
  
 

King Fahd University of Petroleum & Minerals 
 
 

DEPARTMENT OF MATHEMATICAL SCIENCES 
 
 

 
 
 
 
 

Technical Report Series 
 
 

TR298 
 

May  2003 
 
 
 
 
 
 
 

On Certain Finite Semigroups of Order-Decreasing 
Transformations I 

 
 

A. Laradji and A. Umar 

 
DHAHRAN 31261 ● SAUDI ARABIA ● www.kfupm.edu.sa/math/ ● E-mail: mathdept@kfupm.edu.sa 

 



ON CERTAIN FINITE SEMIGROUPS OF
ORDER-DECREASING TRANSFORMATIONS I

A. Laradji and A. Umar

1 Introduction and Preliminaries

Let Xn = {1, 2, . . . , n} be the set of the first n natural numbers under the natural
ordering and let Tn denote the full transformation semigroup, that is, the semigroup of

all mappings α : Xn → Xn under composition. We shall call α order-decreasing (order-

increasing) or simply decreasing (increasing) if xα ≤ x (xα ≥ x) for all x in Xn, and

α is order-preserving if x ≤ y implies xα ≤ yα for x, y in Xn. This paper investigates

algebraic, combinatorial and rank properties of certain Rees quotient semigroups of

Dn and Cn, the semigroup of all decreasing mappings of Xn and the semigroup of all

decreasing and order-preserving mappings of Xn, respectively.

Algebraic, combinatorial and rank properties of Tn have been studied over a long

period and many interesting results have emerged (see, for example [1, 10, 11, 12]). A

general study of Dn was initiated by Umar [16] and subsequently many results were

published in [15, 18]. Higgins [6, 7] contain some delightful results concerning Cn. As
remarked by Higgins [6], both Dn and Cn have arisen naturally in language theory: any
J -trivial finite semigroup divides some Cn and any R-trivial finite semigroup divides
some Dn (see [13]). Note that Pin [13] referred to the order-preserving mappings as

increasing and our order-increasing mappings as extensive. It transpires from our study

that the algebraic and rank properties of Cn and some of its Rees quotient semigroups
resemble closely those of Dn, while its combinatorial properties resemble those of On,

the semigroup of all order-preserving mappings of Xn (see [6, 9] also).
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We begin by recalling some notations and definitions that will be useful in the

paper. For standard terms and concepts in semigroup theory we refer the reader to

[10]. Let α : Xn → Xn be a full transformation. We shall denote by Im α, the range

or image set of α while F (α) and S(α) = Xn \ F (α) will denote the set of fixed points
and shifting points of α, respectively. Moreover, the cardinals of S(α) and F (α) will

be denoted by s(α) and f(α), respectively.

Now for 1 ≤ r ≤ n, we let

D(n, r) = {α ∈ Dn : |Im α| ≤ r} (1.1)

and

C(n, r) = {α ∈ Cn : |Im α| ≤ r} (1.2)

be the two-sided ideals of Dn and Cn, respectively, consisting of all decreasing maps of
height not more than r (height α = |Im α|). Note that D(n, r) is in the notation of
[18], K−(n, r) while Dn = D(n, n) is in the notation of [15], (S−n )

1. Also, for r ≥ 2, we
let

DPr(n) = D(n, r)/D(n, r − 1) (1.3)

be the Rees quotient semigroup of Dn, and

CPr(n) = C(n, r)/C(n, r − 1) (1.4)

be the Rees quotient semigroup of Cn. The elements ofDPr(n)(CPr(n)) may be thought

of as the elements of Dn(Cn) of height r precisely. The product of two elements of
DPr(n)(CPr(n)) is 0 whenever their product in Dn(Cn) is of height strictly less than
r. As in the above, DPr(n) is in the notation of [18], P

−
r (n). The first result in this

section concerns fixed points of decreasing maps.

Lemma 1.1 Let α, β be decreasing transformations of Xn. Then

F (αβ) = F (α) ∩ F (β) = F (βα).
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This result (Lemma 1.1) was first proved in [16], however, Higgins [8] proved it as part

of the proof of [8, Proposition 1.4] which he mistakenly attributed to [15].

We would like to introduce here a useful piece of notation from [12]. Every trans-

formation α in Tn may be expressed as

α =

µ
A1 A2 · · · Ar

a1 a2 · · · ar

¶
where A1, A2, . . . Ar called the blocks of α are all nonempty, and Ai = aiα

−1(i =

1, 2, . . . , r). Then every idempotent transformation α is characterized by the property

that every block of α is stationary, that is, ai ∈ Ai for all i, (equivalently, if F (α) =

{ai : i = 1, 2, . . . , r}). If in addition the idempotent transformation is decreasing then
ai = minAi for all i. It is also the case that every order-preserving transformation has

all its blocks convex. The next lemma leads to the proof of Theorem 1.3 (below).

Lemma 1.2 Let α =

µ
A1 A2 · · · Ar

a1 a2 · · · ar

¶
be an element of DPr(n) and let V (α) =

S(α) ∩ Im α with v0 = minV (α). Then v0 6= ti = minAi, for all i.

Proof. Suppose v0 = ti (for some i). If v0α = v0 then v0 ∈ F (α) which is a

contradiction. Thus by the order-decreasing property we have v0 > v0α, and either

v0α ∈ F (α) or v0α ∈ S(α). The former implies that both v0 and v0α belong to same

block, in fact they belong to Ai. However, this violates the minimality of v0 = ti in Ai.

The latter clearly violates the minimality of v0 in V (α). In either eventuality we have

a contradiction. Therefore we conclude that v0 6= ti for all i.

Theorem 1.3 Let DPr(n) and CPr(n) be as defined in (1.3) and (1.4), respectively.

Then every α inDPr(n) (CPr(n)) is expressible as a product of idempotents in DPr(n)(CPr(n)).

Proof. First observe that proving the result for DPr(n) does not imply the proof for

CPr(n), and even less so the other way round. However, since in general the algebraic

proofs for CPr(n) are similar (but slightly more difficult) to those for DPr(n), perhaps

because of the additional requirement of order-preserveness, we will only present the
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more difficult proof. Now suppose that α =

µ
A1 A2 · · ·Ar

a1 a2 · · · ar
¶
∈ CPr(n). We may

without loss of generality assume that 1 = a1 < a2 < · · · < ar ≤ n. Next let

V (α) = S(α) ∩ Im α with v0 = minV (α). Define �, β by

Ai� = ti = minAi(i = 1, 2, . . . , r)

xβ =

½
v0 (if v0 ≤ x < max v0α

−1)
xα (otherwise).

Then it is clear that � is an idempotent in CPr(n). Next, it is not difficult to see that

β is order-decreasing and |Im β| = r. Moreover, for all y ≥ max(v0α
−1), we have

yβ = yα ≥ v0 = v0β and for all y < v0, we have yβ = yα ≤ v0α < v0 = v0β. Thus β is

order-preserving. Note also that S(β) = S(α) \ {v0} and so s(β) = s(α)− 1. Finally,
observe that

Ai�β = tiβ =

½
v0 = Aiα (if v0 < ti < max(v0α

−1))
ai = Aiα (otherwise)

since v0 6= ti for all i, by Lemma 1.2. Thus �β = α, and the result now follows by

induction.

Define a map ξ by xξ = 1 (for all x in Xn). Then clearly ξ is in C(n, r) (and hence
inD(n, r)) and αξ = ξα for all α inD(n, r). Thus ξ is the zero ofD(n, r)(C(n, r)) which
we shall henceforth denote by 0. An element a in a 0-semigroup S is called nilpotent

if ak = 0 for some k ≥ 1. Then the next two lemmas concerning nilpotents in D(n, r)

and DPr(n) imply the corresponding results for C(n, r) and CPr(n), respectively.

Lemma 1.4 Let α be an element in D(n, r)(C(n, r)). Then α is nilpotent if and only

if f(α) = 1.

Proof. This follows from [15, Lemma 1.5] or directly from Lemma 1.1.

Lemma 1.5 Let α be an element in DPr(n) (CPr(n)). Then α is nilpotent if and only

if f(α) < r.

Proof. This follows directly from Lemma 1.1.
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2 Green’s Relations and their Starred Analogues

For the definitions of Green’s relations, see for example [10]. In case of ambiguity we

shall denote by KS for any relation K on S.

Theorem 2.1 Let DPr(n) be as defined in (1.3). Then

(1) DPr(n) is R-trivial;

(2) for α, β in DPr(n), (α, β) ∈ L if and only if Im α = Im β and min zα−1 =

min zβ−1 (for all z in Im α).

Proof. The proof is similar to that of [15, Lemma 2.1].

Theorem 2.2 Let CPr(n) be as defined in (1.4). Then CPr(n) is J -trivial.

Proof. Let α, β be elements in CPr(n) be such that (α, β) ∈ J . Then there exist δ, γ
in CP 1

r (n) such that α = δβγ. Thus for all x in Xn, we have

xα = xδβγ ≤ xδβ ≤ xβ

by the order-decreasing and order-preserving properties successively. Similarly, we can

show that xβ ≤ xα and so xα = xβ for all x in Xn. Hence α = β as required.

As a consequence of the two theorems above, we deduce that H = R and L = D =
J on DPr(n), and H = R = L = D = J on CPr(n). Hence (for r ≥ 3), the semigroups
DPr(n) and CPr(n) are nonregular.

By analogy with [15, Section 2] to identify the class of semigroups to which DPr(n)

and CPr(n) belong, we consider the starred Green’s relations studied in [4, 3].

On a semigroup S the relation L∗ is defined by the rule that (a, b) ∈ L∗ if and
only if the elements a, b are L-related in some oversemigroup of S. The relation R∗

is defined dually, while H∗ = L∗ ∩R∗ and D∗ = L∗ ∨R∗, the lattice join of L∗ and
R∗. A semigroup S is called abundant if each L∗-class and each R∗-class contains an
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idempotent. Recall also from [17] that a subsemigroup U (of a semigroup S) is called

an inverse ideal of S if there exist u0 in S such that uu0u = u and both uu0 and u0u

belong to U . (Note that an inverse ideal need not be an ideal.) Then we have

Theorem 2.3 (17, Lemma 3.1.8 & 3.1.9) . Every inverse ideal of a semigroup S

is an abundant semigroup. Moreover,

(1) L∗U = LS ∩ (U × U);

(2) R∗U = RS ∩ (U × U);

(3) H∗U = HS ∩ (U × U).

It is now fairly obvious that if we can show that both DPr(n) and CPr(n) are inverse

ideals of Pr(n), the corresponding Rees quotient semigroups of Tn then the character-

izations of L∗,R∗ and H∗ will immediately follow Theorem 2.3 and [1, Lemmas 10.55

& 10.56].

Theorem 2.4 Let DPr(n) be as defined in (1.3) and let CPr(n) be as defined in (1.4).

Then both DPr(n) and CPr(n) are inverse ideals of Pr(n), the corresponding Rees

quotient semigroup of Tn.

Proof. Since the two proofs are similar, we only give the more ‘difficult proof’ that is,

the proof for CPn(r). Let α =

µ
A1 A2 · · ·Ar

a1 a2 · · · ar
¶
∈ CPn(r), where we may without

loss of generality assume that 1 = a1 < a2 < · · · < ar ≤ n. To define α0 in Pr(n), first

choose xi to be minAi and let

xα0 = xi (ai ≤ x < ai+1),

where ar+1 = n+1. Then αα0α = α, by the construction of α0 and it is not difficult to

see that α0 is order-preserving. Moreover, since xα = ai for some i, we have

xαα0 = aiα
0 = xi ≤ x ∈ Ai
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and

xα0α = xiα = ai ≤ x (ai ≤ x < ai+1),

proving that both αα0 and α0α are decreasing. It is also the case that αα0 and α0α are

order-preserving as both α and α0 are order-preserving. Thus both αα0 and α0α are in

CPn(r), as required.

Now as remarked after Theorem 2.3, we have

Theorem 2.5 Let DPr(n) be as defined in (1.3) and let CPr(n) be as defined in (1.4).

Then for α, β in DPr(n) (CPr(n)), we have:

(1) (α, β) ∈ L∗ if and only if Im α = Im β,

(2) (α, β) ∈ R∗ if and only if α ◦ α−1 = β ◦ β−1,

(3) (α, β) ∈ H∗ if and only if Im α = Im β and α ◦ α−1 = β ◦ β−1.

And consequently, we now have

Lemma 2.6 Every R∗ class of DPr(n) contains a unique idempotent.

Proof. It follows from the remarks (before Lemma 1.2) concerning idempotent

transformations.

Lemma 2.7 Every R∗-class and every L∗-class of CPr(n) contains a unique idempo-

tent.

Proof. Uniqueness of idempotents in each R∗-class follows from the same reasons

as in the above lemma, while for L∗-classes it follows from the remarks preceeding [6,

Theorem 3.19].

Remark. This is in sharp contrast to what obtains in regular semigroup theory where

uniqueness of idempotents in each L∗-class (or R∗-class) forces the idempotents to
commute and so E(S) becomes a semilattice. Here every L∗-class and every R∗-class
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of CPr(n) contains a unique idempotent, and yet it is idempotent-generated (Theorem

1.3).

The proof of the next result is similar to the more complicated proof of [19, Lemma

2.9] on one hand, and on the other hand we have to be more careful because of the

additional condition of order-preserveness, in the case of CPr(n).

Lemma 2.8 On the semigroups DPr(n) and CPr(n), we have D∗ = L∗ ◦ R∗ ◦ L∗ =
R∗ ◦ L∗ ◦R∗.

Proof. For the same reason stated earlier we only give the proof for CPr(n). Let α, β

be nonzero elements in CPr(n), and so let

α =

µ
A1 A2 · · · Ar

a1 a2 · · · ar

¶
and β =

µ
B1 B2 · · · Br

b1 b2 · · · br

¶
where we may without loss of generality assume that 1 = a1 < a2 < · · · < ar ≤ n and

1 = b1 < b2 < · · · < br ≤ n. Then there is an order-preserving bijection θ : Im α →
Im β given by θ(ai) = bi(i = 1, 2, . . . r). Now let C = {ci : ci = max(ai, bi)} and define
δ, γ in CPr(n) by

xδ = ai(ci ≤ x < ci+1) and xγ = bi(ci ≤ x < ci+1)

where cr+1 = n + 1. Then clearly δ, γ are in CPr(n) and by Theorem 2.5, we have

that αL∗δR∗γL∗β. Thus for any two nonzero elements α, β in CPr(n) we have (α, β) ∈
L∗ ◦R∗ ◦ L∗; equivalently, L∗ ◦R∗ ◦ L∗ is the universal relation on CPr(n) \ {0}.
On the other hand let D = {di : di = min(ai, bi)} and define δ0, γ0 in CPr(n) by

Aiδ
0 = di and Biγ

0 = di (i = 1, 2, . . . , r).

Then clearly δ0, γ0 are in CPr(n), and by Theorem 2.5, we have that αR∗δ0L∗γ0R∗β.
Thus for any two nonzero elements α, β in CPr(n) we have that (α, β) ∈ R∗ ◦L∗ ◦R∗;
equivalently, R∗ ◦ L∗ ◦R∗ is the universal relation on CPr(n) \ {0}. Hence the result
follows.
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A semigroup S is called [0]− ∗bisimple if it has a unique nonzero D∗-class. Thus,
we have now shown the following result.

Theorem 2.9 Let DPr(n) and CPr(n) be as defined in (1.3) and (1.4), respectively.

Then both DPr(n) and CPr(n) are idempotent-generated 0-*bisimple primitive abundant

semigroups.

Proof. It is only primitiveness that we have not shown, however, it follows from the

primitiveness of Pr(n).

3 Some combinatorial results

As observed in the introduction, combinatorial properties of various classes of semi-

groups have been investigated. We draw particular attention to [6] and [15]. Our main

aim in this section is to find a formula for |CPr(n)|, since |DPr(n)| could be deduced
from [15, Lemma 4.4]. In fact |DPr(n)| = 1 + e(n, r), where e(n, r) is the Eulerian

number given by

e(n, 1) = 1 = e(n, n) and e(n, r) = re(n− 1, r) + (n− r + 1)e(n− 1, r − 1).

It turns out that from our investigation of |CPr(n)| we get as a corollary [6, Theorem
3.1] which states that |C(n, n)| = |Cn| = 1

n

µ
2n

n− 1
¶
, the n-th Catalan number.

First for n ≥ k ≥ r ≥ 1, we consider

J(n, r, k) = |{α ∈ C(n, r) : |Im α| = r ∧max(Im α) = k}|. (3.1)

Then it is evident that

J(n, n, n) = 1, J(n, 1, k) =

½
1 (if k = 1)
0 (if k > 1)

and

J(n, r, k) = 0 if k < r or k > n.

Less evidently is the following recurrence relation satisfied by J(n, r, k):
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Lemma 3.1 J(n, r, k) = J(n− 1, r, k) +
n−1X
t=r−1

J(n− 1, r − 1, t).

Proof. Maps α (in C(n, r)) for which |Im α| = r and max(Im α) = k divide naturally

into two classes: nα = (n−1)α = k or (n−1)α < nα = k. Then it is not difficult to see

that there are J(n−1, r, k) maps of the former type, and there are
k−1X
t=r−1

J(n−1, r−1, t)
maps of the latter type. Adding the two numbers yields the required result.

A closed formula for J(n, r, k) is possible, but before we propose this formula we

would like to state these two results from [14]. The first (Lemma 3.2) known as the

Vandermonde convolution identity is in the words of Riordan [14, p. 8] perhaps the most

widely used combinatorial identity, while the second (Lemma 3.3) is a combination of

equations (3) and (3b) from [14, p. 8].

Lemma 3.2 (14, Equation (3a) p. 8)

nX
k=0

µ
n

m− k

¶µ
p
k

¶
=

µ
n+ p
m

¶
.

Lemma 3.3 For any c ∈ R, and q,m ∈ N ∪ {0}, we have
mX
j=0

(c− j)

µ
q + j
j

¶
= (c−m− 1)

µ
m+ q + 1

m

¶
+

µ
m+ q + 2

m

¶
.

Proposition 3.4 Let J(n, r, k) be as defined in (3.1). Then

J(n, r, k) =
n− k + 1

n− r + 1

µ
n− 1
r − 1

¶µ
k − 2
r − 2

¶
.

The proof of Proposition 3.4 is by induction, however, we would like to anchor the

induction by this lemma:

Lemma 3.5 J(n, r, r) =

µ
n− 1
r − 1

¶
.
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Proof. Since J(n, 1, 1) = 1 =

µ
n− 1
0

¶
is true, we now suppose that the result is

true for all r < n. Then by Lemma 3.1, we have

J(n, r, r) = J(n− 1, r, r) + J(n− 1, r − 1, r − 1)

=

µ
n− 2
r − 1

¶
+

µ
n− 2
r − 2

¶
(by Induction Hypothesis)

=

µ
n− 1
r − 1

¶
as required.

Now coming back to the proof of Proposition 3.4, we suppose that the result is true

for all s ≤ h < n+ 1, and so, by Lemma 3.1,

J(n+ 1, s, h) = J(n, s, h) +
h−1X
t=s−1

J(n, s− 1, t)

=
n− h+ 1

n− s+ 1

µ
n− 1
s− 1

¶µ
h− 2
s− 2

¶
+

h−1X
t=s−1

n− t+ 1

n− s+ 2

µ
n− 1
s− 2

¶µ
t− 2
s− 3

¶
.

Put j = t− s+ 1, so that when t = s− 1, j = 0 and when t = h− 1, j = h− s. Thus

h−1X
t=s−1

n− t+ 1

n− s+ 2

µ
n− 1
s− 2

¶µ
t− 2
s− 3

¶

=
h−sX
j=0

n− (j + s− 1) + 1
n− s+ 2

µ
n− 1
s− 2

¶µ
j + s− 3
s− 3

¶

=
h−sX
j=0

(n− s+ 2)− j

n− s+ 2

µ
n− 1
s− 2

¶µ
s− 3 + j
s− 3

¶

=
1

n− s+ 2

µ
n− 1
s− 2

¶ h−sX
j=0

{(n− s+ 2)− j}
µ

s− 3 + j
j

¶
(Using Lemma 3.3, with c = n− s+ 2,m = k − s and q = s− 3)

=
1

n− s+ 2

µ
n− 1
s− 2

¶½
(n− h+ 1)

µ
h− 2
h− s

¶
+

µ
h− 1
h− s

¶¾
=

1

n− s+ 2

µ
n− 1
s− 2

¶µ
h− 2
s− 2

¶½
(n− h+ 1) +

h− 1
s− 1

¾
(3.2)
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Thus

J(n+ 1, s, h) =
n− h+ 1

n− s+ 1

µ
n− 1
s− 1

¶µ
n− 2
s− 2

¶
+

1

n− s+ 2

µ
n− 1
s− 2

¶½
(n− h+ 1)

µ
h− 2
h− s

¶
+

µ
h− 1
h− s

¶¾
=

n− h+ 2

n− s+ 2

µ
n

s− 1
¶µ

h− 2
s− 2

¶
after some algebraic manipulations.

To complete the induction step we still need to verify J(n+1, s, n+1). By Lemma

3.1

J(n+ 1, s, n+ 1) =
nX

t=s−1
J(n, s− 1, t)

=
nX

t=s+1

n− t+ 1

n− s+ 2

µ
n− 1
s− 2

¶µ
t− 2
s− 2

¶
(by Induction Hypothesis)

=
1

n− s+ 2

µ
n

s− 1
¶µ

n− 1
s− 2

¶
(using (3.2) with h− 1 = n)

as required. Hence the proof of Proposition 3.4 is complete.

Proposition 3.6 Let J(n, r) =
Pn

k=r J(n, r, k). Then J(n, r) =
1

n−r+1

µ
n− 1
r − 1

¶µ
n
r

¶
.

Proof. J(n, r) =
Pn

k=r J(n, r, k)

=
nX

k=r

n− k + 1

n− r + 1

µ
n− 1
r − 1

¶µ
k − 2
r − 2

¶
(by Proposition 3.4)

=
1

n− r + 1

µ
n− 1
r − 1

¶ nX
k=r

[(n+ 1)− k]

µ
k − 2
k − r

¶

=
1

n− r + 1

µ
n− 1
r − 1

¶ n−rX
j=0

[(n+ 1− r)− j]

µ
r − 2 + j

j

¶
(with k − r = j)
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(using Lemma 3.3 with c = n+ 1− r, m = n− r and q = r − 2)

=
1

n− r + 1

µ
n− 1
r − 1

¶½
(n+ 1− r − n+ r − 1)

µ
n− r + r − 2 + 1

n− r

¶
+

µ
n− r + r − 2 + 2

n− r

¶¾
=

1

n− r + 1

µ
n− 1
r − 1

¶µ
n

n− r

¶
=

1

n− r + 1

µ
n− 1
r − 1

¶µ
n
r

¶
.

Hence we deduce that

Theorem 3.7 Let CPr(n) be as defined in (1.4). Then

|CPr(n)| = 1

n− r + 1

µ
n− 1
r − 1

¶µ
n
r

¶
+ 1.

Proof. The extra 1 added to the result in Proposition 3.6 accounts for the 0 element.

Theorem 3.8 Let C(n, r) be as defined in (1.2). Then

|C(n, r)| =
rX

t=1

1

n− t+ 1

µ
n− 1
t− 1

¶µ
n
t

¶
.

A useful corollary to Theorem 3.8 is

Corollary 3.9 (6, Theorem 3.1)

|Cn| = |C(n, n)| =
nX
t=1

1

n− t+ 1

µ
n− 1
t− 1

¶µ
n
t

¶
=
1

n

µ
2n

n− 1
¶
.

Proof. It remains to show the last equality only, which is established as follows:

nX
t=1

1

n− t+ 1

µ
n− 1
t− 1

¶µ
n
t

¶
=

nX
t=1

n!(n− 1)!
(n− t+ 1)(n− t)!(t− 1)!(n− t)!t!

=
1

n

nX
t=1

µ
n

t− 1
¶µ

n
n− t

¶
=

1

n

µ
2n

n− 1
¶
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by Lemma 3.2.

Another result of independent interest is

Proposition 3.10 Let F (n, k) =
kX

r=1

J(n, r, k). Then F (n, k) = n−k+1
n

µ
n+ k − 2
n− 1

¶
.

Proof. From Proposition 3.4, we have

F (n, k) =
kX

r=1

J(n, r, k) =
kX

r=1

n− k + 1

n− r + 1

µ
n− 1
r − 1

¶µ
k − 2
r − 2

¶

= (n− k + 1)
kX

r=1

1

n− r + 1

µ
n− 1
r − 1

¶µ
k − 2
r − 2

¶

=
(n− k + 1)

n

kX
r=1

µ
n

r − 1
¶µ

k − 2
r − 2

¶

=
(n− k + 1)

n

kX
r=1

µ
n

n− r + 1

¶µ
k − 2
r − 2

¶
=

n− k + 1

n

µ
n+ k − 2
n− 1

¶
,

by Lemma 3.2.

Corollary 3.11 |Cn| = |C(n, n)| =
nX

k=1

F (n, k) =
1

n

µ
2n

n− 1
¶
.

Proof.

|Cn| =
nX

k=1

F (n, k)

=
nX

k=1

n− k + 1

n

µ
n+ k − 2
n− 1

¶

=
1

n

n−1X
j=0

(n− j)

µ
(n− 1) + j

j

¶
(with j = k − 1)

=
1

n

·
(n− (n− 1)− 1)

µ
2n− 1
n− 1

¶
+

µ
2n

n− 1
¶¸

=
1

n

µ
2n

n− 1
¶

using Lemma 3.3, with c = n, q = n− 1 = m, to get the step before the last.
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Finally, from Lemma 2.7 we deduce that

Lemma 3.12 |E(CPr(n))| =
µ

n− 1
r − 1

¶
+ 1.

Proof. It follows from the fact that there are

µ
n− 1
r − 1

¶
L∗-classes in CPr(n) plus

the zero element.

4 Rank Properties

As in [11], the rank of a finite semigroup S is defined by

rank S = min{|A| : A ⊆ S, hAi = S}.

If S is generated by its set of idempotents E, then the idempotent rank of S is denoted

and defined by

idrank S = min{|A| : A ⊆ E, hAi = S}.

In this section we investigate the rank and idempotent rank of C(n, r) and CPr(n).

Related questions on various classes of semigroups of transformations have been con-

sidered in recent years. In particular, Howie and McFadden [11], considered the semi-

group Pr(n) (2 ≤ r ≤ n− 1) and showed that both the rank and idempotent rank are
equal to S(n, r), the Stirling number of the second kind. Garba [5] obtained analogous

results for the semigroup of order-preserving transformations. Similarly, in [18] it was

shown that both the rank and idempotent rank of DPr(n) are equal to S(n, r) as in

[11] while in Higgins [6, Section 2.1] it was shown that Cn admits a unique minimal
generating system.

The main result of this section is

Proposition 4.1 Let C(n, r) and CPr(n) be as defined in (1.2) and (1.4), respectively.

Then for 1 ≤ r ≤ n− 1,

rank C(n, r) = idrank C(n, r) = rank CPr(n) = idrank CPr(n)

=

µ
n− 1
r − 1

¶
.
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We are going to prove this proposition for C(n, r) and deduce the result for CPr(n). As

a first step towards the proof of Proposition 4.1, we establish the following lemma:

Lemma 4.2 Let � =

µ
A1 A2 · · · Ak

a1 a2 · · · ak

¶
be an idempotent element in C(n, r). Then

there exist idempotents η1, η2 in C(n, r) for which |Im η1| = |Im η2| = k+1 and � = η1η2.

Proof. Suppose that

� =

µ
A1 A2 · · · Ak

a1 a2 · · · ak

¶
is an idempotent in C(n, r). We may without loss of generality assume that 1 = a1 <

a2 < · · · < ak ≤ n and 2 ≤ k < r ≤ n. Notice also that by the convexity of the block

Ai and idempotency we have ai+1 > maxAi for all i = 1, 2, . . . , k−1. This observation
will guarantee that the mappings η1, η2 we define below are order-preserving. However,

before defining the required idempotent mappings η1, η2, we note that essentially we

can either have |Ai| ≥ 2 and |Aj| ≥ 2; or |Ai| ≥ 3 for some i, j ∈ {1, 2, . . . , k}. In the
former case we choose an element a0i 6= ai in Ai and a0j 6= aj in Aj; in the latter case

we choose two distinct elements a0i, a
00
i in Ai \ {ai}. Then in the former we define

a0iη1 = a0i, xη1 = x� (x 6= a0i)
a0jη2 = a0j, yη2 = y� (y 6= a0j)

in the latter we define

a0iη1 = a0i, xη1 = x� (x 6= a0i)
a00jη2 = a00i , yη2 = y� (y 6= a00i ).

In both cases it is clear that η1, η2 are idempotents, and η1, η2 are both decreasing and

order-preserving so that η1, η2 ∈ C(n, r).
An immediate consequence of the above lemma and Theorem 1.3 is that C(n, r) is

generated by its idempotents of height r. Thus, by Lemma 3.12 we deduce that for

1 ≤ r ≤ n− 1,
idrank C(n, r) ≤

µ
n− 1
r − 1

¶
.
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To show the reverse inequality, we show that Er, the set of idempotents of C(n, r)
of height exactly r, is a minimal generating set for C(n, r) and equivalently, for CPr(n).

We achieve this by showing that the product of an idempotent of height r and any

other element (idempotent or nonidempotent), is not an idempotent of height r. Let �

be an idempotent of height r and let η (6= �) be an arbitrary element in C(n, r). If η is
an idempotent then we have

F (η) = Im η 6= Im � = F (�)

since Im � = Im η implies � = η for any two idempotents in C(n, r). Hence by Lemma
1.1

F (�η) = F (�) ∩ F (η) ⊂ F (�)

which implies that f(�η) < r. If η is not an idempotent then f(η) < r and so f(�η) < r.

Thus, we have

idrank C(n, r) ≥
µ

n− 1
r − 1

¶
.

Moreover, by a theorem of Doyen [2], C(n, r) being J -trivial has a unique minimum
generating set which must be Er in this case. Hence the rank and idempotent rank of

C(n, r) are equal. Therefore the proof of Proposition 4.1 is complete.
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