

0

g(t − τ)(A1/2(u(τ) − u(t))dτ ||2 =




t∫

0

g(t − τ)||A1/2u(τ) − A1/2u(t)||dτ




2

=




t∫

0

g1−p/2gp/2(t − τ)||A1/2(u(τ) − u(t))||dτ




2

(2.18)

≤




t∫

0

g2−p(τ)dτ




t∫

0

gp(t − τ)||A1/2(u(τ) − u(t))||2dτ.

Thus (2.17) takes on the form

||
t∫
0

g(t − τ)A1/2(u(τ) − u(t) + u(t))dτ ||2

≤ (1 + η)

(
t∫
0

g(t − τ)dτ

)2

||A1/2u(t)||2 + (1 + 1
η
)

(
t∫
0

g2−p(τ)dτ

)
(gp ◦ A1/2u)(t)

≤ (1 + η)(1 − l)2||A1/2u(t)||2 + (1 + 1
η
)

(
t∫
0

g2−p(τ)dτ

)
(gp ◦ A1/2u)(t).

(2.19)
By combining (2.15)-(2.19), we have

Ψ′(t) ≤ ||ut||2 +
1

2

[
−1 + (1 + η)(1 − l)2

]
||A1/2u||2 (2.20)

+(1 +
1

η
)




t∫

0

g2−p(τ)dτ


 (gp ◦ A1/2u)(t).

By choosing η = l/(1 − l), (2.14) is established.
Lemma 2.7 Under the asumptions (1.2)-(1.5), the functional

χ(t) := − < ut,

t∫

0

g(t − τ)(u(t) − u(τ))dτ >
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satisfies, along the solution of (1.1),

χ′(t) ≤ δ{1 + 2(1 − l)2}||A1/2u||2 + {2δ +
3

4δ
}




t∫

0

g2−p(τ)dτ


 (gp ◦ A1/2u)(t)

+
g(0)

4δ
Cp(−(g′ ◦ A1/2u)(t) + {δ −

t∫

0

g(s)ds}||ut||2, ∀δ > 0. (2.21)

Proof. Direct computations, using (1.1), yield

χ′(t) = − < utt,

t∫

0

g(t − τ)(u(t) − u(τ))dτ >

− < ut,

t∫

0

g′(t − τ)(u(t) − u(τ))dτ > −




t∫

0

g(s)ds


 ||ut||2

= − < A1/2u(t),

t∫

0

g(t − τ)A1/2(u(t) − u(τ))dτ > (2.22)

−〈
t∫

0

g(t − τ)A1/2u(τ)dτ,

t∫

0

g(t − s)(A1/2u(t) − A1/2u(s))〉

− < ut,

t∫

0

g′(t − τ)(u(t) − u(τ))dτ > −




t∫

0

g(s)ds


 ||ut||2

Similarly to (2.15), we estimates the right-side terms of (2.22). So for δ > 0, we have
:
The first term

− < A1/2u(t),

t∫

0

g(t − τ)(A1/2u(t) − A1/2u(τ))dτ >

≤ δ||A1/2u||2dx +
1

4δ
(

t∫

0

g2−p(τ)dτ)(gp ◦ A1/2u)(t). (2.23)

The second term

<
t∫
0

g(t − s)A1/2u(s)ds,
t∫
0

g(t − s)
(
A1/2u(t) − A1/2u(s)

)
ds >

≤ δ||
t∫
0

g(t − s)A1/2u(s)ds||2 + 1
4δ
||

t∫
0

g(t − s)
(
A1/2u(t) − A1/2u(s)

)
ds||2

≤ δ||
t∫
0

g(t − s)A1/2 (u(t) − Au(s) + u(t)) ds||2dx

+ 1
4δ
||

t∫
0

g(t − s)
(
A1/2u(t) − A1/2u(s)

)
ds||2

≤
(
2δ + 1

4δ

)
||

t∫
0

g(t − s)
(
A1/2u(t) − A1/2u(s)

)
ds||2 + 2δ (1 − l)2 ||A1/2u||2

≤
(
2δ + 1

4δ

) [ t∫
0

g2−p(τ)dτ

]
(gp ◦ A1/2u)(t) + 2δ(1 − l)2||A1/2u||2.

(2.24)
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The third term

− < ut,

t∫

0

g′(t − τ)(u(t)− u(τ))dτ >≤ δ||ut||2 +
1

4δ




t∫

0

−g
′
(t − s)||u(t) − u(τ)||dτ




2

(2.25)
We then use, simarly to (2.11), Holder’s inequality to estimate

t∫

0

−g
′
(t − s)||u(t) − u(τ)||dτ ≤ (

t∫

0

−g
′
(t − s)dτ)1/2

[
−g

′ ◦ u)(t)
]1/2

(2.26)

≤ Cp (g(0))1/2
[
−g

′ ◦ A1/2u)(t)
]1/2

.

Hence (2.25) and (2.26) give

− < ut,

t∫

0

g′(t − τ)(u(t) − u(τ))dτ >≤ δ||ut||2 +
g(0)

4δ
Cp(−(g′ ◦ A1/2u)(t). (2.27)

By combining (2.22)-(2.27), the assertion of the lemma is established.

Theorem 2.8 Let (u0, u1) ∈ V × H be given. Assume that (1.2)-(1.5) hold. Then,
for each t0 > 0, there exist strictly positive constants K and k such that the solution
of (1.1) satisfies, for all t ≥ t0,

E(t) ≤ Ke−kt, p = 1 (2.28)

E(t) ≤ K(1 + t)−1/(p−1), p > 1.

Proof.
Since g is continuous, positive and g(0) > 0 then for any t0 > 0 we have

t∫

0

g(s)ds ≥
t0∫

0

g(s)ds = g0 > 0, ∀t ≥ t0. (2.29)

By using (2.8), (2.14), (2.21), and (2.29), we obtain

F ′(t) ≤ − [ε2{g0 − δ} − ε1] ||ut||2 −
[
ε1l

2
− ε2δ{1 + 2(1 − l)}

]
||A1/2u||2 (2.30)

−ξ

(
1

2
− ε2

g(0)

4δ
Cp − [

ε1

l
+ ε2{2δ +

3

4δ
}]

t∫

0

g2−p(τ)dτ


 (gp ◦ A1/2u)(t).

At this point we choose δ so small that

g0 − δ >
1

2
g0,

2

l
δ{1 + 2(1 − l) <

1

4
g0.

Whence δ is fixed, the choice of any two positive constants ε1 and ε2 satisfying

1

4
g0ε2 < ε1 <

1

2
g0ε2 (2.31)
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will make

k1 = ε2{g0 − δ} − ε1 > 0

k2 =
ε1l

2
− ε2δ{1 + 2(1 − l)} > 0.

We then pick ε1 and ε2 so small that (2.9) and (2.31) remain valid and

1

2
− ε2

g(0)

4δ
Cp − [

ε1

l
+ ε2{2δ +

3

4δ
}]

∞∫

0

g2−p(τ)dτ > 0.

Therefore, for all t ≥ t0. we have

F ′(t) ≤ −β
[
||ut||2 + ||A1/2u||2 + (gp ◦ A1/2u)(t)

]
. (2.32)

Case 1. p = 1: We combine (1.6), (2.9) and (2.32) to get

F ′(t) ≤ −β1E(t) ≤ −β1α1F (t) ∀t ≥ t0. (2.33)

A simple integration of (2.33) leads to

F (t) ≤ F (t0)e
β1α1t0e−βα1t, ∀t ≥ t0. (2.34)

Thus (2.9), (2.34) yield

E(t) ≤ α2F (t0)e
βα1t0e−βα1t = Ke−kt, ∀t ≥ t0. (2.35)

Case 2. p > 1.
By using (1.4) and (1.5) we easily deduce that

∫ ∞

0
g1−θ(τ)dτ < ∞, θ < 2 − p,

so lemma 2.2 yields

(g ◦ A1/2u)(t) ≤ C
{
(gp ◦ A1/2u)(t)

}θ/(p−1+θ)
{(∫ ∞

0
g1−θ(τ)dτ

)
E(0)

}(p−1)/(p−1+θ)

(2.36)
Therefore we get, for σ > 1,

Eσ(t) ≤ CEσ−1(0)



∫

Ω

u2
t dx + ||A1/2u||2


+ C

{
(g ◦ A1/2u)(t)

}σ

≤ CEσ−1(0)



∫

Ω

u2
t dx + ||A1/2u||2


 (2.37)

+C
{
E(0)

∫ ∞

0
g1−θ(τ)dτ

}σ(p−1)/(p−1+θ) {
(gp ◦ A1/2u)(t)

}σθ/(p−1+θ)
,

10



where C is a generic positive constant. By choosing θ = 1
2

and σ = 2p − 1 (hence
σθ/(p − 1 + θ) = 1), estimate (2.37) gives

Eσ(t) ≤ C





∫

Ω

u2
t dx + ||A1/2u||22 + (gp ◦ A1/2u)(t)



 (2.38)

By combining (2.9), (2.32) and (2.38), we obtain

F ′(t) ≤ −β2

Γ
Eσ(t) ≤ −β2

Γ
(α1)

σ F σ(t), ∀t ≥ t0, (2.39)

for some constant β2 > 0. A simple integration of (2.39) over (t0, t) leads to

F (t) ≤ C(1 + t)−1/(σ−1), ∀t ≥ t0. (2.40)

As a consequence of (2.40), we have
∫ ∞

0
F (t)dt + sup

t≥0
tF (t) < ∞. (2.41)

Therefore, by using Lemma 3.3, we have

g ◦ A1/2u ≤ C
[∫ ∞

0
‖A1/2u(s)‖2ds + sup

t
t‖A1/2u(t)‖2

](p−1)/p

(gp ◦ A1/2u)1/p

≤ C
[∫ ∞

0
F (s)ds + tF (t)

](p−1)/p

(gp ◦ ∇u)1/p ≤ C(gp ◦ ∇u)1/p,

which implies that
gp ◦ ∇u ≥ C(g ◦ ∇u)p. (2.42)

Consequently, a combination of (2.32) and (2.42) yields

F
′
(t) ≤ −C

[∫

Ω
u2

t (t)dx + ‖A1/2u(t)‖2 + (g ◦ ∇u)p(t)
]
, ∀ t ≥ t0. (2.43)

On the other hand, we have , similarly to (2.37),

Ep(t) ≤ C
[∫

Ω
u2

t (t)dx + ‖A1/2u(t)‖2 + (g ◦ ∇u)p(t)
]
, ∀ t ≥ t0. (2.44)

Combining the last two inequalities and (2.9), we obtain

F ′(t) ≤ −CF p(t), t ≥ t0. (2.45)

A simple integration of (2.45) over (t0, t) gives

F (t) ≤ K(1 + t)−1/(p−1), t ≥ t0.

This completes the proof.

Remark 2.1. Estimates (2.28) also hold for all t ∈ [0, t0] by virtue of continuity
and boundedness of E .
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3 Applications.

1) Wave Equation:





utt − ∆u +
t∫
0

g(t − τ)∆u(τ)dτ = 0, in Ω × (0,∞)

u(x, t) = 0, x ∈ ∂Ω , t ≥ 0
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(3.1)

where Ω ⊂ IRn (n ≥ 1) is bounded with a smooth boundary ∂Ω and g ≥ 0 satisfying
(1.4) and (1.5).
Theorem 3.1. Let (u0, u1) ∈ H1

0 (Ω)×L2(Ω) be given. Assume that g satisfies (1.4)
and (1.5). Then, for each t0 > 0, there exist strictly positive constants K and k such
that the solution of (3.1) satisfies, for all t ≥ t0, the decay estimates (2.28).
Proof. It suffices to take

H = L2(Ω), V = H1
0 (Ω), A = −∆

It is well known that

< −∆u, v >=
∫

Ω
∇u.∇vdx, ∀u, v ∈ V

and, by Poincarė, we have
∫

Ω
u2dx ≤ Cp

∫

Ω
|∇u|2dx

The energy is

E(t) :=
1

2


1 −

t∫

0

g(s)ds


 ||∇u(t)||2 +

1

2
||ut||2 +

1

2
(g ◦ ∇u)(t).

All conditions of Theorem 2.8 are satisfied. So (2.28) follow
Remak 3.1. Note that our result is proved without any condition on g′′ and g′′′.
Unlike what was required in [6], we only assume (1.4) and (1.5).
2) Petrovsky system





utt + ∆2u −
t∫
0

g(t − τ)∆2u(τ)dτ = 0, in Ω × (0,∞)

u(x, t) = 0, ∂u
∂ν

= 0, x ∈ ∂Ω ,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω

(3.2)

where Ω ⊂ IRn (n ≥ 1) is bounded with a smooth boundary ∂Ω and g ≥ 0 satisfying
(1.4) and (1.5).
Theorem 3.2. Let (u0, u1) ∈ H2

0 (Ω)×L2(Ω) be given. Assume that g satisfies (1.4)
and (1.5). Then, for each t0 > 0, there exist strictly positive constants K and k such
that the solution of (3.2) satisfies, for all t ≥ t0, the decay estimates (2.28).
Proof. It suffices to take

H = L2(Ω), V = H2
0 (Ω), A = ∆2
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consequently, we obtain

< ∆2u, v >=
∫

Ω
∆u∆vdx, ∀u, v ∈ V.

By using Poincarė’s inequality and Green’s formula, we have
∫

Ω
u2dx ≤ Cp

∫

Ω
|∆u|2dx

We define the energy by

E(t) :=
1

2


1 −

t∫

0

g(s)ds


 ||∆u(t)||2 +

1

2
||ut||2 +

1

2
(g ◦ ∆u)(t).

All conditions of Theorem 2.8 are satisfied. So the decay estimates (2.28) follow.
3) Higher-order Wave Equation:





utt + (−1)mD2mu −
t∫
0

g(t − τ)(−1)mD2muu(τ)dτ = 0, in (a, b) × (0,∞)

Dku(a, t) = Dku(b, t) = 0, t ≥ 0, k = 0, 1, ..., m − 1
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (a, b).

(3.3)

We set

Hm
0 (Ω) = {v ∈ Hm(Ω) / v(x) = v′(x) = ....... = v(m−1)(x) = 0, x = a, b}

Theorem 3.3. Let (u0, u1) ∈ Hm
0 (Ω)×L2(Ω) be given. Assume that g satisfies (1.4)

and (1.5). Then, for each t0 > 0, there exist strictly positive constants K and k such
that the solution of (3.3) satisfies, for all t ≥ t0, the decay estimates (2.28).
Proof. It suffices to take

H = L2(Ω), V = Hm
0 (Ω), A = (−1)mD2mu

By using ”repeated” integration by parts, we easily see that

< Au, v >=
∫

Ω
DmuDmvdx, ∀u, v ∈ V

and, by repeating Poincarė’s inequality several times, we have
∫

Ω
u2dx ≤ Cp

∫

Ω
|Dmu|2dx

The energy is

E(t) :=
1

2


1 −

t∫

0

g(s)ds


 ||Dmu(t)||2 +

1

2
||ut||2 +

1

2
(g ◦ Dmu)(t)

All conditions of Theorem 2.8 are satisfied. So the decay estimates (2.28) follow.
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