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Abstract

Let POn be the semigroup of all order-preserving partial transformations of
a finite chain. It is shown that |POn| = cn satisfies the recurrence:
(2n− 1)(n + 1)cn+1 = 4(3n2 − 1)cn − (2n + 1)(n− 1)cn−1 with initial conditions
c0 = 1, c1 = 2. It is also shown that |E(POn)| = en satisfies the recurrence:
en+1 = 5(en − en−1) + 1 with initial conditions e0 = 1, e1 = 2. Moreover, the
cardinalities of the Green’s relations L,R and J have been computed.

1 Introduction

Consider a finite chain, say Xn = {1, 2, . . . , n} under the natural ordering and let Tn

and Pn be the full and partial transformation semigroups on Xn, respectively. We shall

call a partial transformation α : Dom α ⊆ Xn → Xn (order)-decreasing if xα ≤ x for

all x in Dom α, and α is order-preserving if x ≤ y implies xα ≤ yα for x, y in Dom α.

Combinatorial properties of Cn, the semigroup of all decreasing and order-preserving

full transformations onXn have been investigated by Higgins [8] and recently by Laradji

and Umar [11] . These papers motivated the study of combinatorial properties of PCn,

the semigroup of all decreasing and order-preserving partial transformations on Xn by

Laradji and Umar [12], where it is shown that |PCn| is the double Schröder number

∗Corresponding author
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and |E(PCn)| = (3n + 1)/2. This paper investigates combinatorial properties of POn,

the (necessarily larger semigroup than PCn) semigroup of all order-preserving partial

transformations on Xn, by analogy with [12].

Unlike PCn, the semigroup POn has been studied by Gomes and Howie [6] and

Garba [4, 5], mainly from algebraic point of view. After this introductory and prelim-

inary section, we obtain in Section 2 a recurrence satisfied by |POn| (similar to the

one for PCn). In Section 3, we compute the total number of idempotents of POn via

some natural equivalences and a linear recurrence relation. Finally, in Section 4 we

compute the cardinalities of the Green’s relations L,R and J . For standard concepts

in semigroup theory we refer the reader to [10] or [7].

We now recall some basic definitions from [12] that we shall need in the coming

sections.

Definition 1.1 Consider Xn = {1, 2, . . . , n} and let α : Xn → Xn be a partial trans-

formation. We shall denote by Dom α, the domain of α and by Im α the image set

of α. The width of α is |Domα|, the height of α is |Im α| and the waist of α is

max(Im α).

The semigroup Pn, of all partial transformations of Xn under the usual composition

contains the subsemigroup of all decreasing and order-preserving partial transforma-

tions of Xn, PCn which has been studied recently by Laradji and Umar [12]. However,

it is POn (a larger subsemigroup of Pn which also contains PCn) that we investigate

in this paper. Formally, we define POn as

POn = {α ∈ Pn : (∀x, y ∈ Dom α)x ≤ y ⇒ xα ≤ yα}. (1.1)

We also record these two results that will be needed in Section 2. The first (Lemma

1.1) known as the Vandermonde’s convolution identity is in the words of Riordan [14,

p. 8] perhaps the most widely used combinatorial identity, while the second (Lemma

1.2) can be obtained by repeated application of the Pascal’s triangular identity.

Lemma 1.2 [14, (3a), p. 8]. For all natural numbers k,m, n and p we have
n∑

k=0

(
n

m− k

)(
p
k

)
=

(
n+ p
m

)
.
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Lemma 1.3 For all natural numbers k, n and r we have

n∑
k=0

(
k + r − 2
k − 1

)
=

(
n+ r − 1
n− 1

)
=

(
n+ r − 1

r

)
.

2 The Order of POn

Gomes and Howie [6] were the first to study POn (excluding the identity map) and

among other things they computed the order of POn, which we now record.

Theorem 2.1 [6, Theorem 3.1]. Let POn be as defined in (1.1). Then |POn| is the
coefficient of xn in the series expansion of (1 + x)n(1− x)−n. Equivalently,

|POn| =
n∑

r=0

(
n
r

)(
n+ r − 1

r

)
.

However, from a computational point of view this result is not satisfactory if one were

to compute higher orders of POn. Recently, the authors in [12] computed the order of

PCn as rn, the double Schröder number given by

rn =
1

n+ 1

n∑
r=0

(
n+ 1
n− r

)(
n+ r
r

)
=

1

n

n∑
r=0

(
n
r

)(
n+ r
n− r

)
(2.1)

which also satisfies the recurrence

(n+ 2)rn+1 = 3(2n+ 1)rn − (n− 1)rn−1 (2.2)

for n ≥ 1, with initial conditions r0 = 1, r1 = 2. Moreover, in the process of discovering

|PCn| (in [12]) the authors also found two triangular arrays of numbers which are not in
Sloane’s encyclopaedia of integer sequences, and it is this relative success that motivates

the search for similar results for POn. As in [12], we begin by defining f(n, r, k) as

f(n, r, k) = |{α ∈ POn : |Dom α| = r ∧max(Im α) = k}|. (2.3)

Then clearly we have

f(n, 0, k) =

{
1 (k = 0)
0 (k > 0)

, f(n, r, 0) =

{
1 (r = 0)
0 (r > 0)

3



and perhaps less clearly, we have

f(n, 1, k) = n and f(n, r, 1) =

(
n
r

)
.

The first corresponds to the number of all maps α in POn of width 1 and Im α = {k},
that is, maps for which Dom α = {x} (x ∈ Xn) of which there are clearly n of them,

since Im α is fixed. The second corresponds to the number of all maps α in POn of

width r and Im α = {1}, that is, the number of all subsets (of Xn) of size r, of which

there are clearly

(
n
r

)
of them. In general, we have

Proposition 2.2 Let f(n, r, k) be as defined in (2.3). Then for n ≥ r, k > 0,

f(n, r, k) =

(
n
r

)(
k + r − 2
k − 1

)
.

Proof. First note that for all α in POn and y in Im α, yα−1 is convex modulo Dom α.

That is, to say, if y1, y2 ∈ yα−1 and z ∈ Dom α is such that y1 < z < y2 then z ∈ yα−1

as well. Next note that we can choose the elements of Dom α (from Xn) in

(
n
r

)
ways. However, since |Im α| = s, where 1 ≤ s ≤ r and max(Im α) = k, it follows

that we can choose the remaining s − 1 elements of Im α \ {k} from {1, 2, . . . , k − 1}
in

(
k − 1
s− 1

)
ways, which can now be tied to Dom α in

(
r − 1
s− 1

)
ways, by inserting

s − 1 symbols between the r − 1 spaces in Dom α, to get convex (modulo Dom α)

partitions. Thus, in all we have

f(n, r, k) =

(
n
r

) r∑
s=1

(
k − 1
s− 1

)(
r − 1
s− 1

)
=

(
n
r

) r−1∑
j=1

(
k − 1

k − 1− j

)(
r − 1
j

)

=

(
n
r

)(
k + r − 2
k − 1

)
(by Lemma 1.1).

Corollary 2.3 f(n, r, r) =

(
n
r

)(
2r − 2
r − 1

)
.

Corollary 2.4 Let On be the semigroup of all order-preserving full transformations of

Xn. Then

|{α ∈ On : max(Im α) = k}| = f(n, n, k) =

(
n+ k − 2
k − 1

)
.
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Lemma 2.5 Let G(n, 0) = 1, and for n ≥ k > 0 let G(n, k) =
n∑

r=0

f(n, r, k). Then

G(n, k) =
n∑

r=0

(
n
r

)(
k + r − 2
k − 1

)
.

Lemma 2.6 Let G(n, k) =
n∑

r=0

f(n, r, k). Then G(n, 0) = 1, G(n, 1) = 2n−1, G(n, n) =
∑n

r=0

(
n
r

)(
n+ r − 2
n− 1

)
and for 2 ≤ k ≤ n, we have

G(n, k) = 2G(n− 1, k)−G(n− 1, k − 1) +G(n, k − 1).

Proof. Let a(k, r) =

(
k + r − 2
k − 1

)
. Then it is clear that a(k, 0) = 0 and

a(k, r) = a(k − 1, r) + a(k, r − 1). (2.4)

Now, by Lemma 2.5

G(n, k)−G(n− 1, k) =
n∑

r=1

(
n
r

)
a(k, r)−

n−1∑
r=1

(
n− 1

r

)
a(k, r)

=
n−1∑
r=1

(
n− 1
r − 1

)
a(k, r) + a(k, n)

=
n∑

r=1

(
n− 1
r − 1

)
a(k, r) (2.5)

and so

G(n, k − 1)−G(n− 1, k − 1) =
n∑

r=1

(
n− 1
r − 1

)
a(k − 1, r). (2.6)

From (2.5) and (2.6) we have

G(n, k)−G(n− 1, k)−G(n, k − 1) +G(n− 1, k − 1)

=
n∑

r=1

(
n− 1
r − 1

)
[a(k, r)− a(k − 1, r)]

=
n∑

r=1

(
n− 1
r − 1

)
a(k, r − 1) (by (2.4))

=
n∑

r=2

(
n− 1
r − 1

)
a(k, r − 1) (since a(k, 0) = 0)

=
n−1∑
r=1

(
n− 1

r

)
a(k, r) = G(n− 1, k).
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Hence the result follows.

Corollary 2.7

G(n, n) =
n∑

r=1

(
n
r

)(
n+ r − 2
n− 1

)
=

n−1∑
s=0

(
n

s+ 1

)(
n+ s− 1
n− 1

)

=
n−1∑
s=0

(
n

n− s− 1

)(
n+ s− 1

s

)
= nrn−1.

Proposition 2.8 Let F (n, r) =
n∑

k=1

f(n, r, k). Then

F (n, r) =

(
n
r

)(
n+ r − 1
n− 1

)
.

Proof.

F (n, r) =
n∑

k=1

f(n, r, k) =
n∑

k=1

(
n
r

)(
k + r − 2
k − 1

)

=

(
n
r

) n∑
k=1

(
k + r − 2
k − 1

)
=

(
n
r

)(
n+ r − 1
n− 1

)
(by Lemma 1.2).

Corollary 2.9 [9, Theorem 2.1]. Let On be the semigroup of all order-preserving full

transformations of Xn. Then

|On| = F (n, n) =

(
2n− 1
n− 1

)
.

Remark 2.10 The triangular arrays of numbers f(n, r, r), G(n, k) and F (n, r) are not

listed in Sloane’s encyclopaedia of integer sequences and so we believe they are new.

For selected values of these numbers see Tables 1-3.

It is now clear that we have also proved the last part of Theorem 3.1, that is

|POn| =
n∑

r=0

F (n, r) =
n∑

r=0

(
n
r

)(
n+ r − 1
n− 1

)
.

Before we get a recurrence (similar to that for |PCn| = rn in [12]) satisfied by

|POn| = cn, first we establish the following lemma linking the two cardinalities.
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Lemma 2.11 For all n > 0, we have

2cn = (n+ 1)rn − (n− 1)rn−1.

Proof.

R.H.S. = (n+ 1)rn − (n− 1)rn−1

=
n∑

r=0

n+ 1

n

(
n
r

)(
n+ r
n− 1

)
−

n−1∑
r=0

(
n− 1

r

)(
n+ r − 1
n− 2

)
(by (2.1))

=
n−1∑
r=0

[
n+ 1

n

(
n
r

)(
n+ r
n− 1

)
−
(

n− 1
r

)(
n+ r − 1
n− 2

)]
+

n+ 1

n

(
2n

n− 1

)

=
n−1∑
r=0

[(n+ 1)(n+ r)− (n− 1)(n− r)]
(n+ r − 1)!

r!(n− r)!(r + 1)!
+

n+ 1

n

(
2n

n− 1

)

=
n−1∑
r=0

2n(n+ r − 1)!

r!(n− r)!r!
+
2n(2n− 1)!

n!n!
=

n∑
r=0

2n(n+ r − 1)!

r!(n− r)!r!

= 2
n∑

r=0

(
n
r

)(
n+ r − 1

r

)
= 2cn = L.H.S.

We now have

Proposition 2.12 Let POn be as defined in (1.1), and let cn = |POn|. Then c0 =

1, c1 = 2 and for all n > 0,

(2n− 1)(n+ 1)cn+1 = 4(3n2 − 1)cn − (2n+ 1)(n− 1)cn−1.

Proof. From Lemma 2.11 and (2.2) successively we have

2cn+1 = (n+ 2)rn+1 − nrn = 3(2n+ 1)rn − (n− 1)rn−1 − nrn

= (5n+ 3)rn − (n− 1)rn−1. (2.7)

Eliminating rn from Lemma 2.11 and (2.7) gives

(n+ 1)cn+1 − (5n+ 3)cn = (2n+ 1)(n− 1)rn−1 (2.8)

while eliminating rn−1 from Lemma 2.11 and (2.7) gives

cn+1 − cn = (2n+ 1)rn

7



which in turn implies

cn − cn−1 = (2n− 1)rn−1. (2.9)

Finally, eliminating rn−1 from (2.8) and (2.9) gives the required result.

3 The number of idempotents in POn

As many ‘natural’ semigroups of transformations are idempotent-generated it is not

surprising that counting the number of idempotents in such semigroups has attracted

the attention of Higgins [8], Howie [9], Tainiter [15] and Umar [16, 17]. Gomes and

Howie [6, Theorem 3.13] showed that POn is idempotent-generated, but did not count

all the idempotents in POn. To investigate this number we take a slightly different

approach (but essentially the same) from the previous section. First, we consider the

equivalence on E(POn) given by the equality of widths and define

E(n, r) = |{α ∈ POn : α2 = α ∧ |Dom α| = r}. (3.1)

Then clearly we have

E(n, 0) = 1 and E(n, 1) = n.

Moreover, we have from Howie [9] that

E(n, n) = f2n

where f2n is the alternate Fibonacci number. In general, we have

Lemma 3.1 E(n, r) =
n

n− r
E(n− 1, r), (n > r ≥ 0).

Proof. Let g(r, s) be the number of all idempotent order-preserving full transforma-

tions with domain {x1, x2, . . . , xr} ⊆ Xn and of height s. To count all idempotents ε

in POn of width r, we first note that we can choose the domain of ε (from Xn), say

{x1, x2, . . . , xr} in
(

n
r

)
ways. Next we choose the elements of Im ε ⊆ {x1, x2, . . . , xs}

where s = |Im ε| satisfies 1 ≤ s ≤ r. Now since Im ε can be chosen in

(
r
s

)
ways, it

follows that (
n
r

) r∑
s=1

(
r
s

)
g(r, s) = E(n, r) (3.2)
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from which we deduce(
n− 1

r

) r∑
s=1

(
r
s

)
g(r, s) = E(n− 1, r). (3.3)

From (3.2) and (3.3), it follows that(
n− 1

r

)
E(n, r) =

(
n
r

)
E(n− 1, r)

which in turn gives the required result.

Consequently from Lemma 3.1 we deduce that

Lemma 3.2 E(n, r) =

(
n
r

)
E(r, r).

Next, we consider the equivalence in E(POn) given by equality of waists and define

H(n, k) = |{α ∈ POn : α2 = α ∧max(Im α) = k}|. (3.4)

Then clearly

H(n, 0) = 1 and H(n, 1) = 2n−1.

In general, we have

Lemma 3.3 For 0 < k < n,H(n, k) = 2n−kH(k, k).

Proof. Let ε be an idempotent in POn satisfying max(Im ε) = k. Then by the order-

preserving property, for all x in {k, k+1, . . . , n} we have xε = k, if x ∈ Dom ε. Thus to

computeH(n, k), we consider all idempotents η on {1, 2, . . . , k} satisfying max(Im η) =

k, of which there areH(k, k) of them. Now multiply this number by 2n−k to getH(n, k),

where 2n−k is the total number of degrees of freedom for members of {k+1, k+2, . . . , n},
that is, for each x in {k+1, k+2, . . . , n} either x ∈ Dom ε (in which case xε = k) or x �∈
Dom ε.

Now since H(n, k) depends on H(k, k), we focus our attention to finding an expres-

sion for H(n, n). In fact we have

Proposition 3.4 H(n, n) = H(n− 1, n− 1) + 2n−1 +
n−2∑
t=1

(n− t+ 1)2n−t−2H(t, t).
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Proof. Since max(Im ε) = n, then n ∈ Dom ε and nε = n, by idempotency. Now we

consider cases:

Case 1. if min(nε−1) = {n}, then from the remaining {1, 2, . . . , n−1} elements we

can construct
n−1∑
t=0

H(n−1, t) idempotents to each of which we adjoin (nε−1)ε = nε = n;

Case 2. if min(nε−1) = {n−1}, then from the remaining {1, 2, . . . , n−2} elements

we can construct
n−2∑
t=0

H(n − 2, t) idempotents to each of which we adjoin (nε−1)ε =

{n− 1, n}ε = n.

Now, in general, if min(nε−1) = {n − m + 1}, where 2 ≤ m ≤ n, it is clear

that {n − m + 1, n} ⊆ nε−1 ⊆ {n − m + 1, . . . , n}. However, for each of the m − 2

middle elements {n − m + 2, . . . , n − 1} there are two degrees of freedom: either

x (in{n − m + 2, . . . , n − 1}) belongs to Dom ε (in which case xε = n) or it does not

belong to Dom ε. Thus there are 2m−2 degrees of freedom for these m − 2 middle

elements. Next, considering the remaining elements {1, 2, . . . , n−m} we can construct
n−m∑
t=0

H(n−m, t) idempotents, to each of which we adjoin (nε−1)ε ⊆ {n−m+1, . . . , n}ε =

n, thus giving rise to 2m−2

n−m∑
t=0

H(n−m, t) idempotents in all. Finally, adding all the

sums from all the cases we get

H(n, n) =
n−1∑
t=0

H(n− 1, t) +
n∑

m=2

2m−2

n−m∑
t=0

H(n−m, t)

= H(n− 1, n− 1) +
n−2∑
t=1

H(n− 1, t) +H(n− 1, 0) +
n∑

m=2

2m−2H(n−m, 0)

+
n−1∑
m=2

n−m∑
t=1

2m−2H(n−m, t)

= H(n− 1, n− 1) + 2n−1 +
n−2∑
t=1

H(n− 1, t) +
n−2∑
t=1

n−1∑
m=t+1

2m−2H(n−m, t)

= H(n− 1, n− 1) + 2n−1 +
n−2∑
t=1

2n−t−1H(t, t) +
n−2∑
t=1

n−1∑
m=t+1

2n−t−2H(t, t)

= H(n− 1, n− 1) + 2n−1 +
n−2∑
t=1

2n−t−2 · 2H(t, t) +
n−2∑
t=1

(n− t− 1)2n−t−2H(t, t)
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H(n, n) = H(n− 1, n− 1) + 2n−1 +
n−2∑
t=1

(n− t+ 1)2n−t−2H(t, t),

using Lemma 3.3 along the way.

However, a simple linear recurrence satisfied by H(n, n) = bn is given by the fol-

lowing lemma.

Lemma 3.5 Let H(n, n) = bn. Then b1 = 1, b2 = 3 and

bn+1 = 5(bn − bn−1).

Proof. From Proposition 3.4, we have

bn = bn−1 + 2n−1 +
n−2∑
t=1

(n− t+ 1)2n−t−2bt

so that

bn+1 = bn + 2n +
n−1∑
t=1

[(n− t+ 1) + 1]2n−t−1bt

= bn + 2n +
n−2∑
t=1

[(n− t+ 1) + 1]2n−t−1bt + 3bn−1

= bn + 2

{
2n−1 +

n−2∑
t=−1

(n− t+ 1)2n−t−2bt + bn−1

}
+

n−2∑
t=1

2n−t−1bt + bn−1

= 3bn + bn−1 +
n−2∑
t=1

2n−t−1bt. (3.5)

This in turn implies

bn = 3bn−1 + bn−2 +
n−3∑
t=1

2n−t−2bt. (3.6)

However, (3.5) may be written as

bn+1 = 3bn + bn−1 + 2
n−3∑
t=1

2n−t−2bt + 2bn−2

= 3bn + bn−1 + 2(bn − 3bn−1 − bn−2) + 2bn−2 (by (3.6))

= 5bn − 5bn−1

as required
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Remark 3.6 The triangular arrays of numbers E(n, r) and H(n, k) are not yet in

Sloane’s encyclpaedia of integer sequences. For selected values of these numbers see

Tables 4 and 5.

Now to obtain a formula for the total number of idempotents in POn we observe

that

|POn| = en =
n∑

k=0

H(n, k). (3.7)

Then by Lemma 3.3 and (3.7), we have

en = 1 +
n∑

k=1

2n−kH(k, k) = 1 +
n∑

k=1

2n−kbk = 1 + 2
n−2∑
k=1

2n−k−1bk + 2bn−1 + bn

= 1 + 2(bn+1 − 3bn − bn−1) + 2bn−1 + bn (by (3.5))

= 1 + 2bn+1 − 5bn (3.8)

so that

en+1 = 1 + 2bn+2 − 5bn+1 = 1 + 2(5bn+1 − 5bn)− 5bn+1 (by Lemma 3.5)

= 1 + 5bn+1 − 10bn (3.9)

From (3.8) and (3.9) we deduce

en+1 − en = 3bn+1 − 5bn. (3.10)

But by (3.9) we have

en+2 = 1 + 5bn+2 − 10bn+1 = 1 + 5(5bn+1 − 5bn)− 10bn+1

= 1 + 15bn+1 − 25bn = 1 + 5(3bn+1 − 5bn)

= 1 + 5(en+1 − en) (by (3.10)).

Thus we have shown that

Lemma 3.7 For all n > 0, en+1 = 1+5(en−en−1) with initial conditions, e0 = 1, e1 =

2.
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By the standard method of solving linear recurrence relations (see [1]) we deduce

Theorem 3.8 Let en be as defined in (3.7). Then

en = (
√
5)n−1

[(√
5 + 1

2

)n

−
(√

5− 1

2

)n]
+ 1.

Remark 3.9 The sequence {bn} (n ≥ 1) has been recorded (March 2003) as A081567

but {en} is not yet in Sloane’s encyclopaedia of integer sequences. For selected values
see Table 5.

The following curious result is worth recording.

Lemma 3.10 en ≡ 1 (mod 5), (n ≥ 2).

Alternatively, we may get the formula for en by using E(n, r), since

en =
n∑

r=0

E(n, r) = 1 +
n∑

r=1

E(n, r)

= 1 +
n∑

r=1

(
n
r

)
E(r, r) (by Lemma 3.2).

= 1 +
n∑

r=1

(
n
r

)
f2r

where f2r = ar is the alternate Fibonacci number and it satisfies the recurrence

ar = 3ar−1 − ar−2,

from which we get

ar =
1√
5
(pr − qr)

with

p =
3 +

√
5

2
and q =

3−√
5

2
.

Hence

en = 1 +
1√
5

{
n∑

r=1

(
n
r

)
pr −

n∑
r=1

(
n
r

)
qr

}
= 1 +

1√
5
{(1 + p)n − (1 + q)n}

= 1 +
1√
5

{(
5 +

√
5

2

)n

−
(
5−√

5

2

)n}

= 1 + (
√
5)n−1

{(√
5 + 1

2

)n

−
(√

5− 1

2

)n}
.
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4 The number of L,R and J -classes

It is clear that POn is a regular subsemigroup of Pn [6]. Hence by [10, Proposition

2.4.2] and [3, Section 2] we have

(α, β) ∈ L if and only if Im α = Im β (4.1)

(α, β) ∈ R if and only if α ◦ α−1 = β ◦ β−1. (4.2)

Moreover, it can be easily shown that

(α, β) ∈ J if and only if |Im α| = |Im β|. (4.3)

Now let α in POn be such that |Im α| = s, then since POn is aperiodic [6], it follows

that |Hα| = 1, and by (4.1) we deduce that |Lα| =
(

n
s

)
. However, |Rα| is less clear

and the next lemma provides a formula.

Lemma 4.1 Let α in POn be such that |Im α| = s. Then |Rα| =
n∑

r=s

(
n
r

)(
r − 1
s− 1

)
.

Proof. First observe that we can choose the r elements of Dom α in

(
n
r

)
ways,

where s ≤ r ≤ n and that we can partition Dom α into s ‘convex’ (modulo Dom α)

subsets in

(
r − 1
s− 1

)
ways. Thus multiplying these two binomial coefficients and taking

the sum from r = s to r = n yields the required result.

Next we obtain a linear recurrence satisfied by |Rα|.

Lemma 4.2 Let e(n, s) =
n∑

r=s

(
n
r

)(
r − 1
s− 1

)
. Then e(n, 0) = 1 = e(n, n) and

e(n, s) = 2e(n− 1, s) + e(n− 1, s− 1).

14



Proof.

2e(n− 1, s) + e(n− 1, s− 1)− e(n, s)

=
n−1∑
r=s

2

(
n− 1

r

)(
r − 1
s− 1

)
+

n−1∑
r=s−1

(
n− 1

r

)(
r − 1
s− 2

)

−
n−1∑
rs

(
n
r

)(
r − 1
s− 1

)
−
(

n− 1
s− 1

)

=
n−1∑
r=s

{
2

(
n− 1

r

)(
r − 1
s− 1

)
+

(
n− 1

r

)(
r − 1
s− 2

)
−
(

n
r

)(
r − 1
s− 1

)}

=
1

n(s− 1)

n−1∑
r=s

(
n
r

)(
r − 1
s− 2

)
[(n− 2r)(r − s+ 1) + (n− r)(s− 1)]

=
1

s− 1

n−1∑
r=s

(
n− 1
r − 1

)(
r − 1
s− 2

)
(n− 2r + s− 1)

=
1

s− 1

m∑
r=s

(
m

r − 1

)(
r − 1
s− 2

)
[(m− r)− (r − s)] (m = n− 1)

=
1

(s− 1)!

m∑
r=s

m!

(m− r + 1)!(r − s+ 1)!
[(m− r)− (r − s)]

=
m!

(s− 1)!

m∑
r=s

{
m− r + 1

(m− r + 1)!(r − s+ 1)!
− r − s+ 1

(m− r + 1)!(r − s+ 1)!

}

=
m!

(s− 1)!

m∑
r=s

{
1

(m− r)!(r − s+ 1)!
− 1

(m− r + 1)!(r − s)!

}

=
m!

(s− 1)!

m∑
r=s

(ar − ar−1)

(
ar =

1

(m− r)!(r − s+ 1)!

)

=
m!

(s− 1)!
(am − as−1) = 0

as required.

Two further recurrences satisfied by e(n, s) are given by the next two lemmas whose

proofs we omit because they are easy.

Lemma 4.3 e(n− 1, s) + e(n− 1, s− 1) = 2n−s

(
n− 1
s− 1

)
.

Lemma 4.4 e(n, s) + e(n− 1, s− 1) = 2n−s+1

(
n− 1
s− 1

)
.
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Now it follows from (4.3) that

J(n, s) = |Jα| =
(

n
s

)
e(n, s). (4.4)

However, a recurrence satisfied by J(n, s) is given by the following lemma:

Lemma 4.5 J(n, 0) = 1 = J(n, n) and for n > s > 0(
n− 1
s− 1

)
J(n, s) =

2(n− s+ 1)

(n− s)

(
n

s− 1

)
J(n− 1, s) +

(
n
s

)
J(n− 1, s− 1).

Proof.

L.H.S. =

(
n− 1
s− 1

)
J(n, s)

=

(
n− 1
s− 1

)(
n
s

)
e(n, s) (by (4.4))

=

(
n− 1
s− 1

)(
n
s

)
[2e(n− 1, s) + e(n− 1, s− 1)] (by Lemma 4.2)

=
2n!

(n− s)!(s− 1)!(n− s)

(
n− 1

s

)
e(n− 1, s) +

(
n
s

)(
n− 1
s− 1

)
e(n− 1, s− 1)

=
2(n− s+ 1)

(n− s)

(
n

s− 1

)
J(n− 1, s) +

(
n
s

)
J(n− 1, s− 1)

= R.H.S.

Remark 4.6 The triangular array of numbers e(n, s) and J(n, s) are not yet listed in

Sloane’s encyclopaedia of integer sequences. For selected values of these numbers see

Tables 6 and 7.

We conclude the section by observing that

|POn| = cn =
n∑

s=0

J(n, s) =
n∑

s=0

(
n
s

)
e(n, s).
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   k 
n 

0 1 2 3 4 5 6 7 ∑ ),,( rrnf
 

0 1    1 

1 1 1   2 

2 1 2 2  5 

3 1 3 6 6  16 

4 1 4 12 24 20  61 

5 1 5 20 60 100 70  256 

6 1 6 30 120 300 420 252  1129 

7 1 7 42 210 700 1470 1764 924 5118 

 
     Table 1 f(n, r, r) 
 
 
 
 
 
 

   k 
n 

0 1 2 3 4 5 6 7 ∑ ),( knG
 

0 1    1 

1 1 1   2 

2 1 3 4  8 

3 1 7 12 18  38 

4 1 15 32 56 88  192 

5 1 31 80 160 280 450  1002 

6 1 63 192 432 832 1452 2364  5336 

7 1 127 448 1120 2352 4244 7700 12642 28814 

 
     Table 2 G(n, k) 
 
 
 
 
 
 
 
 



 
 
 
 

   r 
n 

0 1 2 3 4 5 6 7 ∑ ),( rnF
 

0 1    1 

1 1 1   2 

2 1 4 3  8 

3 1 9 18 10  38 

4 1 16 60 80 35  192 

5 1 25 150 350 350 126  1002 

6 1 36 315 1120 1890 1512 462  5336 

7 1 49 588 2940 7350 9702 6468 1716 28814 

 
     Table 3 F(n, r) 
 
 
 
 
 
 
 
 
 

    r 
n 

0 1 2 3 4 5 6 7 ∑ ),( rnE  

0 1    1 

1 1 1   2 

2 1 2 3  6 

3 1 3 9 8  21 

4 1 4 18 32 21  76 

5 1 5 30 80 105 55  276 

6 1 6 45 160 315 330 144  1001 

7 1 7 63 280 735 1155 1008 377 3626 

 
     Table 4 E(n, r) 
 
 
 
 



 
 
 
 

   k 
n 

0 1 2 3 4 5 6 7 ∑ ),( knH  

0 1    1

1 1 1   2

2 1 2 3  6

3 1 4 6 10  21

4 1 8 12 20 35  76

5 1 16 24 40 70 125  276

6 1 32 48 80 140 250 450  1001

7 1 64 96 160 280 500 900 1625 3626

 
     Table 5 H(n, k) 
 
 
 
 

 
 
 
 
 
 
   s 
n 

0 1 2 3 4 5 6 7 ∑ ),( sne  

0 1    1

1 1 1   2

2 1 3 1  5

3 1 7 5 1  14

4 1 15 17 7 1  41

5 1 31 49 31 9 1  122

6 1 63 129 111 49 11 1  365

7 1 127 321 351 209 71 13 1 1094

 
     Table 6 e(n, s) 
 
 
 
 
 



 
 
 
 

   s 
n 

0 1 2 3 4 5 6 7 ∑ ),( snJ  

0 1    1 

1 1 1   2 

2 1 6 1  8 

3 1 21 15 1  38 

4 1 60 102 28 1  192 

5 1 155 490 310 45 1  1002 

6 1 378 1935 2220 735 66 1  5336 

7 1 889 6741 12285 7315 1491 91 1 28814 

 
     Table 7 J(n, s) 
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