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ASYMPTOTIC RESULTS FOR SEMIGROUPS
OF ORDER-PRESERVING PARTIAL

TRANSFORMATIONS

A. Laradji and A. Umar

Abstract

Let PCn be the semigroup of all decreasing and order-preserving partial
transformations of an n-element chain, and let E(PCn) be its set of idempo-
tents. Then it is shown that for large n, |PCn| ∼ (

√
2 + 1)2n+1/(23/4n

√
πn) and

|PCn|
|E(PCn)| ∼ (

√
2 + 1)2n+1/(3n2−1/4n

√
πn). Similar results for POn the (larger)

semigroup of all order-preserving partial transformations of an n-element chain
are obtained. We also obtained the generating functions for |PCn| and |POn| as
well as their integral representations.

1 Introduction

Arguably, one of the earliest most fascinating and useful asymptotic formulae in math-

ematics is Stirling’s extraordinary asymptotic formula: for large n, n! ∼ √
2πn(n/e)n.

And, even for modest values of n the approximation is quite good: for n = 10 the

error is only 0.8%, and for n = 100 the error drops to 0.08% [6]. There are now several

asymptotic formulae, see for example [4, 9]. In this paper we investigate asymptotic

formulae associated with the cardinalities and number of idempotents of certain classes

of semigroups of order-preserving partial transformations.

Let PCn be the semigroup of all decreasing and order-preserving partial transfor-

mations of Xn = {1, 2, . . . , n} and let POn be the semigroup of all order-preserving

partial transformations of Xn. Higgins [3] contains some nice asymptotic results con-

cerning a certain semigroup of transformations and references to other similar works.

After this introductory section, we quote the main results of [7] and [8] in Section 2. In

Section 3 we obtain among other things asymptotic formulae for rn and cn. In Section
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4 we obtain the generating functions for rn and cn, while in Section 5 we obtain their

integral representations.

2 Combinatorial Results

Let Xn = {1, 2, . . . , n} be a finite chain, and let α : Xn → Xn be a partial transfor-

mation. The set of all partial transformations is denoted by Pn and called the partial

transformation semigroup (under composition) or the partial symmetric semigroup.

We shall call α in Pn order-decreasing (order-increasing) or simply decreasing (increas-

ing) if xα ≤ x (xα ≥ x) for all x in Dom α, and α is order-preserving if x ≤ y implies

xα ≤ yα for x, y in Dom α. Subsemigroups of Pn that have been investigated recently

by the authors are:

PCn = {α ∈ Pn : (∀ x, y ∈ Dom α) xα ≤ x ∧ (x ≤ y ⇒ xα ≤ yα)} (2.1)

the semigroup of all decreasing and order-preserving partial transformations of Xn, and

POn = {α ∈ Pn : (∀ x, y ∈ Dom α) x ≤ y ⇒ xα ≤ yα} (2.2)

the semigroup of all order-preserving partial transformations of Xn. In [7], the authors

showed among other things the following results.

Theorem 2.1 [7, Theorem 2.12]. Let PCn be as defined in (2.1). Then |PCn| = rn,

the double Schröder number where

rn =
1

n + 1

n∑
r=0

(
n + 1
n− r

) (
n + 1

r

)
=

n∑
r=0

1

r + 1

(
n
r

)(
n + r

n

)

=
n∑

r=0

1

r + 1

(
n + r
2r

)(
2r
r

)
. (2.3)

Theorem 2.2 [7, Proposition 3.5]. Let PCn be as defined in (2.1) and let E(PCn) be

its set of idempotents. Then |E(PCn)| = (3n + 1)/2.

In [3], Gomes and Howie obtained
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Theorem 2.3 [3, Theorem 3.1]. Let POn be as defined in (2.2). Then

|POn| = cn =
n∑

r=0

(
n
r

)(
n + r − 1

r

)
.

More recently, the authors in [8] obtained the above result for POn and

Theorem 2.4 [8, Theorem 3.8]. Let POn be as defined in (2.2), and let E(POn) be

its set of idempotents. Then

|E(POn)| = (
√

5)n−1

[(√
5 + 1

2

)n

−
(√

5− 1

2

)n]
+ 1.

3 Asymptotic Results

Let Pn(x) be the n-th degree Legendre polynomial. Then it is known that [4, p. 404]

for large n

Pn(x) ∼ (x +
√

x2 − 1)n+1/2

√
2πn

√
x2 − 1

. (3.1)

Now consider the polynomial

Qn(x) =
n∑

k=0

(
n + k
2k

)(
2k
k

)
xk

then

rn(x) =

∫ x

0

Qn(t)dt =
n∑

k=0

(
n + k
2k

)(
2k
k

)
1

k + 1
xk+1 (3.2)

and so using (2.3) we have

rn(1) =
n∑

k=0

1

k + 1

(
n + k
2k

)(
2k
k

)
= |PCn| = rn.

From [10, p. 78] we have

r′n(x) = Qn(x) = Pn(1 + 2x).

Also integrating the well-known recurrence

P ′
n+1(x)− P ′

n−1(x) = (2n + 1)Pn(x)
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we obtain

Pn+1(x)− Pn−1(x) = 2(2n + 1)rn(x−1
2

) (3.3)

which implies

rn(x) =
Pn+1(2x + 1)− Pn−1(2x + 1)

2(2n + 1)

and so

rn(1) =
Pn+1(3)− Pn−1(3)

2(2n + 1)
. (3.4)

On the other hand using the ordinary occurrence

(n + 1)Pn+1(z)− 2(n + 1)zPn(z) + nPn−1(z) = 0,

we get

(n + 1)Pn+1(3)− 3(2n + 1)Pn(3)− nPn−1(3) = 0. (3.5)

And from (3.4) and (3.5) we get

rn(1) =
3Pn(3)− Pn−1(3)

2(n + 1)
. (3.6)

Thus we now have

Proposition 3.1 Let rn(1) be as defined in (3.2). Then for large n

rn(1) = |PCn| ∼ (
√

2 + 1)2n+1/(23/4n
√

πn).

Proof. From (3.6) and (3.1) successively we have

rn(1) =
3Pn(3)− Pn−1(3)

2(n + 1)
∼

3(
√

2+1)2n+1

25/4
√

πn
− (

√
2+1)2n−1

25/4
√

πn

2n

=
(
√

2 + 1)2n−1[3(
√

2 + 1)2 − 1]

29/4n
√

πn
=

(
√

2 + 1)2n−1(8 + 6
√

2)

29/4n
√

πn

=
(
√

2 + 1)2n−1 · 23/2(3 + 2
√

2)

29/4n
√

πn
=

(
√

2 + 1)2n+1

23/4n
√

πn

as required.

Theorem 3.2 Let PCn be as defined in (2.1) and let E(PCn) be its set of idempotents.

Then for large n

|PCn|
|E(PCn)| =

2rn(1)

3n + 1
∼ 21/4(

√
2 + 1)2n+1/3nn

√
πn.
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Proof. It follows directly from Proposition 3.1, Theorem 2.2 and the fact that

(3n + 1)/2 ∼ 3n/2 for large n.

We also deduce (from Proposition 3.1) the following lemma.

Lemma 3.3 lim
n→∞

rn+1

rn

= 3 + 2
√

2 = (
√

2 + 1)2.

Next we obtain similar results for POn, however, first we quote from [8] the following

lemma:

Lemma 3.4 [8, Lemma 2.11]. For all n > 0, we have

2cn = (n + 1)rn − (n− 1)rn−1.

Proposition 3.5 Let POn be as defined in (2.2). Then for large n

|POn| = cn ∼ (
√

2 + 1)2n/(23/4
√

πn).

Proof. The result follows easily from Lemma 3.4, Proposition 3.1 and same techniques

as in the proof of Proposition 3.1.

Theorem 3.6 Let POn be as defined in (2.2) and let E(POn) be its set of idempotents.

Then for large n

|E(POn)| = en ∼ 1√
5

(
5 +

√
5

2

)n

.

Proof. It follows directly from Theorem 2.4 and the fact that
(√

5−1
2

)n

∼ 0, for large

n.

Theorem 3.7 Let POn be as defined in (2.2) and let E(POn) be its set of idempotents.

Then for large n

|POn|
|E(POn)| =

cn

en

∼ 2n−3/4

√
5

πn

(
3 + 2

√
2

5 +
√

5

)n

.

Proof. It follows directly from Proposition 3.5 and Theorem 3.6.

Also from Proposition 3.5 we deduce

Lemma 3.8 lim
n→∞

cn+1

cn

= 3 + 2
√

2 = (
√

2 + 1)2.
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Two further results associating rn and cn, whose proofs follow directly from Propo-

sitions 3.1 and 3.5 are:

Lemma 3.9 lim
n→∞

rn

cn

= 0.

Lemma 3.10 lim
n→∞

nrn

cn

=
√

2 + 1.

We conclude the section with the following result (from [1]) and some of its conse-

quences.

Lemma 3.11 [1, p. 292].

(
(a + b)n

an

)
∼ (a + b)n(a+b)+1/2

aan+1/2bbn+1/2
√

2πn
.

Thus, with a = b = 1, we have

(
2n
n

)
∼ 22n+1/2

√
2πn

=
4n

√
πn

. Hence we have

Theorem 3.12 Let Cn be the semigroup of all decreasing and order-preserving full

transformations of Xn. Then for large n, we have |Cn| = 1

n + 1

(
2n
n

)
∼ 4n

n
√

πn
.

Theorem 3.13 [5, Theorem 3.19]. Let Cn be the semigroup of all decreasing and order-

preserving full transformations of Xn, and let E(Cn) be its set of idempotents. Then

for large n, we have
|E(Cn)|
|Cn| ∼ 2n−1n

√
πn

22n
=

n
√

πn

2n+1
.

4 Generating Functions

Recall from [7] that the small Schröder number is usually denoted by sn and defined

as s0 = 1, sn = rn/2 (n ≥ 1). (Note that our sn is sn+1 in [11].) Thus from (2) on page

349 of [11] we easily deduce that

∑
n≥1

snx
n =

1

4x
(1 + 3x−

√
1− 6x + x2),

from which it follows that

∑
n≥1

rnx
n =

1

2x
(1 + 3x−

√
1− 6x + x2). (4.1)

Hence we deduce from (4.1)
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Theorem 4.1 Let rn be as defined in (3.2). Then the generating function for rn is

given by
∑
n≥0

rnx
n =

1

2x
(1− x−

√
1− 6x + x2).

To deduce the generating function for cn, first we establish

Lemma 4.2 For all n ≥ 0, we have cn+1 − cn = (2n + 1)rn.

Proof. This could be verified routinely by using the first expression for rn in Theorem

2.1 and Theorem 2.3.

Lemma 4.3 For all n ≥ 1, we have cn =
Pn(3) + Pn−1(3)

2
.

Proof. First observe that from Lemma 4.2 and (3.3) we have

cn+1 − cn =
Pn+1(3)− Pn−1(3)

2

and so

cn − cn−1 =
Pn(3)− Pn−2(3)

2
, . . . , c2 − c1 =

P2(3)− P0(3)

2
.

Hence

cn =
Pn(3) + Pn−1(3)− P1(3)− P0(3)

2
+ c1 =

Pn(3) + Pn−1(3)

2

since P0(3) = 1, P1(3) = 3 and c1 = 2.

Now from Ex. 11 on page 78 of [10] the generating function for Pn(3) is given by

g(t) =
∑
n≥0

Pn(3)tn = (1− 6t + t2)−1/2.

This together with Lemma 4.3 yield the generating function for cn.

Theorem 4.4 Let cn be as defined in Theorem 2.3. Then the generating function for

cn is given by

∑
n≥0

cnt
n =

1 + (1 + t)g(t)

2
=

1 + (1 + t)(1− 6t + t2)−1/2

2
.
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5 Integral Representations for rn and cn

The integral representation for the n-th degree Legendre polynomials [9, p. 172] is

given by

Pn(z) =
1

π

∫ π

0

(z +
√

z2 − 1 cos θ)ndθ. (5.1)

Now from (3.6) and (5.1) we deduce

Theorem 5.1 Let rn be as defined in Theorem 2.1. Then

rn =
1

π(n + 1)

∫ π

0

(4 + 3
√

2 cos θ)(3 + 2
√

2 cos θ)n−1dθ.

Similarly, from Lemma 4.3 and (5.1) we deduce

Theorem 5.2 Let cn be as defined in Theorem 2.3. Then

cn =
1

π

∫ π

0

(2 +
√

2 cos θ)(3 + 2
√

2 cos θ)n−1dθ.

These representations are much faster to work with when computing large values of

rn and cn than the combinatorial identities and recurrences. Moreover, they are more

accurate than the asymptotic formulae.
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