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Abstract

Let PCn be the semigroup of all decreasing and order-preserving partial trans-
formations of a finite chain. It is shown that |PCn| = rn, where rn is the large
(or double) Schröder number. It is also shown that PCn is a disjoint union of
two subsemigroups each of order rn/2 = sn, where sn is the (smaller) Schröder
number. Moreover, the total number of idempotents of PCn is shown to be
(3n + 1)/2.

1 Introduction

Consider a finite chain, say Xn = {1, 2, . . . , n} under the natural ordering and let Tn

and Pn be the full transformation semigroup and the semigroup of all partial trans-

formations on Xn, under the usual composition, respectively. We shall call a partial

transformation α : Xn → Xn, order-decreasing (order-increasing) or simply decreasing

(increasing) if xα ≤ x (xα ≥ x) for all x in Dom α, and α is order-preserving if x ≤ y

implies xα ≤ yα for x, y in Dom α. This paper investigates combinatorial properties

of PCn, the semigroup of all decreasing and order-preserving partial transformations.

Various enumerative problems of an essentially combinatorial nature have been

considered for certain classes of semigroups of transformations. For example, it is well

known and indeed obvious that Tn and Pn have orders nn and (n + 1)n, respectively.

Only slightly less obvious are their number of idempotents given by

|E(Tn)| =
n∑

r=1

(
n
r

)
rn−r and |E(Pn)| =

n+1∑
r=1

(
n

r − 1

)
rn+1−r.

The first usually attributed to Tainiter [14] is actually Ex 2.2.2(a) in [1]. The second

can be deduced easily via Vagner’s method of representing a partial transformation

by a full transformation [17], which has been used to good effect by Garba [2]. The

1



following list (which is by no means exhaustive) of papers and books [3, 4, 5, 6, 7,

9, 10, 13, 14 & 15] each contains some interesting combinatorial results pertaining to

semigroups of transformations. Somewhat surprisingly we could find no reference on

the combinatorial properties of PCn. In fact, the only reference we could find about

PCn is Higgins [8, theorem 4.2], where it is shown that any finite R -trivial semigroup

S divides some monoid PCn.

In Section 2, we give the necessary definitions that we need in the paper as well

as show that PCn is a disjoint union of two subsemigroups of the same cardinality. In

Section 3, we obtain the order of PCn as the large or double Schröder number [11, 12],

via a bijection with a set of certain lattice paths. In Section 4, we show that the set of

all idempotents of PCn is of cardinality (3n + 1)/2.

2 Preliminaries

For standard terms and concepts in transformation semigroup theory see [6] or [9]. We

now recall some definitions and notations to be used in the paper. Consider Xn =

{1, 2, . . . , n} and let α : Xn → Xn be a partial transformation. We shall denote by

Dom α and Im α, the domain and image set of α, respectively. The semigroup Pn,

of all partial transformation contains two important subsemigroups which have been

studied recently. They are PDn and POn the semigroups of all order-decreasing and

order-preserving partial transformations, respectively (see [16] and [4, 5]). Now let

PCn = PDn ∩ POn (2.1)

be the semigroup of all decreasing and order-preserving partial transformations of Xn.

Next let

Qn = {α ∈ PCn : 1 ∈ Dom α} (2.2)

be the set of all maps in PCn all of whose domain does contain the element 1. Then

evidently we have the following result.

Lemma 2.1 Both Qn and Q′
n (the set complement) are subsemigroups of PCn. More-

over, Qn ·Q′
n = Q′

n ·Qn = Q′
n.

Less evidently, we have

Lemma 2.2 |Qn| = |Q′
n|.
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Proof. Define a map φ from Qn into Q′
n by

φ(α) = α′ (α ∈ Qn, α′ ∈ Q′
n)

where

xα′ = xα (for all x ∈ Dom α \ {1}).

It is clear that φ is a bijection since 1 6∈ Dom α′ for all α′ in Q′
n, and 1α = 1 for all α

in Qn.

3 The order of PCn

Our main objective in this section is to obtain a formula for |PCn|. We begin our

investigation by considering lattice paths in the Cartesian plane that start at (0, 0),

end at (n, n), contain no points above the line y = x, and composed only of steps

(1, 0), (0, 1) and (1, 1), i.e., →, ↑ and ↗. The diagrams in Figure 1 illustrate all such

paths in the 1 × 1 and 2 × 2 squares, respectively. The total number of such paths is

known to be the large or double Schröeder number rn, [11]. To establish a bijection

between the set of all these paths (in an n×n square) and the set of all decreasing and

order-preserving partial transformations of Xn, we make the following observation:

(OB1) In each path from (0, 0) to (n, n) there are exactly same number of horizontal

steps as there are vertical steps.

Next, we note that it is convenient (in this section) to express α in PCn (with base set

Xn = {0, 1, 2, . . . , n− 1}) as

α =

(
a1 a2 · · · ar

b1 b2 · · · br

)
(3.1)

where the ai’s are distinct, but the bi’s are not necessarily distinct. Moreover, we may

also assume that 0 ≤ a1 < a2 · · · < ar ≤ n − 1 and 0 ≤ b1 ≤ b2 ≤ · · · ≤ br ≤ n − 1.

Thus

Dom α = {a1, a2, . . . ar},

however, we refer to the sequence (b1, b2, . . . , br) as the simage of α, denoted by

Sim α = (b1, b2, . . . , br).

(Note that if all the bi’s are distinct then Sim α may be considered as Im α, otherwise

they are not the same.) Now to each vertical step from (i, j) to (i, j+1) in an arbitrary
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Figure1

path (in an n×n square) we put j in Dom α, and to each horizontal step from (i, j) to

(i+1, j) we put j in Sim α. The domain is then arranged in a strictly increasing order

while the simage is arranged in a nondecreasing order, and by virtue of (OB1) this

gives rise to a unique order-preserving map. Two examples should make these ideas

more clear. The path given in Figure 2 implies Dom α = {1, 3} and Sim α = (1, 1).

Thus the associated order-preserving map is

α =

(
1 3
1 1

)
∈ PC4

and the path given in Figure 3 implies Dom β = {0, 2, 3} and Sim β = (0, 2, 2). Thus

the associated order-preserving map is

β =

(
0 2 3
0 2 2

)
∈ PC4.

Moreover, the condition that our paths never cross above the diagonal line y = x,

forces these associated order-preserving maps to be decreasing as well. In fact, at any

level, a horizontal step will take us 1-unit away from the diagonal line y = x, and a

vertical step will take us 1-unit closer to the diagonal line y = x. Thus, since our target

is the point (n, n) on this diagonal line we must take vertical units at higher levels to

compensate for each horizontal step, and so a decreasing map results. Finally, note

that the unique all diagonal path corresponds to the empty map. Conversely, we show
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that every α ∈ PCn corresponds to a path in an n × n square. For a given α in PCn

we first express it as in (3.1) and write

Sim α = (b1, b2, . . . , br), Dom α = {a1, a2, . . . , ar}

for some r in {1, 2, . . . , n}. To construct an associated path, first note that since in

general, there may be repetitions in Sim α, we shall consider it as consisting of blocks

of subsequences, where an x-block consists only of x in {0, 1, 2, . . . , n − 1}, repeated

say m times (1 ≤ m ≤ n). Thus we may write

Sim α = (x1-block, x2-block, . . . , xs-block)

where 0 ≤ x1 < x2 < · · · < xs ≤ n − 1. (Note that Im α = {x1, x2, . . . , xs}.) Next

we label the horizontal rows of the n× n square from the bottom to the top, starting

from 0 to n − 1. Now starting from (0, 0), if x1 = 0 take as many horizontal steps as

the length of the x1-block, otherwise take a diagonal step to the next level (level 1).

Note that the order-decreasing property guarantees that b1 = x1 ≤ a1, however there

is no guarantee that xi ≤ ai (for i > 1), but this will not be of any disadvantage. In

general, at level m (0 ≤ m ≤ n− 1), check if

(i) m 6∈ Im α and m 6∈ Dom α, take a diagonal step to the next level;

(ii) m 6∈ Im α and m ∈ Dom α, take a vertical step to the next level;

(iii) m ∈ Im α, take as many horizontal steps as the length of the m-block followed

by a vertical or diagonal step to the next level depending on whether m ∈ Dom α

or m 6∈ Dom α, respectively.
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Now since in (iii) we give priority to horizontal step(s) over vertical (and diagonal)

steps, it follows by the order-decreasing property that at any level m we must have had

at least as many horizontal steps as there are vertical steps (up to level m + 1). This

in turn guarantees that our paths never overshoot to cross the diagonal line y = x.

Moreover the bijection between Dom α and Sim α guarantees that our paths always

end up at (n, n) as required.

An example would be quite appropriate. Consider the map

α =

(
0 2 3 5 6
0 0 0 4 4

)
∈ PC7.

Then

Dom α = {0, 2, 3, 5, 6}, Sim α = (000, 44), Im α = {0, 4}.

Now start from (0, 0) and take 3 horizontal steps, since the first block of Sim α is

a 0-block of length 3. We are still at level 0, and we take a vertical step to level 1

since 0 ∈ Dom α. Now since 1 6∈ (Dom α) ∩ (Im α), we take a diagonal step to level

2. Next, since 2 ∈ Dom α ∩ (Im α)′ we take a vertical step to level 3. Then since

3 ∈ Dom α∩ (Im α)′ we take a vertical step to level 4. Now we take 2 horizontal steps

and then a diagonal step since 4 ∈ Im α∩(Dom α)′. We are now at level 5, from where

we take a vertical step to level 6 since 5 ∈ Dom α ∩ (Im α)′. Finally, we take another

vertical step to level 7, since 6 ∈ Dom α ∩ (Im α)′. Thus we have the path indicated

in Figure 4.

An immediate consequence of this bijection between these paths and decreasing

and order-preserving partial transformations is that it furnishes us with the order of

|PCn|. However, before we formally state this result we first deduce from [11] and [12]

that the large (or double) Schröder number denoted by rn could be defined as

rn =
1

n + 1

n∑
r=0

(
n + 1
n− r

)(
n + r

r

)
.

Moreover, rn satisfies the recurrence

(n + 2)rn+1 = 3(2n + 1)rn − (n− 1)rn−1 (3.2)

for n ≥ 1, with initial conditions r0 = 1 and r1 = 2. The (small) Schröder number is

usually denoted by sn and defined as s0 = 1, sn = rn/2 (n ≥ 1) and so it satisfies the

same recurrence as rn.

We now have the main result of this section.
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Theorem 3.1 Let PCn be as defined in (2.1). Then |PCn| = rn, the double Schröder

number.

For the semigroup Qn (defined in (2.2)) and its complement we now have

Corollary 3.2 |Qn| = |Q′
n| = sn, the (small) Schröder number.

It is also known (from [11]) that the number of lattice paths that contain no

points above the line y = x and without a diagonal step is the n-th Catalan number:(
2n
n

)
/(n+1). However, since clearly such paths correspond to full transformations,

Higgins [7, Theorem 3.1] follows immediately:

Theorem 3.3 Let Cn be the semigroup of all decreasing and order-preserving full

transformations of Xn. Then |Cn| =
(

2n
n

)
/(n + 1), the n-th Catalan number.
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Moreover, composition of these kind of lattice paths is now possible via the bijection

with the semigroup PCn. A more important consequence is we believe, the link of

combinatorial questions between lattice paths and partial transformations is now firmly

established.

4 The number of idempotents

As stated in the introduction the number of idempotents of various classes of semi-

groups of transformations has been computed. For further results see [10, 14, 15]. Our

main task in this section is to compute the number of all idempotents in PCn. We

consider

e(n, r) = |{α ∈ PCn : α2 = α, |Im α| = r}|.

Then clearly we have

e(n, 0) = 1 = e(n, n),

where the former corresponds to the empty map and the latter corresponds to the

identity map. More generally, we have

Lemma 4.1 For all n ≥ r ≥ 1, we have

e(n, r) = 2e(n− 1, r) + e(n− 1, r − 1).

Proof. If n 6∈ Dom α then n 6∈ Im α, by idempotency and so there are e(n − 1, r)

idempotents of this type. If on the other hand n ∈ Dom α then either nα = (n−1)α <

n, of which there are again e(n − 1, r) idempotents of this type; or nα = n, of which

there are e(n − 1, r − 1) idempotents of this type, by the order-decreasing property.

Hence the result follows.

Now let en =
∑n

r=0 e(n, r). Then e0 = 1, and the next lemma gives a recurrence

satisfied by en.

Lemma 4.2 For all n ≥ 1, we have: en = 3en−1 − 1.
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Proof. By using Lemma 4.1, we have

en =
n∑

r=0

e(n, r) = e(n, 0) + e(n, 1) + e(n, 2) + e(n, 3) + ... + e(n− 1, n− 1) + e(n, n)

= [2e(n− 1, 0)− 1] + [2e(n− 1, 1) + e(n− 1, 0)] + [2e(n− 1, 2) + e(n− 1, 1)]

+[2e(n− 1, 3) + e(n− 1, 2)] + ... + [2e(n− 1, n) + e(n− 1, n− 1)]

= 3e(n− 1, 0) + 3e(n− 1, 1) + 3e(n− 1, 2) + ... + 3e(n− 1, n− 1)− 1

= 3
n−1∑
r=0

e(n− 1, r)− 1 = 3en−1 − 1.

We now have the main result of this section.

Theorem 4.3 Let PCn be as defined in (2.1). Then |E(PCn)| = en = 1
2
(3n + 1).

Proof. By the standard method of solving linear recurrence relations. See [1], for

example.

Remark 4.4 It is not difficult to see that lattice paths that contain no points above

the line y = x, in which a diagonal step never succeeds a horizontal segment, and

where every length k horizontal segment is followed by exactly k vertical steps plus

some (may be none) diagonal steps before another horizontal segment, correspond to

idempotents in PCn. However, while idempotents are natural elements to study in a

semigroup, their corresponding paths do not seem to have a natural description.
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