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B o Introduction

Alot of work has been done on the exxstence of best a.pproxlmatmn for continuous
and noneXpanmve mappmgs on Hilbert spacea, Bana.ch spaces and locally convex
‘; ;topologlcal vector spaces These results include both single and multivalued maps.
In genera.l fixed point theorems and the related techmques have been used to prove
| .the results about best apprommatlon ‘We refer to [4 6, 7, 13, 14] and references
: therem ‘

S In 1969 Ky Fan [6, Theorem 1] proved the followmg best a,pproxlmatmn result:

g THJE”(OREM A. Let C be a compact conver set in a locally convcs: Hamdorﬁ topologz‘cal ‘
| ,veciorLSpacg X. If f: C —+ X is continuous, ';then either f has afﬁa:ed' point or there
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 ‘ mee C and a"continurous semioorm ponX odch,that

S | pla— 12) = 4 o

. - d,(fx, ¢)= ‘inff{p(fw) -y:v€0)

| Thls theoreni has been of great 1mportance m‘nonhnea,r analysis, game theory and
l 'mlmmax theorems and it has been extended in vanous d:rectlons by many authors

'(e g. see [1 1] and {14]) Prolla [13] has generahzed it for a pa.lr of continuous functions

“on theksubset c of a normed space.

The purpose of this paper is to generahze Prolla’s mam result by consxdermg a
contmuous functmn and the other one bemg a contxnuous almost quasx-convex onto
functxon ona sulta.ble subset of a metnzable topologlcal vector space, using Ky Fan's
o intersection lemma [6] as a main tool. Stochastlc versions of our results are established
-.‘as well. As a mn-eeqﬁence, a Stochastic generalization of‘ the' celébroted Fan's best
apprommat:on theorem (Theorem A) follows. |
In Sectxon 3, we prove some approximation results for smgle-valued continuous
_ | qugsx-convex mappmgs ona ‘compact as well as on a noncompact subset of a metriz-

o abl’é"vtopologiical vector épace.

' - In Section 4, we present random versions of the results in Section 3. Section
;2 dea;ls "with certain technical preliminaries a}nd establishes notational conventions
’ Even though aome of the concepts are standard, they are mcluded here to facilitate

| readmg
2, Prélinﬂnaries
C LetX dendte a topologioal vector space (TVS, for short). Throughout, we assume

~ thatits tbpblogy is tacitly generated by an F-norm on it; that is, there is a real-valued
o . N 2 - ) B N



o map,say, :qk‘on‘ X sueh‘thet (i) q(z) > 0 and ¢(z) = : 0 iff z = 0; (i) gz +y) <

q(z) + q(y), (m) g(Az) < g() for all 2,y e X and for all scelars A with |A] < 1; (iv)

‘;1f q(a;,,) ——> 0 then q(/\xn) —+ 0 for all scalars ; (v) if An -0, then q()\,,x) — 0 for

f'all T € X where (An) isa sequence of scalars. The formula d(z,y) = q(a: y) defines

. ametriconX.

| - We ‘denote‘by 2%, C(X ) ‘a,nd CK (X) the fsmﬂles of all nonempty, nonempty
| closed and nonempty convex compact subsets of X

Let (Q ¥) be a me&surable spa,ce with T a cr-slgebra of subsets of Q. Let P(2)

‘ ’;be a eollectxon of subsets of a set Z. Denote by 1‘7 the set of all infinite sequences

| of posxtwe mtegers and by N, the set of all ﬁmte sequences of posmve integers. A
subset A of Z is said to be obtalned from P(Z) by Souslin operation if there is a
i map k. No - P(Z) such that A= U ﬂ (rln), where r|n denotes the first n

zeNn=1 .

o Velements of the finite sequence r € N. Note that the umon in the Souslin operation

is unoounte,ble So, if P(Z ) isa a—algebra, then A may be outside P(Z ) If P(Z) is
1closed under the Soushn operatlon, then it is called a Souslm famzly For more details

| about Soushn fam;ly we refer to Shahzad [15] and Wagner [17]

| Let T Q- 2x be a multlvalued mappmg The set

Gr(T) = {(w,z) €A x X : :v € T(w)}

,*1s called the the graph of T |
A ma.ppmg T:Q — 2X is said to be measurable (respectlvely, weakly measurable)

;f T*I(B) € T for each closed (respectively, open) subset B of X, where
T,‘I(B) ={veR: TWnB# é}.

‘ It 1s known that the measurablhty of T:0— 2" 1mpl1es the weak measurability but

: not conversely, in general.



T‘NA ﬁmappmg f: QX is said to be a .selector of a mappxng T : ﬂ 2% if
*‘f(w)"er(w) for all w € Q. Ny
o Let YZ be two metnc spa.ces A fuﬁctidn fﬂ xY =7 is‘ said to be a
| : 1’,Caratheodory functson 1f for each y € Y, T( ) is measﬁf&ble ahd»for‘ each w € Q,
(w, ') is continuous. ‘ | |
‘ Random operators with stochastic domam have been studled by Engl [5] and
kit in-jShahzad [15]. |
‘ . Followmg Engl [5] and Papa.georglou [10], we say that a ma,ppmg T:Q 2% is
i "sapamble xf there exlsts a counta.ble set D C X such that for all w €, cl(Dr‘lT(ﬂ)) |
: T(w) Fer mstance, if T haa closed convex and sohd (that m, nonempty mtenor)
e : ‘values, then T is sepamble Further, it is clear from the deﬁmtxon of separabxhty that
- T has closed values
Let F ﬂ - C(X ) be a wea.kly measurable ma.ppmg A mappmg T:Gr(F)—2¥
:lS called a multwalued random Operator with stochastlc domam F( ) if for all reX
‘_Handanch.open, {weﬂ T(w, w)nU¢¢, a:eF(w)}GE |
| | Let F Q - C(X ) be a weakly measurable ma,ppmg -A random operator T :
B ‘Gr(F) e with stocha,stlc domain F(-) is called a random contraction if T(w,") is

. a “(':dnt‘raction on ‘F(a)) for all w € Q.

For a‘ﬁnite_ subset {ml, .-y Zn} of a TVS X, we write the convez hull of {zy,...,2,}

Co{ffcl, xn} {Zaimt 0 < a; <1, Zaz = 1}

i=1

e We sh;ll i;eéd the followmg result known as Ky Fan’s intersection lemma [6].

R THEOREM B Let C be a sub.set ofa TVS X and F : C’ — 2% a closed-valued map
i such that Co(xl, ,xn) c UF(z, for each ﬁmte subset {wl, ,zn} of c. If F(xo)

=l



’ylzyifor at leaat one xo in C then n F(x
S s€C

i mm C ([9] Theorem 1) Let Let C' be a nonempty corwea: subset of a Hauadorﬁ
SX andACC’szuchthat | :

".‘(a) for each ze c the set fy € C: ( V) € A} is closed inC;
= 11.;::'(b) for each y € C tke set {:1; € C (z, y)é A} w conves or qmpiy;,
e (C) (m,x) e A fDT each z € C

: jffi'(d) C has a nonempty compact convez subset Xo auch that the set B = {y eC:
(x, y) e A for all z€ Xo} is compact

i Then there e.mta a pomt w0 € B such that C X {yo} C A
Let X be [ metm*ablc TVS with a metmc d on it, C a conves subset of X and
L _g C’ -+ Ca cantinuaua map. Then gis smd to be (cf. [12/)

(s) almost gﬁne if

(g(ml +(1-r)aa),y) < rd(gan,s) + (1 = r)d(gz,),

(i) aimost quasi-convez if
d(g(ra + (1= r)za), v) < max{d(gm, ), dlozn )},
3. wheﬂe 2?1,332 e C ye X and 0<r< 1.

It 18 easy to see that (i) u:nplias (n) but not conversely, in genera.l (see also [16] for

S ‘,,J“'related concepts) A randam opera,tor I Q xC - b'¢ is contmuuus (almost affine,

o axmast quasx-convex) if for each w € Q, the map f (w, ) O — X is so.

o A;,mmm in Metrisable Topological Vector Spaces



We begm thh the followmg theorem whlch generahzes the mam result of Prolla

13] to a wider class of functlons deﬁned on a subset of a metrlzable TVS with its

: J Fproof based on Ky Fen’ s intersection lemma. (Theorem B). This result also extends

Theorem 1 of Carbone [4] and partmlly Theorem 2.1 in [11] (see also [12})

L THEOREM 3 1 Let C’ be a nonempty compact convez subset of a metmzable TVS X

and g C - C’ a cantmuoua almost quass-convew anto Sfunction. If f: C—oXisa
‘i'contmuous function, then there eists y € C .such that d(gy, fy) = d(fy,0).
‘ ."Proaf. For each z € C, define

F(z) #'{yv € C:dlgy, fy) < d(gz, v}

"Smce f and g are contmuous therefore for each 2 €C, F(z)isa closed set and hence

| a compact aubset of C.

. ”Let {xl, el ,a:,,} be a finite subset of C. Then, C’o(xl, " .,xn) C UF(:m). If this
Sy B S z—l ;
’is not the case, then there is some u in Co(zy, .. ,x,.,) such that u ¢ UF(m, Now

i=1

. n .. 5 . , n »
.= ) oyz;, where o; > 0and Y o = land asu ¢ UF(a;.—), so d(gzs, fu) <
e | = =
. d(gu, fu) for all ¢ =1,2,...,n. Since g is almost quasi-convex‘, therefore

d(gu, fu) = ( (Z a.x,) fu) < maxd(gw,, fu) < d(gu, fu)

i=1

: which isimposéible Then, by Theorem A, ﬂ F(x) # ¢ and hence there is y €
‘ zeC g :

N F(a:) 50 that, for all z € C,

: z€C ‘

_ Sincegis onto, we get d(gy, fy) < d(z, fy) for all z € C and hence d(gy, f4) = d(3,C). w

e ‘The compaCtness of C in Theorem 3.1 can be replaced by a weaker condition to
| | 6



. Aobtam the following generahzatlon of Theorem 2 of Carbone [4]

| fv-'““"i.:»TKEOREM 3 2. Let Cbea nonempty conve:c subset of a metrizable TVS X and '

~ g C’ —+ C a cantmuou.s almost quasz-convex onto functwn .S'uppoae f: C —+Xisa

S ,contmuous functwn If c has a nonempty compact convex subset B such that the set

D {y €eC: d(fy, gy) < d(fy, gw) for all z€ B}

is compact then there ea:wta an element y € D such that d(fy, gy) = d(fy, C)

 Proof Let A= {(a: y) € C xC: d(fy, o) < d(fy, gm)} Obviously, (z,) € A for

L \“‘all z € C. By the contmulty of f and g, the set {y E C: (:r, y) € A} is closed in C

‘forea.cha:GC The set

K {:r €C: (w, y) ¢ A} = {x €C: d(fy,yy) > d(fu, 9)}

L IB 6oﬁvex. Indeed, suppose ml,xz € K. Then d(gz;, fy) < d(fy,gy) and d(gz2, fy) <

it = d(fy, gy) Since g is almost quasi-convex, we have for 0 < A < 1,

Cd(g(Azy + (1= A)z2), fy) < max{d(gzs, fy), d(9z2, fy)}
e d(fy, gv)-
_Thls 1mphes that )\wl + (1- A)xz € K.
By Theorem C, there exxsts yeD such that C x {y} C A That i is, d(fy, gy) <
| d(fy, gz) forall z€C. As g is onto, so d(fy, gy) = d(fy,C) forsome y € B. m
- REMARKS 3.3 (i) If we consider f : C — C in Theorems 3.1 and 3.2, then y becomes
 $ ia. comcxdence pomt of f and g (that is, fy = gy)
(u) All the results obtamed so far trivially hold When Xisa Fréchet space.

4 | Random Approximation



In thls sectxon we estabhsh the random versmns of Theorems 3.1 and 3 2 whlch

S }4"“?“”‘111 turn exteﬂd Theorem 5 of [3] and Theorem 5 of [15] to the general framework of

' ,fi"""metrlzable topologlca.l vector spaces.

“ T‘HE‘OREMA.’L Let C be’a compact and convez subset of a complete metrizable TVS

X ahd g: Q‘ xC—Ca continuous almost quasi-conveg and onto rendom operator.

: If T Q x C’ —+Xisa continuous random operator, then there ezrists a measurable

map E Q - C satzsfmng

d(g(w, E(w)) T, f(w))) ——d(T(w £w)),C)

, for,eachw € Q.Vo
B Proof Let F': Q - 20 be defined by |
Fw)={seC: : d(g(w, 2), Tw, 7)) = d(T(w, 2),0)}.

iBy Theorem 31, F(w) # ¢ for all weE Q Also, F(w) is compact for each w €N Let
‘, G be a closed subset of C. Put

(e ]

£6) = U {w €2 dlg(w,2), T(w,2)) < d(T(w,2),C) + -},

_ ~ n=lzeDn

where D -—-{:c eD: d(‘w,G) < %}

- Note ‘that the functions p : Q x C'} —+ R* and ¢ : @ x C — R* defined by
p(w,x) éyd(g(w,‘x),T(w,x)’.) and g(w,z) = d(T'(w,),C) are measurable in w and

‘ ‘c‘o'nti'nuouys‘ in z (see [15, Theorem 5]). Following arguments similar to those in the

S proof of Theorem 5 of [3], we can show that F' is measurable. Applying a selection

; theorem due to Kuratowsk1 and Nardzewski [8] we get a measurable map£:Q—-C
o “such that 5 (w) € F(w) for all w € Q. The result now follows from the definition of -
£ (w)

‘,DEF,IN,ITIQN 4.2. Let (X,d;) and (Y, d;) be twometric spaces. The pair of metric



spaces (X Y) is said to have the Kirzbraun property or property (K) according to

o Shahzad [15] if for all choices z; € X, y; € Yand % > 0,i € I (I an arbltrary

mdex set) snch that the intersection of the balls B(y,,'y,) in X is nonempty and

A ; d,(y,, yj) < dl(:m, i), 6] € I, then the intersection of the balls B(y,, fy,) in Y is also

t : nonempty

' 'We need the following result of Shahzad [15, Theorem 1].

. THEOREM 4.3. Let (Q,X) be a measurable space with Ya Souslin family. Let X and
- Y be .s'epdrabley'completye metric spaces such that thyel pair (X, Y) has property (K) and

- F: Q "-+~k2x a separable weakly measurable function. Then every random contraction

- f /:‘Gyr(Fv)‘--) Y 'with stochastic domain F(-). can be extended to a random contraction

 defined on Q2 x X,

s 'REMARK 4.4. The conclusion of Lemma 6 of Engl [5] remains valid for separable

i c@mplete metric spaces (cf. [15], p. 442).

. THEGREM 4.5. Let (Q,X) be a measurable space with T a Souslin family and X a

e separab‘le complete metrizable TVS. Assume that F:Q — 2% is a separable weakly

“measurable convez-valued multifunction and f : Gr(F) = X is a random contraction
: fwit'h stochastic domain F(-). If g: Gr(F) > X is a continuous almost quasi-convex

onto random opémtor with stochastic domain F(-) such that g(w,z) € F(w) for all

i (w a:)e G’r(F) - Suppose that Gy: Q2> CK(X) isa measurable multzfunctwn wzth

(w) C F(w) for all w € Q) such that for a weakly measumble multzfunctzon D,

D(w) {1/ €F (w) : d(f (w,y),g(w,y)) < d(f(w, y), 9(w, z)) for all z € Go(w)}

i s campact for each w € Q. If the pair (X, X) has property (K), then there ezxists a

méasumble map & : Q — X such that for all w €Q, £(w) € D(w) and

A1), @), 9(0,6@)) = d(F(,6W), FW).
| Ao



Pmef By Theorem 4 3, wegeta random contra,ctlon f QxX — X Let H:Q—2X

P f:fbe deﬁned by

H(w) {xeD() d(g(w, =), f(w,3)) = d(f(w z), F(w»}

;,‘ByTheoremM H(w)aécﬁforeachweo Deﬁnemapshk QxX—+R+ by
(“" w) = d(f(w, 3‘) F(w)) and Ic(w z) = d(f (w z), 9(w, w)) Obvmusly h is con-

. tmuous and by [5, Lemma, 6], h is measurabie inw (see Remark 4.4), so h(:,") is

o a Caratheodery functxon Slmllarly k(-,-) is elso a Caratheodory functlon By the

g contmuity of functlons mvolved H (w) is closed for eech we€ Q.

Deﬁne ¢(w, a:) h(w x) ( ). Cleerly, é(-,-) is jointly measurable. Observe
that | | |
| Gr(H) Gr(F) N{w,z) €Qx X : ¢(w z) = 0} € T x B(X).

L :Smce 2 1s a Souslm family, therefore by [17, Theorem 4.2), H(") is weakly measur-

i 5 able By the selectlon theorem in [8], H(: ) has a measurable selector £ : @ — X.
Tl Consequently, £(w) E,D(w) and |

4(f (@, £()), 9w, §W))) = d(f(w, {W)), F())
B fcieach’w cQm
An 1mmed1ete consequence of the above theorem when the underlymg domain of
' the meps f and g isnot verymg stochastxcally is presented below, our result generalizes
| Co:ollery_2 in [2_] to metrizable TVS.
“ COROLLARY46 Let (Q, ¥) and X be as in Theorem 4.5 and C a nonempty conver
- ;,‘eebset bf X. Assume that f : QxC — X is a random contraction and g:QxC—~C
; w a eoﬁtihﬁoes almost quasi-conver onto random operator. Let Xo be a nonempty

10



' eo mct c‘onveé: .‘Jubsét of C and K be a nonempty compact subset of C. If for each

e y € C\ K there e.mm z€ Xo such that

d(y(w 2?) @, y)) < d(g(w,y) flw, ¥));
jt'heﬁ there eq,#ists a measurable mapping & : 2 — K satisfying

oo, €, S0, 6w)) = 0, 6),0)
frasuen. * ’

- REMARK 4.7. Theorem 4. 5 extends Corollary 3.3 [1], Theorem 1 [2], Theorem 5 [3],
' Theorem 4 [10] and Theorem 5 [15] to the general framework of metrizable topological

'ff'vector spaces
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