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Abstract 

 
 
The n-point Gauss quadrature rule states that  
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where 1 2, , , nz z z…  are n zeros of the nth degree orthogonal polynomial of degree n 
over [ – 1,1] with respect to a positive weight function ( )xω . Moreover, 

lim ( ) 0, [ 1,1]nn
R f f C

→∞
= ∀ ∈ −  

and 
2 1( ) 0, .n nR f f π −= ∀ ∈  

 
In this report an extension of Gauss rule is presented which has the end points of the 
interval [– 1,1], i.e., x = –1 and x =1 as preassigned nodes of preassigned order n1 and 
n2 respectively. We construct interpolating orthogonal polynomials which makes the 
suggested rule capable of utilizing the maximum information related to the derivatives 
of f at the endpoints of the [– 1,1]. Some theoretical and computational aspects of the 
rule are also narrated. 
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1. Introduction 
 
In applied problems, most of the mathematical models involve definite integrals, 
which at a glance appear to be very simple but cannot be evaluated analytically. 
To cope with this type of situations, we require numerical techniques to 
approximate a given definite integral. The development of these techniques 
usually depends on the nature of complexity of the integrand and also on the 
acceptable error of approximation. One of the techniques widely used for the 
numerical evaluation of definite integrals is the “Gaussian Quadrature Rule”. Our 
aim in this report is to present a review of this technique. We also propose an 
extension of this rule that deals with interpolating orthogonal functions. 
 
 
2.  Gaussian Quadrature Rule 
 
We recall that an n-point Newton-Cotes rule is an n-point interpolatory quadrature 
formula where equidistant nodes , , 1, , ,i nx i n= … in the interval3 [–1,1] are fixed 
[H1, R1].  The degree of exactness for this rule, which is at most n, is related to n 
parameters, the weights , , 1, ,i nw i n= … of the formula [H1, R1]. These weights 
may be determined by solving the system of linear equations [K1]: 
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where ω  is a nonnegative weight function defined on [–1,1]. If both the nodes 
, , 1, , ,i nz i n= …  and the weights , , 1, ,i nw i n= … are kept free in an n-point 

interpolatory quadrature formula: 
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one may expect to have an increase in the degree of exactness of the resulting 
quadrature rule up to 2n – 1. This interesting point was initially noticed by Carl 
Gauss (1777-1855). Considering 2n parameters, Gauss [G1] found that the 
necessary condition for  
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to hold is that 
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This condition is known as orthogonality condition4 and characterizes the 
Legendre polynomials [C1] if ( )xω =1 on [–1,1]. The resulting formula, in this 
case, is known as Gauss-Legendre quadrature rule. 

                                                 
3 For the sake of simplicity, we shall consider the interval of integration [–1,1] in this report.   
4 Two functions f and g are orthogonal w.r.t. the weight function ( )xω over [–1,1] 
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The Gauss quadraure rule is regarded as a revolutionary step towards the 
numerical evaluation of definite integrals. Many researchers till now are working 
on its modifications, extensions, and error analysis. A large amount of material is 
available on algorithms that are designed for its implementation. 

 
  
3.  Computation of Gaussian Nodes and Weights 
 
As noticed above, the nodes , , 1, , ,i nz i n= …  of the Gauss quadrature formula arise 
from the polynomial 
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Because of the orthogonality condition, the polynomial ( )n xψ  is known as 
orthogonal polynomial w.r.t. the weight function ( )xω  over the interval [–1,1]. It 
can be determined by the 3-term recurrence relation which is usually referred as to 
Stieltjes procedure [G2]. The relation is explained in the following theorem and 
may be found in the standard texts on approximation theory and numerical 
analysis, e.g., [P1]:  
 
Theorem 3.1: The polynomials ( )n xψ , 1,2,3,n = …  satisfy the 3-term relation 
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where the notation .,.  stands for the inner product and is defined by 
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Remark (3.1): The relations (3.2) are due to Christoffel [C2] who had different 
expressions for ,n nα β . These expressions are also referred to as the Christoffel 
numbers in the literature. The formulas for ,n nα β  given in (3.3) were presented 
by Stieltjes [S2] and Darbous [D1] independently. Stieltjes, in fact, pointed out 
how (3.2) and (3.3) can be used to successively generate the orthogonal 
polynomials 1 2 3, , ,ψ ψ ψ ……. See [G2]. 
   
  
Remark (3.2):The orthogonal polynomials ( ), 1,2,n x nψ = …  , have some 
interesting properties which are as follows [C1]: 



 
1. The numbers , 1,2,n nβ = …  , are positive and 2

1 1 0n n nψ β β β β−= … . 

2. All the zeros of the orthogonal polynomials are simple, real and lie in 
the interior of  [–1,1]. 

3. The n+1 zeros of 1( )n xψ +  alternate with the n zeros of ( )n xψ  , i.e., if 

{ } { }1
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and 
n n
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+ = =
 are respectively the set of zeros of 1  and n nψ ψ+ , 

both written in descending order then 
1, 1 1, 2, 1 2, 3, 1 , 1, 1n n n n n n n n nz z z z z z z+ + + + +< < < < < <… . 

 
 
 

4.  Error Term for Gauss Quadrature Formula 
 
Counting each Gaussian node , , 1,2, ,i nw i n= … , as a double node, Andrei Markoff 
(1856-1922) [M1], [G3, p. 165] noted that the Gaussian quadrature formula could 
be obtained by 2 1(., )nH f− , the Hermite interpolant polynomial to f of degree 2n – 
1 defined by 2 1 , , 2 1 , ,( , ) ( ) and ( , ) ( ), 1,2, ,n i n i n n i n i nH z f f z H z f f z i n− −′ ′= = = … . Since 

2 1(., )nH f−  is a polynomial of degree 2n – 1, using the degree of exactness of the 
Gauss rule we obtain 
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As noted above, an exclusive computation of weights ,i nw  is avoided by the use of 
the Hermite interpolation polynomial. This polynomial also helps in the 
determination of error ( )nR f  due to Gauss rule: 

 
Theorem 5.1 [H2, S1]: If 2 [ 1,1],nf C∈ −  then for each [ 1,1]x∈ − , there exists a 
point ( 1,1)xξ ∈ −  such that  
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Remark 5.1: The above equation together with the mean value theorem of 
calculus leads to the relation 
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5.  An Extension to s+n-Point Formula 
 
It may be noted that the Lobatto, Radau, Kronrod rules [E1, H1, K1, L1, R1, 
G…]may be regarded as n+2-point, n+1-point and 2n+1-point rules respectively 



with the degree of exactness as 2n – 1, 2n, and 3n+1. This section deals with a 
different kind of extension of the Gauss Quadrature Rule. Here, we intend to 
consider the end points of the interval [a,b] as preassigned nodes of higher 
multiplicity for the modified Quadrature Rule. We briefly summarize the structure 
of the respective orthogonal polynomials, their properties and finally the 
corresponding Quadrature Rule. 

 
A. Structure of Orthogonal Polynomials: For fixed nonnegative integers n1 and 
n2, we set  
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and generate the polynomials , , 0,1, 2,k s kψ = … , with respect to a given weight 
function ( )xω  by using the standard 3 Term Recurrence Relation−  : 
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B. Some Properties of Orthogonal Polynomials ,k sψ . 

a) , 1 2( ) has +  zeros, namely,n s x n n nψ +  

1

2

1 2

i.  is a Zero of Order 
ii.  is a Zero of Order 
iii.  Distinct Real Zeros in the open interval ( , ): , , , n

a n
b n
n a b z z z…

 

b) If we set { }1, 1(.) (.) :n s s nW p pπ π∗
− −= ∈ then 1,n sπ ∗

− is a subspace of 1n sπ − + .  

    Moreover, *
, ,n s n sψ π∈  and , 1,n s n sψ π ∗

−⊥ . 
 

C. The Integrand f and its Hermite Interpolant. 
In order to have a simpler expression for our proposed quadrature rule, we modify 
an s times  differentiable integrand :[ , ]f a b R→  to 

1( ) ( ) ( , )H sf x f x H x f−= − , 
where 1( , )sH x f−  denotes the polynomial of degree s – 1, which interpolates f at 
the s zeros of ( )sW x in the sense of Hermite (cf (5.1)), i.e., 
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j jf a j n f b j n= = − = = −… … . 
 
 
 
 



D. Structure of Interpolation Polynomial to Hf  at the Zeros of ,n sψ .  
In order to describe an interpolatory quadrature rule for the functions of the 
form Hf , we concentrate to the structure of the interpolation polynomial of degree 
s + n, which interpolates f at the s n+ zeros of ,n sψ in the sense of Hermite. If we 
denote this polynomial by 1( , )n s Hx f+ −ℑ , then it may be described as follows: 
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where  
a) , 1,2, ,iz i n= …  are the n simple zeros of ,n sψ , 
b) 1 are the Fundamental Polynomials of ( , )i n s Hh x f+ −ℑ  corresponding to each 
simple node , 1, 2, , .iz i n= …  
c) , 1 are the Fndamental Polynomials of ( , )j a n s Hh x f+ −ℑ  corresponding to the 
node 1"  of mutiplicity "a n . 
d) , 1 are the Fndamental Polynomials of ( , )k b n s Hh x f+ −ℑ  corresponding to the 
node 2"  of mutiplicity "b n . 
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we deduce from the above explanation that 
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E. Main Result 
Keeping in view all the notations described above, we have the following 
Quadrature Rule: 

 
Theorem (Main Result): Suppose that 1 2[ , ], max( , )mf C a b m n n∈ = and let 
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Then the quadrature rule  
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has the following convergence property: 
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where the wighted integral 

, 1( ) ( , )
b

H w s
a

I w x H x f dx−= ∫  

with polynomial integrand can be directly evaluated by using the quadrature 
formula. 

 
E. Some Remarks 

i. The Quadrature rule (cf (5.2)) is an n-point interpolatory formula having n 
weights , , 1, 2, ,i n i nω = … . 
ii. The degree of exactness for this rule is 2n – 1.  
  
iii. When s = 0, the polynomial interpolation at the end points will not be 
involved in the structure of the Quadrature Rule stated above. In this case, 

( ) 1sW x ≡  and the resultant rule will be the Ordinary Gauss Quadrature 
formula.   
 

 
6.  Computational Aspects 
 
In this section we present the numerical algorithm for the method proposed in the 
previous section.  
 
A. Numerical Algorithm  

• Input  
o f  function to be integrated over [ ]a b,   
o [ ]a b,  interval  
o 1n  where the desired derivatives of f  at a  will be of order 

10 1 1… n, , , −   
o 2n  where the desired derivative of f  at b  will be of order 

20 1 1n, , ..., −  
o n  number of quadrature points beside the end points a b,   

• generate 1 2( ) ( ) ( )n n
sW x x a x b= − − , 1 2( )s n n= +   

• generate the orthogonal polynomials , 0,1k s k nψ = ,...,    
• compute ,( )k sz roots Wsψ= /   
• generate 1sH −   
• set 1H sf f H −= −   

• generate ( )
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b

sa
T w x H x f dx−= ∫   



• output   1 2 ( ) ( )
b

a
T T w x f x dx+ ≈ ∫  

 
B. Examples 
To test the performance of the algorithm we apply it to the following examples: 

Example 1: 
The error function is defined as: 
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We would like to evaluate  
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For convenience, let  
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so that  

 
2erf (1) I
π

= .  

Therefore we compute the numerical value of I . 
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2xe−  

Numerical Results  
The following table shows the error in the numerical computation compared with 

MATLAB value for erf(1).   
 

1 2n n, n=1 n=2 n=3 n=4  
0 0 842701.  0 036082.  42 589004 10−. × 51 077446 10−. ×  
1 0 070957. 44 02037110−. 41 270461 10−. × 65 474581 10−. ×  
2 0 001773.  53 29458810−. 51 123385 10−. × 74 830643 10−. ×

 
Table 1.  



Example 2  
On this example we use two panels are used to numerically evaluate the integral:  
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Numerical Results  
Using two panels,[ 5 1]− ,−  and [ 1 1]− ,    
The following table shows the error in the numerical computation compared with 

MATLAB "Quad" which uses adaptive Simpson quadrature  
 

1 2n n, n=3 n=5  
0 0 0032929. 42 454541 10−. ×
1 0.003653 4.434673 410−×
2 0.0029947 2.0788489 410−×

 
      Table 2. Error Example 2 
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