

King Fahd University of Petroleum & Minerals

DEPARTMENT OF MATHEMATICAL SCIENCES

Technical Report Series

TR298

May 2003

On Certain Finite Semigroups of Order-Decreasing Transformations I

A. Laradji and A. Umar

DHAHRAN 31261 • SAUDI ARABIA • www.kfupm.edu.sa/math/ • E-mail: mathdept@kfupm.edu.sa

ON CERTAIN FINITE SEMIGROUPS OF ORDER-DECREASING TRANSFORMATIONS I

A. Laradji and A. Umar

1 Introduction and Preliminaries

Let $X_n = \{1, 2, ..., n\}$ be the set of the first *n* natural numbers under the natural ordering and let T_n denote the full transformation semigroup, that is, the semigroup of all mappings $\alpha : X_n \to X_n$ under composition. We shall call α order-decreasing (orderincreasing) or simply decreasing (increasing) if $x\alpha \leq x$ ($x\alpha \geq x$) for all x in X_n , and α is order-preserving if $x \leq y$ implies $x\alpha \leq y\alpha$ for x, y in X_n . This paper investigates algebraic, combinatorial and rank properties of certain Rees quotient semigroups of D_n and C_n , the semigroup of all decreasing mappings of X_n and the semigroup of all decreasing and order-preserving mappings of X_n , respectively.

Algebraic, combinatorial and rank properties of T_n have been studied over a long period and many interesting results have emerged (see, for example [1, 10, 11, 12]). A general study of D_n was initiated by Umar [16] and subsequently many results were published in [15, 18]. Higgins [6, 7] contain some delightful results concerning C_n . As remarked by Higgins [6], both D_n and C_n have arisen naturally in language theory: any \mathcal{J} -trivial finite semigroup divides some C_n and any \mathcal{R} -trivial finite semigroup divides some D_n (see [13]). Note that Pin [13] referred to the order-preserving mappings as increasing and our order-increasing mappings as extensive. It transpires from our study that the algebraic and rank properties of C_n and some of its Rees quotient semigroups resemble closely those of D_n , while its combinatorial properties resemble those of O_n , the semigroup of all order-preserving mappings of X_n (see [6, 9] also). We begin by recalling some notations and definitions that will be useful in the paper. For standard terms and concepts in semigroup theory we refer the reader to [10]. Let $\alpha : X_n \to X_n$ be a full transformation. We shall denote by Im α , the range or image set of α while $F(\alpha)$ and $S(\alpha) = X_n \setminus F(\alpha)$ will denote the set of fixed points and shifting points of α , respectively. Moreover, the cardinals of $S(\alpha)$ and $F(\alpha)$ will be denoted by $s(\alpha)$ and $f(\alpha)$, respectively.

Now for $1 \le r \le n$, we let

$$D(n,r) = \{ \alpha \in D_n : |\text{Im } \alpha| \le r \}$$
(1.1)

and

$$\mathcal{C}(n,r) = \{ \alpha \in \mathcal{C}_n : |\text{Im } \alpha| \le r \}$$
(1.2)

be the two-sided ideals of D_n and C_n , respectively, consisting of all decreasing maps of height not more than r (height $\alpha = |\text{Im } \alpha|$). Note that D(n, r) is in the notation of [18], $K^-(n, r)$ while $D_n = D(n, n)$ is in the notation of [15], $(S_n^-)^1$. Also, for $r \ge 2$, we let

$$DP_r(n) = D(n,r)/D(n,r-1)$$
 (1.3)

be the Rees quotient semigroup of D_n , and

$$\mathcal{C}P_r(n) = \mathcal{C}(n, r) / \mathcal{C}(n, r-1)$$
(1.4)

be the Rees quotient semigroup of C_n . The elements of $DP_r(n)(CP_r(n))$ may be thought of as the elements of $D_n(C_n)$ of height r precisely. The product of two elements of $DP_r(n)(CP_r(n))$ is 0 whenever their product in $D_n(C_n)$ is of height strictly less than r. As in the above, $DP_r(n)$ is in the notation of [18], $P_r^-(n)$. The first result in this section concerns fixed points of decreasing maps.

Lemma 1.1 Let α, β be decreasing transformations of X_n . Then $F(\alpha\beta) = F(\alpha) \cap F(\beta) = F(\beta\alpha).$ This result (Lemma 1.1) was first proved in [16], however, Higgins [8] proved it as part of the proof of [8, Proposition 1.4] which he mistakenly attributed to [15].

We would like to introduce here a useful piece of notation from [12]. Every transformation α in T_n may be expressed as

$$\alpha = \left(\begin{array}{cccc} A_1 & A_2 & \cdots & A_r \\ a_1 & a_2 & \cdots & a_r \end{array}\right)$$

where A_1, A_2, \ldots, A_r called the *blocks* of α are all nonempty, and $A_i = a_i \alpha^{-1} (i = 1, 2, \ldots, r)$. Then every idempotent transformation α is characterized by the property that every block of α is *stationary*, that is, $a_i \in A_i$ for all i, (equivalently, if $F(\alpha) = \{a_i : i = 1, 2, \ldots, r\}$). If in addition the idempotent transformation is decreasing then $a_i = \min A_i$ for all i. It is also the case that every order-preserving transformation has all its blocks convex. The next lemma leads to the proof of Theorem 1.3 (below).

Lemma 1.2 Let $\alpha = \begin{pmatrix} A_1 & A_2 & \cdots & A_r \\ a_1 & a_2 & \cdots & a_r \end{pmatrix}$ be an element of $DP_r(n)$ and let $V(\alpha) = S(\alpha) \cap Im \alpha$ with $v_0 = \min V(\alpha)$. Then $v_0 \neq t_i = \min A_i$, for all i.

Proof. Suppose $v_0 = t_i$ (for some *i*). If $v_0\alpha = v_0$ then $v_0 \in F(\alpha)$ which is a contradiction. Thus by the order-decreasing property we have $v_0 > v_0\alpha$, and either $v_0\alpha \in F(\alpha)$ or $v_0\alpha \in S(\alpha)$. The former implies that both v_0 and $v_0\alpha$ belong to same block, in fact they belong to A_i . However, this violates the minimality of $v_0 = t_i$ in A_i . The latter clearly violates the minimality of v_0 in $V(\alpha)$. In either eventuality we have a contradiction. Therefore we conclude that $v_0 \neq t_i$ for all *i*.

Theorem 1.3 Let $DP_r(n)$ and $CP_r(n)$ be as defined in (1.3) and (1.4), respectively. Then every α in $DP_r(n)$ ($CP_r(n)$) is expressible as a product of idempotents in $DP_r(n)(CP_r(n))$.

Proof. First observe that proving the result for $DP_r(n)$ does not imply the proof for $CP_r(n)$, and even less so the other way round. However, since in general the algebraic proofs for $CP_r(n)$ are similar (but slightly more difficult) to those for $DP_r(n)$, perhaps because of the additional requirement of order-preserveness, we will only present the

more difficult proof. Now suppose that $\alpha = \begin{pmatrix} A_1 & A_2 & \cdots & A_r \\ a_1 & a_2 & \cdots & a_r \end{pmatrix} \in \mathcal{C}P_r(n)$. We may without loss of generality assume that $1 = a_1 < a_2 < \cdots < a_r \leq n$. Next let $V(\alpha) = S(\alpha) \cap \operatorname{Im} \alpha$ with $v_0 = \min V(\alpha)$. Define ϵ, β by

$$A_i \epsilon = t_i = \min A_i (i = 1, 2, \dots, r)$$
$$x\beta = \begin{cases} v_0 & (\text{if } v_0 \le x < \max v_0 \alpha^{-1}) \\ x\alpha & (\text{otherwise}). \end{cases}$$

Then it is clear that ϵ is an idempotent in $CP_r(n)$. Next, it is not difficult to see that β is order-decreasing and $|\text{Im }\beta| = r$. Moreover, for all $y \ge \max(v_0\alpha^{-1})$, we have $y\beta = y\alpha \ge v_0 = v_0\beta$ and for all $y < v_0$, we have $y\beta = y\alpha \le v_0\alpha < v_0 = v_0\beta$. Thus β is order-preserving. Note also that $S(\beta) = S(\alpha) \setminus \{v_0\}$ and so $s(\beta) = s(\alpha) - 1$. Finally, observe that

$$A_i \epsilon \beta = t_i \beta = \begin{cases} v_0 = A_i \alpha & \text{(if } v_0 < t_i < \max(v_0 \alpha^{-1})) \\ a_i = A_i \alpha & \text{(otherwise)} \end{cases}$$

since $v_0 \neq t_i$ for all *i*, by Lemma 1.2. Thus $\epsilon\beta = \alpha$, and the result now follows by induction.

Define a map ξ by $x\xi = 1$ (for all x in X_n). Then clearly ξ is in $\mathcal{C}(n, r)$ (and hence in D(n, r)) and $\alpha \xi = \xi \alpha$ for all α in D(n, r). Thus ξ is the zero of $D(n, r)(\mathcal{C}(n, r))$ which we shall henceforth denote by 0. An element a in a 0-semigroup S is called *nilpotent* if $a^k = 0$ for some $k \ge 1$. Then the next two lemmas concerning nilpotents in D(n, r)and $DP_r(n)$ imply the corresponding results for $\mathcal{C}(n, r)$ and $\mathcal{C}P_r(n)$, respectively.

Lemma 1.4 Let α be an element in $D(n,r)(\mathcal{C}(n,r))$. Then α is nilpotent if and only if $f(\alpha) = 1$.

Proof. This follows from [15, Lemma 1.5] or directly from Lemma 1.1. ■

Lemma 1.5 Let α be an element in $DP_r(n)$ ($CP_r(n)$). Then α is nilpotent if and only if $f(\alpha) < r$.

Proof. This follows directly from Lemma 1.1.

2 Green's Relations and their Starred Analogues

For the definitions of Green's relations, see for example [10]. In case of ambiguity we shall denote by \mathcal{K}_S for any relation \mathcal{K} on S.

Theorem 2.1 Let $DP_r(n)$ be as defined in (1.3). Then

- (1) $DP_r(n)$ is \mathcal{R} -trivial;
- (2) for α, β in $DP_r(n)$, $(\alpha, \beta) \in \mathcal{L}$ if and only if $Im \alpha = Im \beta$ and $\min z\alpha^{-1} = \min z\beta^{-1}$ (for all z in $Im \alpha$).

Proof. The proof is similar to that of [15, Lemma 2.1]. ■

Theorem 2.2 Let $CP_r(n)$ be as defined in (1.4). Then $CP_r(n)$ is \mathcal{J} -trivial.

Proof. Let α, β be elements in $CP_r(n)$ be such that $(\alpha, \beta) \in \mathcal{J}$. Then there exist δ, γ in $CP_r^1(n)$ such that $\alpha = \delta\beta\gamma$. Thus for all x in X_n , we have

$$x\alpha = x\delta\beta\gamma \le x\delta\beta \le x\beta$$

by the order-decreasing and order-preserving properties successively. Similarly, we can show that $x\beta \leq x\alpha$ and so $x\alpha = x\beta$ for all x in X_n . Hence $\alpha = \beta$ as required.

As a consequence of the two theorems above, we deduce that $\mathcal{H} = \mathcal{R}$ and $\mathcal{L} = \mathcal{D} = \mathcal{J}$ on $DP_r(n)$, and $\mathcal{H} = \mathcal{R} = \mathcal{L} = \mathcal{D} = \mathcal{J}$ on $\mathcal{C}P_r(n)$. Hence (for $r \geq 3$), the semigroups $DP_r(n)$ and $\mathcal{C}P_r(n)$ are nonregular.

By analogy with [15, Section 2] to identify the class of semigroups to which $DP_r(n)$ and $CP_r(n)$ belong, we consider the starred Green's relations studied in [4, 3].

On a semigroup S the relation \mathcal{L}^* is defined by the rule that $(a, b) \in \mathcal{L}^*$ if and only if the elements a, b are \mathcal{L} -related in some oversemigroup of S. The relation \mathcal{R}^* is defined dually, while $\mathcal{H}^* = \mathcal{L}^* \cap \mathcal{R}^*$ and $\mathcal{D}^* = \mathcal{L}^* \vee \mathcal{R}^*$, the lattice join of \mathcal{L}^* and \mathcal{R}^* . A semigroup S is called *abundant* if each \mathcal{L}^* -class and each \mathcal{R}^* -class contains an idempotent. Recall also from [17] that a subsemigroup U (of a semigroup S) is called an *inverse ideal* of S if there exist u' in S such that uu'u = u and both uu' and u'ubelong to U. (Note that an inverse ideal need not be an ideal.) Then we have

Theorem 2.3 (17, Lemma 3.1.8 & 3.1.9) . Every inverse ideal of a semigroup S is an abundant semigroup. Moreover,

- (1) $\mathcal{L}_U^* = \mathcal{L}_S \cap (U \times U);$
- (2) $\mathcal{R}_U^* = \mathcal{R}_S \cap (U \times U);$
- (3) $\mathcal{H}_U^* = \mathcal{H}_S \cap (U \times U).$

It is now fairly obvious that if we can show that both $DP_r(n)$ and $CP_r(n)$ are inverse ideals of $P_r(n)$, the corresponding Rees quotient semigroups of T_n then the characterizations of $\mathcal{L}^*, \mathcal{R}^*$ and \mathcal{H}^* will immediately follow Theorem 2.3 and [1, Lemmas 10.55 & 10.56].

Theorem 2.4 Let $DP_r(n)$ be as defined in (1.3) and let $CP_r(n)$ be as defined in (1.4). Then both $DP_r(n)$ and $CP_r(n)$ are inverse ideals of $P_r(n)$, the corresponding Rees quotient semigroup of T_n .

Proof. Since the two proofs are similar, we only give the more 'difficult proof' that is, the proof for $CP_n(r)$. Let $\alpha = \begin{pmatrix} A_1 & A_2 & \cdots & A_r \\ a_1 & a_2 & \cdots & a_r \end{pmatrix} \in CP_n(r)$, where we may without loss of generality assume that $1 = a_1 < a_2 < \cdots < a_r \leq n$. To define α' in $P_r(n)$, first choose x_i to be min A_i and let

$$x\alpha' = x_i \quad (a_i \le x < a_{i+1}),$$

where $a_{r+1} = n + 1$. Then $\alpha \alpha' \alpha = \alpha$, by the construction of α' and it is not difficult to see that α' is order-preserving. Moreover, since $x\alpha = a_i$ for some *i*, we have

$$x\alpha\alpha' = a_i\alpha' = x_i \le x \in A_i$$

and

$$x\alpha'\alpha = x_i\alpha = a_i \le x \quad (a_i \le x < a_{i+1}),$$

proving that both $\alpha \alpha'$ and $\alpha' \alpha$ are decreasing. It is also the case that $\alpha \alpha'$ and $\alpha' \alpha$ are order-preserving as both α and α' are order-preserving. Thus both $\alpha \alpha'$ and $\alpha' \alpha$ are in $CP_n(r)$, as required.

Now as remarked after Theorem 2.3, we have

Theorem 2.5 Let $DP_r(n)$ be as defined in (1.3) and let $CP_r(n)$ be as defined in (1.4). Then for α, β in $DP_r(n)$ ($CP_r(n)$), we have:

- (1) $(\alpha, \beta) \in \mathcal{L}^*$ if and only if $\operatorname{Im} \alpha = \operatorname{Im} \beta$,
- (2) $(\alpha, \beta) \in \mathcal{R}^*$ if and only if $\alpha \circ \alpha^{-1} = \beta \circ \beta^{-1}$,
- (3) $(\alpha, \beta) \in \mathcal{H}^*$ if and only if $Im \alpha = Im \beta$ and $\alpha \circ \alpha^{-1} = \beta \circ \beta^{-1}$.

And consequently, we now have

Lemma 2.6 Every \mathcal{R}^* class of $DP_r(n)$ contains a unique idempotent.

Proof. It follows from the remarks (before Lemma 1.2) concerning idempotent transformations. ■

Lemma 2.7 Every \mathcal{R}^* -class and every \mathcal{L}^* -class of $\mathcal{CP}_r(n)$ contains a unique idempotent.

Proof. Uniqueness of idempotents in each \mathcal{R}^* -class follows from the same reasons as in the above lemma, while for \mathcal{L}^* -classes it follows from the remarks preceeding [6, Theorem 3.19].

Remark. This is in sharp contrast to what obtains in regular semigroup theory where uniqueness of idempotents in each \mathcal{L}^* -class (or \mathcal{R}^* -class) forces the idempotents to commute and so E(S) becomes a semilattice. Here every \mathcal{L}^* -class and every \mathcal{R}^* -class of $CP_r(n)$ contains a unique idempotent, and yet it is idempotent-generated (Theorem 1.3).

The proof of the next result is similar to the more complicated proof of [19, Lemma 2.9] on one hand, and on the other hand we have to be more careful because of the additional condition of order-preserveness, in the case of $CP_r(n)$.

Lemma 2.8 On the semigroups $DP_r(n)$ and $CP_r(n)$, we have $\mathcal{D}^* = \mathcal{L}^* \circ \mathcal{R}^* \circ \mathcal{L}^* = \mathcal{R}^* \circ \mathcal{L}^* \circ \mathcal{R}^*$.

Proof. For the same reason stated earlier we only give the proof for $CP_r(n)$. Let α, β be nonzero elements in $CP_r(n)$, and so let

$$\alpha = \begin{pmatrix} A_1 & A_2 & \cdots & A_r \\ a_1 & a_2 & \cdots & a_r \end{pmatrix} \text{ and } \beta = \begin{pmatrix} B_1 & B_2 & \cdots & B_r \\ b_1 & b_2 & \cdots & b_r \end{pmatrix}$$

where we may without loss of generality assume that $1 = a_1 < a_2 < \cdots < a_r \leq n$ and $1 = b_1 < b_2 < \cdots < b_r \leq n$. Then there is an order-preserving bijection θ : Im $\alpha \rightarrow$ Im β given by $\theta(a_i) = b_i (i = 1, 2, \dots r)$. Now let $C = \{c_i : c_i = \max(a_i, b_i)\}$ and define δ, γ in $CP_r(n)$ by

$$x\delta = a_i(c_i \le x < c_{i+1})$$
 and $x\gamma = b_i(c_i \le x < c_{i+1})$

where $c_{r+1} = n + 1$. Then clearly δ, γ are in $CP_r(n)$ and by Theorem 2.5, we have that $\alpha \mathcal{L}^* \delta \mathcal{R}^* \gamma \mathcal{L}^* \beta$. Thus for any two nonzero elements α, β in $CP_r(n)$ we have $(\alpha, \beta) \in$ $\mathcal{L}^* \circ \mathcal{R}^* \circ \mathcal{L}^*$; equivalently, $\mathcal{L}^* \circ \mathcal{R}^* \circ \mathcal{L}^*$ is the universal relation on $CP_r(n) \setminus \{0\}$.

On the other hand let $D = \{d_i : d_i = \min(a_i, b_i)\}$ and define δ', γ' in $\mathcal{C}P_r(n)$ by

$$A_i \delta' = d_i \text{ and } B_i \gamma' = d_i \quad (i = 1, 2, \dots, r).$$

Then clearly δ', γ' are in $CP_r(n)$, and by Theorem 2.5, we have that $\alpha \mathcal{R}^* \delta' \mathcal{L}^* \gamma' \mathcal{R}^* \beta$. Thus for any two nonzero elements α, β in $CP_r(n)$ we have that $(\alpha, \beta) \in \mathcal{R}^* \circ \mathcal{L}^* \circ \mathcal{R}^*$; equivalently, $\mathcal{R}^* \circ \mathcal{L}^* \circ \mathcal{R}^*$ is the universal relation on $CP_r(n) \setminus \{0\}$. Hence the result follows.

A semigroup S is called [0] - *bisimple if it has a unique nonzero \mathcal{D}^* -class. Thus, we have now shown the following result.

Theorem 2.9 Let $DP_r(n)$ and $CP_r(n)$ be as defined in (1.3) and (1.4), respectively. Then both $DP_r(n)$ and $CP_r(n)$ are idempotent-generated 0-*bisimple primitive abundant semigroups.

Proof. It is only primitiveness that we have not shown, however, it follows from the primitiveness of $P_r(n)$.

3 Some combinatorial results

As observed in the introduction, combinatorial properties of various classes of semigroups have been investigated. We draw particular attention to [6] and [15]. Our main aim in this section is to find a formula for $|\mathcal{C}P_r(n)|$, since $|DP_r(n)|$ could be deduced from [15, Lemma 4.4]. In fact $|DP_r(n)| = 1 + e(n,r)$, where e(n,r) is the Eulerian number given by

$$e(n,1) = 1 = e(n,n)$$
 and $e(n,r) = re(n-1,r) + (n-r+1)e(n-1,r-1)$

It turns out that from our investigation of $|\mathcal{C}P_r(n)|$ we get as a corollary [6, Theorem 3.1] which states that $|\mathcal{C}(n,n)| = |\mathcal{C}_n| = \frac{1}{n} \begin{pmatrix} 2n \\ n-1 \end{pmatrix}$, the *n*-th Catalan number.

First for $n \ge k \ge r \ge 1$, we consider

$$J(n,r,k) = |\{\alpha \in \mathcal{C}(n,r) : |\text{Im } \alpha| = r \wedge \max(\text{Im } \alpha) = k\}|.$$
(3.1)

Then it is evident that

$$J(n, n, n) = 1, \ J(n, 1, k) = \begin{cases} 1 & \text{(if } k = 1) \\ 0 & \text{(if } k > 1) \end{cases}$$

and

$$J(n, r, k) = 0 \quad \text{if } k < r \text{ or } k > n.$$

Less evidently is the following recurrence relation satisfied by J(n, r, k):

Lemma 3.1 $J(n,r,k) = J(n-1,r,k) + \sum_{t=r-1}^{n-1} J(n-1,r-1,t).$

Proof. Maps α (in $\mathcal{C}(n, r)$) for which $|\text{Im } \alpha| = r$ and $\max(\text{Im } \alpha) = k$ divide naturally into two classes: $n\alpha = (n-1)\alpha = k$ or $(n-1)\alpha < n\alpha = k$. Then it is not difficult to see that there are J(n-1, r, k) maps of the former type, and there are $\sum_{t=r-1}^{k-1} J(n-1, r-1, t)$ maps of the latter type. Adding the two numbers yields the required result.

A closed formula for J(n, r, k) is possible, but before we propose this formula we would like to state these two results from [14]. The first (Lemma 3.2) known as the *Vandermonde convolution identity* is in the words of Riordan [14, p. 8] perhaps the most widely used combinatorial identity, while the second (Lemma 3.3) is a combination of equations (3) and (3b) from [14, p. 8].

Lemma 3.2 (14, Equation (3a) p. 8)

$$\sum_{k=0}^{n} \binom{n}{m-k} \binom{p}{k} = \binom{n+p}{m}.$$

Lemma 3.3 For any $c \in \mathbb{R}$, and $q, m \in \mathbb{N} \cup \{0\}$, we have

$$\sum_{j=0}^{m} (c-j) \begin{pmatrix} q+j \\ j \end{pmatrix} = (c-m-1) \begin{pmatrix} m+q+1 \\ m \end{pmatrix} + \begin{pmatrix} m+q+2 \\ m \end{pmatrix}.$$

Proposition 3.4 Let J(n,r,k) be as defined in (3.1). Then

$$J(n,r,k) = \frac{n-k+1}{n-r+1} \begin{pmatrix} n-1\\ r-1 \end{pmatrix} \begin{pmatrix} k-2\\ r-2 \end{pmatrix}.$$

The proof of Proposition 3.4 is by induction, however, we would like to anchor the induction by this lemma:

Lemma 3.5 $J(n,r,r) = \binom{n-1}{r-1}.$

Proof. Since $J(n, 1, 1) = 1 = \binom{n-1}{0}$ is true, we now suppose that the result is true for all r < n. Then by Lemma 3.1, we have

$$J(n,r,r) = J(n-1,r,r) + J(n-1,r-1,r-1)$$

= $\binom{n-2}{r-1} + \binom{n-2}{r-2}$ (by Induction Hypothesis)
= $\binom{n-1}{r-1}$

as required.

Now coming back to the proof of Proposition 3.4, we suppose that the result is true for all $s \le h < n + 1$, and so, by Lemma 3.1,

$$J(n+1,s,h) = J(n,s,h) + \sum_{t=s-1}^{h-1} J(n,s-1,t)$$

= $\frac{n-h+1}{n-s+1} \binom{n-1}{s-1} \binom{h-2}{s-2} + \sum_{t=s-1}^{h-1} \frac{n-t+1}{n-s+2} \binom{n-1}{s-2} \binom{t-2}{s-3}.$

Put j = t - s + 1, so that when t = s - 1, j = 0 and when t = h - 1, j = h - s. Thus

$$\sum_{t=s-1}^{h-1} \frac{n-t+1}{n-s+2} \binom{n-1}{s-2} \binom{t-2}{s-3}$$

$$= \sum_{j=0}^{h-s} \frac{n-(j+s-1)+1}{n-s+2} \binom{n-1}{s-2} \binom{j+s-3}{s-3}$$

$$= \sum_{j=0}^{h-s} \frac{(n-s+2)-j}{n-s+2} \binom{n-1}{s-2} \binom{s-3+j}{s-3}$$

$$= \frac{1}{n-s+2} \binom{n-1}{s-2} \sum_{j=0}^{h-s} \{(n-s+2)-j\} \binom{s-3+j}{j}$$

(Using Lemma 3.3, with c = n - s + 2, m = k - s and q = s - 3)

$$= \frac{1}{n-s+2} \begin{pmatrix} n-1\\s-2 \end{pmatrix} \left\{ (n-h+1) \begin{pmatrix} h-2\\h-s \end{pmatrix} + \begin{pmatrix} h-1\\h-s \end{pmatrix} \right\}$$
$$= \frac{1}{n-s+2} \begin{pmatrix} n-1\\s-2 \end{pmatrix} \begin{pmatrix} h-2\\s-2 \end{pmatrix} \left\{ (n-h+1) + \frac{h-1}{s-1} \right\}$$
(3.2)

Thus

$$J(n+1,s,h) = \frac{n-h+1}{n-s+1} {\binom{n-1}{s-1} \binom{n-2}{s-2}} \\ + \frac{1}{n-s+2} {\binom{n-1}{s-2}} \left\{ (n-h+1) {\binom{h-2}{h-s}} + {\binom{h-1}{h-s}} \right\} \\ = \frac{n-h+2}{n-s+2} {\binom{n}{s-1}} {\binom{h-2}{s-2}}$$

after some algebraic manipulations.

To complete the induction step we still need to verify J(n+1, s, n+1). By Lemma 3.1

$$J(n+1, s, n+1) = \sum_{t=s-1}^{n} J(n, s-1, t)$$

= $\sum_{t=s+1}^{n} \frac{n-t+1}{n-s+2} {\binom{n-1}{s-2}} {\binom{t-2}{s-2}}$ (by Induction Hypothesis)
= $\frac{1}{n-s+2} {\binom{n}{s-1}} {\binom{n-1}{s-2}}$ (using (3.2) with $h-1=n$)

as required. Hence the proof of Proposition 3.4 is complete. \blacksquare

Proposition 3.6 Let $J(n,r) = \sum_{k=r}^{n} J(n,r,k)$. Then $J(n,r) = \frac{1}{n-r+1} \begin{pmatrix} n-1 \\ r-1 \end{pmatrix} \begin{pmatrix} n \\ r \end{pmatrix}$.

Proof. $J(n,r) = \sum_{k=r}^{n} J(n,r,k)$

$$= \sum_{k=r}^{n} \frac{n-k+1}{n-r+1} \binom{n-1}{r-1} \binom{k-2}{r-2} \qquad \text{(by Proposition 3.4)}$$
$$= \frac{1}{n-r+1} \binom{n-1}{r-1} \sum_{k=r}^{n} [(n+1)-k] \binom{k-2}{k-r}$$
$$= \frac{1}{n-r+1} \binom{n-1}{r-1} \sum_{j=0}^{n-r} [(n+1-r)-j] \binom{r-2+j}{j} \qquad \text{(with } k-r=j)$$

(using Lemma 3.3 with c = n + 1 - r, m = n - r and q = r - 2)

$$= \frac{1}{n-r+1} \begin{pmatrix} n-1\\r-1 \end{pmatrix} \left\{ (n+1-r-n+r-1) \begin{pmatrix} n-r+r-2+1\\n-r \end{pmatrix} \right\}$$
$$+ \begin{pmatrix} n-r+r-2+2\\n-r \end{pmatrix} \right\}$$
$$= \frac{1}{n-r+1} \begin{pmatrix} n-1\\r-1 \end{pmatrix} \begin{pmatrix} n\\n-r \end{pmatrix}$$
$$= \frac{1}{n-r+1} \begin{pmatrix} n-1\\r-1 \end{pmatrix} \begin{pmatrix} n\\r \end{pmatrix}.$$

Hence we deduce that

Theorem 3.7 Let $CP_r(n)$ be as defined in (1.4). Then $|CP_r(n)| = \frac{1}{n-r+1} \binom{n-1}{r-1} \binom{n}{r} + 1.$

Proof. The extra 1 added to the result in Proposition 3.6 accounts for the 0 element. ■

Theorem 3.8 Let C(n, r) be as defined in (1.2). Then

$$|\mathcal{C}(n,r)| = \sum_{t=1}^{r} \frac{1}{n-t+1} \begin{pmatrix} n-1\\ t-1 \end{pmatrix} \begin{pmatrix} n\\ t \end{pmatrix}.$$

A useful corollary to Theorem 3.8 is

Corollary 3.9 (6, Theorem 3.1)

$$|\mathcal{C}_n| = |\mathcal{C}(n,n)| = \sum_{t=1}^n \frac{1}{n-t+1} \begin{pmatrix} n-1\\t-1 \end{pmatrix} \begin{pmatrix} n\\t \end{pmatrix} = \frac{1}{n} \begin{pmatrix} 2n\\n-1 \end{pmatrix}.$$

Proof. It remains to show the last equality only, which is established as follows:

$$\sum_{t=1}^{n} \frac{1}{n-t+1} \binom{n-1}{t-1} \binom{n}{t} = \sum_{t=1}^{n} \frac{n!(n-1)!}{(n-t+1)(n-t)!(t-1)!(n-t)!t!}$$
$$= \frac{1}{n} \sum_{t=1}^{n} \binom{n}{t-1} \binom{n}{n-t}$$
$$= \frac{1}{n} \binom{2n}{n-1}$$
13

by Lemma 3.2. \blacksquare

Another result of independent interest is

Proposition 3.10 Let
$$F(n,k) = \sum_{r=1}^{k} J(n,r,k)$$
. Then $F(n,k) = \frac{n-k+1}{n} \binom{n+k-2}{n-1}$.

Proof. From Proposition 3.4, we have

$$F(n,k) = \sum_{r=1}^{k} J(n,r,k) = \sum_{r=1}^{k} \frac{n-k+1}{n-r+1} \binom{n-1}{r-1} \binom{k-2}{r-2}$$

= $(n-k+1) \sum_{r=1}^{k} \frac{1}{n-r+1} \binom{n-1}{r-1} \binom{k-2}{r-2}$
= $\frac{(n-k+1)}{n} \sum_{r=1}^{k} \binom{n}{r-1} \binom{k-2}{r-2}$
= $\frac{(n-k+1)}{n} \sum_{r=1}^{k} \binom{n}{n-r+1} \binom{k-2}{r-2}$
= $\frac{n-k+1}{n} \binom{n+k-2}{n-1}$,

by Lemma 3.2. \blacksquare

Corollary 3.11
$$|\mathcal{C}_n| = |\mathcal{C}(n,n)| = \sum_{k=1}^n F(n,k) = \frac{1}{n} \begin{pmatrix} 2n \\ n-1 \end{pmatrix}.$$

Proof.

$$\begin{aligned} |\mathcal{C}_n| &= \sum_{k=1}^n F(n,k) \\ &= \sum_{k=1}^n \frac{n-k+1}{n} \left(\begin{array}{c} n+k-2\\ n-1 \end{array} \right) \\ &= \frac{1}{n} \sum_{j=0}^{n-1} (n-j) \left(\begin{array}{c} (n-1)+j\\ j \end{array} \right) (\text{with } j=k-1) \\ &= \frac{1}{n} \left[(n-(n-1)-1) \left(\begin{array}{c} 2n-1\\ n-1 \end{array} \right) + \left(\begin{array}{c} 2n\\ n-1 \end{array} \right) \right] \\ &= \frac{1}{n} \left(\begin{array}{c} 2n\\ n-1 \end{array} \right) \end{aligned}$$

using Lemma 3.3, with c = n, q = n - 1 = m, to get the step before the last.

Finally, from Lemma 2.7 we deduce that

Lemma 3.12 $|E(CP_r(n))| = \binom{n-1}{r-1} + 1.$

Proof. It follows from the fact that there are $\binom{n-1}{r-1} \mathcal{L}^*$ -classes in $\mathcal{C}P_r(n)$ plus the zero element.

4 Rank Properties

As in [11], the rank of a finite semigroup S is defined by

rank
$$S = \min\{|A| : A \subseteq S, \langle A \rangle = S\}.$$

If S is generated by its set of idempotents E, then the idempotent rank of S is denoted and defined by

idrank
$$S = \min\{|A| : A \subseteq E, \langle A \rangle = S\}.$$

In this section we investigate the rank and idempotent rank of C(n, r) and $CP_r(n)$. Related questions on various classes of semigroups of transformations have been considered in recent years. In particular, Howie and McFadden [11], considered the semigroup $P_r(n)$ ($2 \le r \le n-1$) and showed that both the rank and idempotent rank are equal to S(n, r), the Stirling number of the second kind. Garba [5] obtained analogous results for the semigroup of order-preserving transformations. Similarly, in [18] it was shown that both the rank and idempotent rank of $DP_r(n)$ are equal to S(n, r) as in [11] while in Higgins [6, Section 2.1] it was shown that C_n admits a unique minimal generating system.

The main result of this section is

Proposition 4.1 Let C(n, r) and $CP_r(n)$ be as defined in (1.2) and (1.4), respectively. Then for $1 \le r \le n-1$,

$$\operatorname{rank} \mathcal{C}(n, r) = \operatorname{idrank} \mathcal{C}(n, r) = \operatorname{rank} \mathcal{C}P_r(n) = \operatorname{idrank} \mathcal{C}P_r(n)$$
$$= \binom{n-1}{r-1}.$$
15

We are going to prove this proposition for C(n, r) and deduce the result for $CP_r(n)$. As a first step towards the proof of Proposition 4.1, we establish the following lemma:

Lemma 4.2 Let $\epsilon = \begin{pmatrix} A_1 & A_2 & \cdots & A_k \\ a_1 & a_2 & \cdots & a_k \end{pmatrix}$ be an idempotent element in $\mathcal{C}(n, r)$. Then there exist idempotents η_1, η_2 in $\mathcal{C}(n, r)$ for which $|\operatorname{Im} \eta_1| = |\operatorname{Im} \eta_2| = k+1$ and $\epsilon = \eta_1 \eta_2$.

Proof. Suppose that

$$\epsilon = \left(\begin{array}{cccc} A_1 & A_2 & \cdots & A_k \\ a_1 & a_2 & \cdots & a_k \end{array}\right)$$

is an idempotent in C(n, r). We may without loss of generality assume that $1 = a_1 < a_2 < \cdots < a_k \leq n$ and $2 \leq k < r \leq n$. Notice also that by the convexity of the block A_i and idempotency we have $a_{i+1} > \max A_i$ for all $i = 1, 2, \ldots, k-1$. This observation will guarantee that the mappings η_1, η_2 we define below are order-preserving. However, before defining the required idempotent mappings η_1, η_2 , we note that essentially we can either have $|A_i| \geq 2$ and $|A_j| \geq 2$; or $|A_i| \geq 3$ for some $i, j \in \{1, 2, \ldots, k\}$. In the former case we choose an element $a'_i \neq a_i$ in A_i and $a'_j \neq a_j$ in A_j ; in the latter case we choose two distinct elements a'_i, a''_i in $A_i \setminus \{a_i\}$. Then in the former we define

$$\begin{aligned} a'_i\eta_1 &= a'_i, \quad x\eta_1 = x\epsilon \quad (x \neq a'_i) \\ a'_j\eta_2 &= a'_j, \quad y\eta_2 = y\epsilon \quad (y \neq a'_j) \end{aligned}$$

in the latter we define

$$\begin{array}{ll} a_i'\eta_1=a_i', & x\eta_1=x\epsilon & (x\neq a_i')\\ a_j''\eta_2=a_i'', & y\eta_2=y\epsilon & (y\neq a_i'') \end{array}$$

In both cases it is clear that η_1, η_2 are idempotents, and η_1, η_2 are both decreasing and order-preserving so that $\eta_1, \eta_2 \in \mathcal{C}(n, r)$.

An immediate consequence of the above lemma and Theorem 1.3 is that C(n, r) is generated by its idempotents of height r. Thus, by Lemma 3.12 we deduce that for $1 \le r \le n-1$,

idrank
$$\mathcal{C}(n,r) \leq \begin{pmatrix} n-1\\ r-1 \end{pmatrix}$$
.

To show the reverse inequality, we show that E_r , the set of idempotents of $\mathcal{C}(n,r)$ of height exactly r, is a minimal generating set for $\mathcal{C}(n,r)$ and equivalently, for $\mathcal{C}P_r(n)$. We achieve this by showing that the product of an idempotent of height r and any other element (idempotent or nonidempotent), is not an idempotent of height r. Let ϵ be an idempotent of height r and let $\eta \eq \epsilon$) be an arbitrary element in $\mathcal{C}(n,r)$. If η is an idempotent then we have

$$F(\eta) = \operatorname{Im} \eta \neq \operatorname{Im} \epsilon = F(\epsilon)$$

since Im $\epsilon = \text{Im } \eta$ implies $\epsilon = \eta$ for any two idempotents in $\mathcal{C}(n, r)$. Hence by Lemma 1.1

$$F(\epsilon\eta) = F(\epsilon) \cap F(\eta) \subset F(\epsilon)$$

which implies that $f(\epsilon \eta) < r$. If η is not an idempotent then $f(\eta) < r$ and so $f(\epsilon \eta) < r$. Thus, we have

idrank
$$\mathcal{C}(n,r) \ge \begin{pmatrix} n-1\\ r-1 \end{pmatrix}$$
.

Moreover, by a theorem of Doyen [2], C(n,r) being \mathcal{J} -trivial has a unique minimum generating set which must be E_r in this case. Hence the rank and idempotent rank of C(n,r) are equal. Therefore the proof of Proposition 4.1 is complete.

ACKNOWLEDGEMENT

The authors gratefully acknowledge support from The King Fahd University of Petroleum and Minerals.

REFERENCES

- A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Vol. 1, Mathematical Surveys 7 (Providence, R. I.: American Math. Soc., 1961).
- J. Doyen, Equipotence et unicite de system generateurs minimaux dans certains monoides, Semigroup Forum, 28 (1984), 341-346.

- A. El-Qallali and J. B. Fountain, Quasi-adequate semigroups, Proc. Roy. Soc. Edinburgh Sect. A 91 (1981), 91-99.
- J. B. Fountain, Abundant semigroups, Proc. London. Math. Soc. (3) 44 (1982), 103-129.
- 5. G. U. Garba, On the idempotent ranks of certain semigroups of order-preserving transformations, *Portugaliae Mathematica* **51** (1994), 185-204.
- P. M. Higgins, Combinatorial results for semigroups of order-preserving mappings Math. Proc. Camb. Phil. Soc. 113 (1993), 281-296.
- P. M. Higgins, Idempotent depth in semigroups of order-preserving mappings. Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), no. 5, 1045–1058.
- P. M. Higgins, A proof of Simon's theorem on piecewise testable languages, *Theoretical Computer Science* 178 (1997), 257-264.
- J. M. Howie, Products of idempotents in certain semigroups of order-preserving transformations, Proc. Edinburgh Math. Soc. (2) 17(1971), 223-236.
- 10. J. M. Howie, Fundamentals of semigroup theory (Oxford: Clarendon Press, 1995).
- J. M. Howie and R. B. McFadden, Idempotent rank in finite full transformation semigroups, Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), 161-167.
- J. M Howie, E. F. Robertson and B.M. Shein, A combinatorial property of finite full transformation semigroups, *Proc. Roy. Soc. Edinburgh Sect.* A 109 (1988), 319-328.
- J. E. Pin, Varieties of formal languages, (Paris: Masson, 1984); English translation, translated by A. Howie.

- 14. J. Riordan, Combinatorial Identities, (John Wiley and Sons, New York, 1968).
- A. Umar, On the semigroups of order-decreasing finite full transformations, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), 129-142.
- A. Umar, Semigroups of order-decreasing transformations, Ph. D. Thesis, University of St Andrews, 1992.
- A. Umar, A class of quasi-adequate transformation semigroups, *Portugaliae Mathematica* 51 (1994), 553-570.
- A. Umar, On the ranks of certain finite semigroups of order-decreasing transformations, *Portugaliae Math.* Vol. 53 (1996), 23-32.