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1 Introduction

Results concerning existence, blow up, and asymptotic behaviors of smooth, as well as
weak solutions in classical thermoelasticity have been established by several authors
over the past two decades. See in this regard [1 - 7], [9 - 14], and [18].

For the one-dimensional thermoelasticity with second sound, Tarabek [19] used
the usual energy argument and proved global existence of smooth solutions with
smooth and small initial data. He also showed that the solution decays to the rest
state however, no rate of decay has been discussed. Racke [15] lately studied the
asymptotic behavior in the one-dimensional situation and established exponential
decay results for several initial boundary value problems. In particular he showed
that, for small enough initial data, classical solutions of a certain nonlinear problem
decay exponentially to the equilibrium state. It is also worthmentionning the work
of Saouli [17], where he used the nonlinear semigroup theory to establish a local
existence of smooth solutions to a system similar to the one discussed in [15].

Concerning the multi-dimensional case (n = 2,3) Racke [16] established an exis-

tence result for the problem

uy — pAu — (p+ \)Vdivu + VO =0
0; + vdivg + ddivuy; = 0
7@ +q+rkVO=0, z€, t>0 (1.1)
U(,O) = Uy, ut(.,O) = Uy, 9(,0) = 00, (](,0) = (o, z €
u=60=0, xz€dQ,t>0,
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where  is a bounded domain of IR”, with a smooth boundary 9Q, v = u(z,t) € R"
is the displacement vector, & = 6(x, t) is the difference temperature, ¢ = ¢(x,t) € R"
is the heat flux vector, and u, A, 3,7, d, T, k are positive constants, where u, A are Lame
moduli and 7 is the relaxation time, a small parameter compared to the others. In
particular if 7 =0, (1.1) reduces to the system of classical thermoelasticity, in which
the heat flux is given by Fourier’s law instead of Cattaneo’s law. He also proved,
under the conditions rotu = rotq = 0, an exponential decay result for (1.1). This
result is extended to the radially symmetric solution, as it is only a special case.
Messaoudi [8] looked into the following semilinear problem

uy — pAu — (p+ A\)Vdivu + SV = [ulf~2u
0; + vydivg + ddivu, =0
Tq, +q+xVO=0, z€q, t>0 (1.2)
u(-,0) =ug, w(.,0)=uy, 6(.,0)=6, q(.,00=q, z€Q
u=60=0, x€0Q,t>0,

for p > 2. This is a similar problem to (1.1) with a nonlinear source term compet-
ing with the damping factor. He extended Racke’s local existence result to (1.2)
and showed that solutions with negative energy blow up in finite time. This work
generalized the one in [5 - 7] to thermoelasticity with second sound.

In this paper we are concerned (1.2). We will prove the existence of weak solutions
and show that these solutions are global if the initial data are small enough. This
paper is organized as follows : in section two we establish the local existence. In
section three the global result is proved.

2 Local Existence

In this section, we establish a local existence result for (1.2) under a suitable
condition on p. First we state an existence result for a related linear problem.

g — pAu — (pp+ \)Vdivu + gVE = f
0; + vydivg + ddivuy; = 0
T +q+kVE=0, z€, t>0 (2.1)
u(.,0) =ug, w(.,0)=wuy, 6(.,0)=6y, q(.,00=q, z€Q
u=60=0, xz€0Q,t>0.

The proof is a direct result of Theorem 2.2 of [16]. For this purpose we introduce the
following spaces

Moo= [H(Q)naQ)]" x [H()]" x Hy(Q) x D

D : ={qe[L*Q)]" /divg € L)} (2.2)
7= [m@] < [2@)]" x 2@« o)
A _OrgtaxH(u ue, 0,9) (., V)%, Ao := ] (uo, u1, 0o, 40)||% (2.3)
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Lemma 2.1. Assume that f € (CY[0,T]; L*(Q))". Then given any initial data
(ug, u1, 09, q0) € 11, the problem (2.1) has a unique strong solution satisfying

(u,uy,0,q) € C([0,T); I1) N C([0,T); H). (2.4)

Theorem 2.2. Assume that f € (C([0,T]; L?(2))". Then given any initial data
(ug, u1,00,q0) € H, the problem (2.1) has a unique weak solution satisfying

(u,uy,0,q) € C([0,T); H). (2.5)

where T is a constant depending on u, \, 3,7,0, k, T only.
Proof. We approximate wug, u1, 6o, go by sequences (uf), (ul), (08), (¢}) in CF°(Q),
and f by a sequence (f") in C' ([0, T]; C$(Q2)). We then consider the set of the

linear problems

uy, — pAu™ — (pp+ A)Vdivu" + gVer = f
0y + ydivg™ + ddivuy =0
T¢) +q" +kVO* =0, x €, t>0 (2.7)
u(,0) =ul, up(.,0)=u}, 6"(,0)=46r. ¢"(,0)=q}, z€Q
wr =0 =0, 2€dN,t>0.

Lemma 2.1 guarantees the existence of a sequence of unique solutions
(u",ul, 0", ¢") € C([0,T); 1) N C*([0,T); H).

Now we proceed to show that (u™,u}, 8", ¢") is a Cauchy sequence. For this aim, we

set
U:=u" —u™, 0:=0"-0", Q:=q"—q"

It is straightforward to see that (U, ©, Q) satisfies

Uy — pAU — (u+ \)VdivU + pVO =f ™ — f™
O, + ydivQ + ddivU; = 0
T+ Q+xkVO =0, zc€Q, t>0 (2.8)
UL,0)=U,, U(,0)=0U;, 0O(,00=0y Q.,00=Qq, =z
U=0=0, z€02.,t>0,

where
. n m . n m . Y m e m
Up == uy — uyg', Uy = u} —ul, O := 0] — 00", Qo = q5 — ¢

We multiply equations (2.8) by U, 80/ , 5vQ/(dk) respectively and integrate over
Q x (0, t) to get

p

5 [0 4+l VUP + O @ity + 510 + T 0P, 1 <
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& L1002+ nIV Ul + (4 ) diotio) + D100 + 207 0 )

+/ / (f"™ — (z,8).u(zx, s)dzds. (2.9)

Since (uf), (ut), (08), (gy) and f ™ are Cauchy we conclude from (2.9) that the se-
quence (u™,uy, 0", ¢") is Cauchy in C([0,7T); H), hence it converges to (u,v,0,q) in
C(]0,T); H). By using the appropriate test functions, we easily see that v = u,. We
now show that the limit (u,wu,#,q) is a weak solution in the sense of distribution.
That is for each (v, ¢, €) in [C(Q)]*"*" we must show that

4 [oue(z, t)v(z)dz + p fo Vu(z, t).Vo(z)dz + (u+ N) fo divudivv
=8 Jo 0z, t)divv(z)dz = [o f(z, t)o(z)dz
000 D9(a)dr 7 e, ) Vo()d — b fy (s, 1) V(s =0
o4l 0) () + fo (o 1) () — m i B, i (z)dz = 0

on [0, T]. To establish this, we multiply equation (2.7); by v and integrate over
2 x (0,t), so we obtain

Joul(z, t).v(z)ds + p ff fo Vu(2,t).Vo(z)ds + (u+ A) f§ fo divu™divy
—B [ o 0™ (x, t)dive(z)dx = [} [ f*(x,t)v(x)dx + [oui(z).v(z)ds

As n — 00, it is easy to see that

(2.10)

(2.11)

/QVun(x, t).Vu(z)dx /QVu(x, t).Vou(z)dx

%
/divu”divv — /divudwv
Q ®
/Hn(x,t)divv(x)dx — /Q(x,t)divv(x)dx
® ®

/Qf”(x,t)v(x)dx — /Qf(x,t)v(x)dx

in C([0, T]). We therefore conclude from (2.11) that [, us(x, t).v(z)dz {= lim [ u}(z,t).v(z)dz}
is a continuous function on [0, T, so (2.7); holds on [0, T']. By repeating the same
argument, (2.7)s and (2.7)3 hold on [0, T']. For the inequality (2.6), we start from the

energy inequality for (u", 0" ¢") :

5 LIl + v+ O i) + £ 10 4+ 2T g PG, ) <

1 . n . n pr "
5/9[\u1\2+u|wo\2+(A+u)(dwuo) |9 2+ 2 g 7)) de

0K
t
+/ / [z, s).uy(z, s)dzds.
0 Jo
By taking n to infinity, (2.6) is established. The uniqueness follows from the energy
inequality (2.6).
Theorem 2.3. Assume that
2(n—1)
n—2
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Then given any initial data (ug, uy, 0y, qo) € H, the problem (1.2) has a unique weak
solution

(u,uy,0,q) € C([0,T); H), (2.13)

for T small.
Proof. For M > 0 large and T > 0, we define a class of functions Z(M,T) which
consists of all functions (w, ¢, &), for which (w,wy, ¢,€) € C([0,T); H), satisfying the
initial conditions of (1.2), and

max ||(w,ws, ¢,§)(., )| < M.

o<t<T

Z(M,T) is nonempty if M is large enough. This follows from the trace theorem. We
also define the map h from Z(M,T) into C([0,T'); H) by (u, 0, q) := h(v, ¢,€), where
(u,8,q) is the unique solution of the linear problem

uy — pAu — (pp+ A\)Vdivu + SV = |y[P—2
0; + vdivg + ddivuy, = 0
T, +q+kVO=0, z€, t>0 (2.14)
u(.,0) =ug, w(.,0)=wuy, 60(.,0)=0, q(.,0)=q, z€
u=0=0, =x€0Q,t>0.

This is guaranteed by theorem 2.3 and condition (2.12), which makes |v|P~2v in C/([0,
T); L*(£2)). We would like to show that, for M sufficiently large and T sufficiently
small; h is a contraction from Z(M,T) into itself. By using the energy equality (2.6)
we get

p—1 2
a1 e 0,0) () < Doy s B, o)y + T e [P~ (), (215)

Now we estimate |||v(.,1)[P7!|]3 as follows

1oC 0P[5 < ClloC Dllonse g < CIVO( DI < Cll(v, 01, 6,6) (DI
(2.16)

where C'is the embedding constant. Therefore (2.15) and (2.16) yield

2 - 2 2p—2
s 0.) )y < Tl 1. B, 0) |y + T gm0, 6 ), DI

By choosing M large enough and T sufficiently small we arrive at

2 2.
amase (e, 0,0) (1) [ < M

hence (u,0,q) € Z(M,T). This shows that A maps Z(M,T) into itself. Next we
verify that A is a contraction. For this aim we set

U=u; — us, O =0, — 0, Q=q—q¢

and

V = v, — vs, b = ¢ — ¢o, (=& —&
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where (u1, 01, 1) = h(vi, ¢1,&) and (ug, 02, ¢2) = h(ve, P2, &) . It is straightforward
to see that (U, ©, Q) satisfies

Uy — pAU — (p+ N VdivU + fVO = v [P7%0; — |vg|P 2w
O, + ydivQ + ddivU; = 0
T +Q+xkVO =0, zcQ, t>0 (2.17)
U(z,0) =Uyz,0) =0(z,0) = Q(z,0) =0, z€&
U=0=0, z€02.,t>0,

By multiplying equations (2.17) by U, 0/4, BvQ/(0k) respectively and integrating
over Q x (0, t) we get

1
£+ VU + O i) + 210 + T IQP| (a1
2 Jo ) oK
t
< [ [ TloaP 20— feal 2] Ui, s)duds (2.18)
0 JQ
We then estimate the last term in (2.18) as follows
/Q lorP201 — JolP~20a) Uiz, 5)] de (2.19)

< ClUNRIV Jansm2) [0l o) + ool G2 )]
The Sobolev embedding and condition (2.12) give

ClIVV]l2, (2.20)
C Vol + |IVeal 572

[V 2n/(n-2)

<
o[22 + ol B2 sy] <

where C' is a constant depending on €2 only. Therefore a combination of (2.18) -
(2.20) leads to

1 2 2 e Biae L WPT A2
3 |10 oU 4 4 a0+ Sl + 27 10P (o s

< LYV ]2 [[[Voil B2 + ([ Vsl 572 (2.21)
which gives, in turn,

0125%}% ||(U Ut7 @7Q)(7t)||H < FTMp_Z Olgtag% ||(V7 V;fa (I),C)(,t)HH (222)

By choosing T' so small that TTMP~2 < 1, (2.22) shows that & is a contraction.
The contraction mapping theorem then guarantees the existence of a unique (u, 6, q)
satisfying (u,0,q) = h(u,0,q). Obviously it is a solution of (1.2). The uniqueness of
this solution follows from (2.22). The proof is completed.



3 Global Existence

In this section we show, for appropriate initial data and under condition (2.12),
that solution (2.13) is global ’ in time’. To achieve this goal, we introduce the following
functionals and class of functions.

I(t) = I((u,,q) (t)):/Q(M|Vu\2+(M+A)(dwu)2+§02+w lq |2>( t)dx

- /Q lu(z, t)|Pdz
Jit) = J((u,0,q9)(t)) = %/ﬂ (,u|Vu\2 + (1 + M) (divu)® + ?02 + %M\Z) (x,t)dx

1 p
—]—j/ﬂ|u(x,t)| da (3.1)

1
Et) = Bl(u,u,0,9) (1) = J(t) + 5w
Ho= {(w¢.0€ [H O] xL@x[LQ]" / I(weé>0}ufo}
where
Remark 3.1 By multiplying equation (1.2) by wuy, 560/5, Byq/oT respectively and
integrating over ),we get
! 0 2
E{t)y=—— <0, .2
0 =24z <o (3:2)
Lemma 2.1 Suppose that (2.12) holds. and (ug, 0y, q0) € H, u1 € [L*(Q)]" satisfying
(p—2)/2
C? 2p
= = 1, .
B P ((p_z)ME(Umul,HmQO)) <1, (3.3)

where C, is the embedding constant. Then (u,0,q) (t) € H, for each t € [0,T).
Proof. Since I(ug,0,qo) > 0 then there exists T,, < T such that I((u,0,q) (t)) >0
for all ¢t € [0,7,). This implies

J(t) = %/Q (,u|Vu\2—|— (1 + A (divu)® + ?02 + Vf q| ) (x,t)dx

1
- t pd
pfﬂlu(:c, )|Fd

_ 1’2;292 [ (mwu(uﬂ)(dm) ?e?ﬂf \)(x,t)dx (3.4)
+%I(u(t))
> pz;pQ/Q (,u\Vu|2 + (1 + ) (divu)® + ?92 + — 76 q| ) (x,t)dx,
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Vt € [0,7T,,); hence

9 2p 2p
/Q Vula, P de £ =0 (1) S =0 B0 (3.5)

By exploiting (2.12), (3.3) and (3.5), we have

3

lu@)lls < C2lIVu®)lls = C2lIVu®)lE|IVu)ll3

(p—2)/2
cr (2
< A Bntn) AT G0
< WIVu®lE Ve[0T
thus
i T
I(t) = /Q (M|Vu\2 + (1 + A (divu)® + ?02 + %m?) (z,t)dx

—/Q|u(x,t)|pdx > 0,  Vtel0,Tn).

This shows that u(t) € H,Vt € [0,7},). By repeating the procedure, T, is extended
to T

Theorem 3.2 Suppose that (2.12) holds. If (ug,0y,q0) € H and u; € [L*(Q)]"
satisfying (3.3) then the solution (2.13) is global.

Proof. It suffices to show that ||Vu(t)|[5 + [lu:(8)][3 +]|6()]|5 + [|¢(t)]|3 is bounded
independently of ¢. To achieve this we use (3.1) and (3.2) to conclude that

Blug,w) > B(t) = () + 5 [u(0)]
> 1’2;]92/9 (mw? (4 M) (divu)? + §92 + %m?) (2, £)da(3.7)
10+ 5 (0]
> 192;]92/9 (M\VW + (e + A (divu)® + ?02 + %m?) (z,t)dx
5 ll(e) [ (39

since I(u(t)) > 0. Therefore
IVu(®)[lz + [lue @13+ 110)]2 + la@)II2 < CE(uo, u1, 0o, o)

This completes the proof.
Acknowledgment The author would like to express his sincere thanks to KFUPM
for its support.
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