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A Generalization of Fermat’s Last Theorem

A. Laradji

The aim of this paper is to initiate a study of those complex numbers u such that

xu + yu = zu is solvable in positive integers x, y, z. Our first step is to prove the

following generalization of Fermat’s Last Theorem.

Proposition 1. Let u =
m

n
+ is ∈ Q + i (A ∩R) where m and n are coprime

integers with n > 0 and A is the set of algebraic numbers. Then the equation

xu + yu = zu, is solvable in positive integers x, y, z if and only if s = 0, m = ±1
or ±2. Moreover, if m > 0 then x = dαn, y = dβn, z = dγn, where α, β, γ are

positive integers with gcd(α, β) = 1 and αm + βm = γm; and if m < 0 then

x = dβnγn, y = dαnγn, z = dαnβn for some positive integers d, α, β, γ such that

gcd(α, β) = 1 and α−m + β−m = γ−m.

In the second part of this note we address the following analytic problem (P).

Given any positive real numbers r and ε, does there exist a real number s with

|s− r| < ε for which as + bs = cs is solvable in positive integers a, b, c?

Let us first recall some basic definitions. Any root of a nonzero polynomial with

integer (or rational) coefficients is called an algebraic number, and the set A of all
such roots is a subfield of C. Complex numbers that are not algebraic are called
transcendental. A is an algebraically closed field, that is, all the roots of any nonzero
polynomial with coefficients in A are algebraic. If t ∈ A then there is a unique

monic polynomial of least positive degree over Q for which t is a root. Such a

polynomial is called the minimal polynomial of t over Q. Note that every non-
constant polynomial over Q can be expressed as a product of linear factors over A.
We say that the complex numbers z1, . . . , zn are Q-linearly independent if, whenever
q1, . . . , qn are rational numbers for which the linear combination

Pn
j=1 qjzj is 0, then

each qj = 0. Throughout, when x is a positive real number and y ∈ C, xy = ey log x,

in the sense of principal values, and for any set {a1, a2, . . . , an} of nonzero integers,
gcd(a1, a2, . . . , an) is simply denoted (a1, a2, . . . , an).
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For completeness, we include two theorems needed for the proof of Proposition 1.

The first one follows, of course, from Fermat’s Last Theorem proved by A. Wiles.

The second, which provides a solution to Hilbert’s seventh problem1, was proved by

Gelfond and Schneider, independently, in 1934. (See [1], for example.)

Theorem 2. Let m ∈ Z. Then the equation am + bm = cm is solvable in positive

integers a, b, c if and only if m = ±1 or ±2.

Theorem 3. If α1, . . . , αk ∈ A\{0, 1} and β1, . . . , βk ∈ A are such that 1, β1, . . . , βk
are Q-linearly independent, then α

β1
1 . . . α

βk
k is transcendental.

To prove Proposition 1, we first establish a few lemmas. The first is straightforward,

but we include it for easy reference.

Lemma 4. The positive integers a, b,m, n satisfy am = bn if and only if there exists

r ∈ N such that a = rn/(m,n) and b = rm/(m,n).

Proof. ‘If’ is clear. Next, let m = dµ, n = dν with (µ, ν) = 1. Then am =

bn implies aµ = bν , so that if a =
Y
1≤j≤t

q
aj
j and b =

Y
1≤j≤t

q
bj
j are prime power

decompositions with aj, bj ∈ N, then µaj = νbj (1 ≤ j ≤ t). Since µ, ν are coprime,

each aj is divisible by ν and there exist τ j in N such that aj = τ jν, bj = τ jµ.

Therefore, for some r ∈ N, a = rn/(m,n) and b = rm/(m,n).¤

The following lemmas say more than we need for the proof of Proposition 1, but

appear to be of independent interest.

Lemma 5. Let x, y ∈ A ∩R+, r, s ∈ A ∩R be such that xiryis ∈ A; then xrys = 1.

Proof. If x = y = 1 or r = s = 0 then there is nothing to prove. We therefore

assume that at least one of x, y is not equal to 1 and that not both r and s are

zero. By Theorem 3, 1, ir, is are Q-linearly dependent, and so there exist α, β, γ
in Q, not all zero, such that α + (βr + γs)i = 0, i.e. α = βr + γs = 0. Thus for

some integers m,n, not both zero, mr + ns = 0. If s = 0 then xir ∈ A and so, by
Theorem 3 again, x = 1 (since ir ∈ A\Q) which means that xrys = 1. If s 6= 0

1An early version of this problem was already raised by Euler
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then (xrys)im = xirmyism = x−isnyism = (x−nym)is ∈ A, and since x−nym ∈ A and
is ∈ A\Q, we get x−nym = 1. Thus (xrys)m = (x−nym)s = 1 and xrys = 1.¤

Lemma 6. Suppose that Axir +Byis = Czit where x, y, z ∈ A∩R+, r, s, t ∈ A∩R
and A,B,C are real numbers such that

A2 +B2 − C2

AB
∈ A. Then

(i) xr = ys and A+B = C,

(ii) either C = 0 or xr = ys = zt,

(iii) if x and y are coprime positive integers then xr = ys = zt = 1.

Proof. Put α = r log x, β = s log y, γ = t log z, so that Axir + Byis = Czit can be

written as A cosα+B cosβ = C cos γ and A sinα+B sinβ = C sin γ. Squaring both

sides of these last equations and adding gives cos(α−β) =
C2 −A2 −B2

2AB
∈ A. Put

τ = xiry−is, then τ = e(α−β)i and τ 2 − 2 cos(α − β)τ + 1 = 0 so that τ ∈ A. By
Lemma 5, xr = ys and (A+B)xir = Czit. Suppose that A+B 6= C, then C 6= 0 and
e(γ−α)i = x−irzit =

A+B

C
∈ R, which implies that x−irzit = A+B

C
= −1 ∈ A. By

Lemma 5 again xr = zt, and hence (A+B−C)xir = 0, a contradiction. This proves
(i). We now have Cxir = Czit, so that when C 6= 0 xirz−it = 1 which implies that
xr = zt, and (ii) follows. Assume that x, y are coprime integers greater than 1, then,

by Theorem 3 and since xry−s = 1 ∈ A, 1, r, s areQ-linearly dependent, i.e. there are
integersm,n, p not all zero such thatm+nr+ps = 0.Hence 1 = xpry−ps = (xpyn)rym

which implies that (xpyn)r ∈ A. If xpyn 6= 1, then r and therefore s is rational, and

this happens only if r = s = 0 as x, y are coprime and positive. If xpyn = 1 then

ym = 1 and either y = 1 and (iii) holds, orm = 0 and at least one of n, p is nonzero,

which implies, again as x, y are coprime and positive, that x = 1 or y = 1. So, in all

cases, (iii) follows.¤

Lemma 7. Suppose that Ax
1
m + By

1
n = z

1
p , where A,B are nonzero rational

numbers and m,n, p ∈ N, is solvable in positive integers x, y, z. Then there exist

positive integers a, b, β such that (a, b) = 1, x = bmβ
m

(m,n,p) , y = anβ
n

(m,n,p) , z =

(Ab+Ba)p β
p

(m,n,p) . In particular, x
1
m , y

1
n , z

1
p ∈ N when (x, y) = 1 or (m,n, p) = 1.

Proof. Let t =
x

1
m

y
1
n

, v = tmn and w =

µ
t+

B

A

¶pn

, so that v and w are both ra-

tional numbers. Clearly t is a zero of the polynomials Xmn − v and
µ
X +

B

A

¶pn

−
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w. We have, over A, Xmn − v =
Q

0≤j≤mn−1
(X − εjt), and

µ
X +

B

A

¶pn

− w =Q
0≤h≤pn−1

µ
X +

B

A
− ε0h

µ
t+

B

A

¶¶
, where the εj = e

2πij
mn are the mn-th roots of

unity and the ε0h = e
2πih
pn are the pn-roots of unity. The minimal polynomial of t over

Q is
Q

0≤k≤d−1
(X − εjkt) for some subset {jk : 0 ≤ k ≤ d− 1} of {0, 1, . . . ,mn− 1} ,

and is also
Q

0≤k≤d−1

µ
X +

B

A
− ε0hk

µ
t+

B

A

¶¶
for some subset {hk : 0 ≤ k ≤ d− 1}

of {0, 1, . . . , pn− 1} . We claim that t ∈ Q. Assume to the contrary that t /∈ Q.
Then, by the uniqueness of minimal polynomials and of factorization in A[X],

X−εµt = X+
B

A
−ε0ν

µ
t+

B

A

¶
for some µ and ν such that 1 ≤ µ < mn, 0 ≤ ν < pn.

This implies t
³
e
2πiν
pn − e

2πiµ
mn

´
=

B

A

³
1− e

2πiν
pn

´
. Using the identity e2πif − e2πig =

2ieπi(f+g) sinπ(f − g), we obtain te
2πiµ
mn sinπ

µ
ν

pn
− µ

mn

¶
= −B

A
sin

πν

pn
. Now t 6= 0,

so that sinπ
µ

ν

pn
− µ

mn

¶
. sin

πµ

mn
= 0, and since B 6= 0 and 1 ≤ µ ≤ mn, we get

sin
πν

pn
= 0. Thus pn | ν, i.e. ν = 0, as 0 ≤ ν < pn. But this means sin

πµ

mn
= 0,which

is impossible. Hence t =
x

1
m

y
1
n

∈ Q and there exist coprime positive integers a, b such
that ax

1
m = by

1
n , i.e. amnxn = bmnym. Since a and b are coprime, there exist c, d in

N such that x = bmc and y = and. This implies that cn = dm, so that by Lemma

4, c = αµ0 and d = αν0 for some α, µ0, ν 0 ∈ N with (µ0, ν 0) = 1. Hence x
1
m = bα

1
δ

and y
1
n = aα

1
δ . This gives (Ab+Ba)p α

p
δ = z, i.e. α

p
δ ∈ Q. This implies that for

some coprime positive integers u, v we have vα
p
δ = u, from which we get v = 1 and

α
p
δ = l for some l ∈ N. Hence αp = lδ and by Lemma 4, there exists β ∈ N such that

α = β
δ

(m,n,p) and l = β
p

(m,n,p) . We then obtain that x
1
m = bβ

1
(m,n,p) , y

1
n = aβ

1
(m,n,p) ,

z
1
p = (Ab+Ba)β

1
(m,n,p) . Clearly β

min(m,n)
(m,n,p) divides both x and y, so if (x, y) = 1 then

β = 1, and x
1
m , y

1
n ∈ N. In this case z 1

p = (Ab+Ba) ∈ Q, so that, since z ∈ N,
z
1
p ∈ N as well. The case when (m,n, p) = 1 is straightforward.¤

The following lemma is somewhat related to Beal’s Conjecture and the Fermat-

Catalan’s Conjecture. (See [4] and the remarkable paper of Darmon and Granville

[3].)
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Lemma 8. Consider the equation αx
h
k
+ir+βy

l
m
+is = z

n
p
+it, where α, β ∈ Q, r, s, t ∈

A ∩ R, and where h

k
,
l

m
,
n

p
are positive rational numbers in their lowest terms. If

this equation is solvable in positive integers x, y, z with (x, y) = 1, then x is a k-th

power, y is an m-th power, z is a p-th power and xr = ys = zt = 1.

Proof. Write the equation as Axir+Byis = Czit where A = αx
h
k , B = βy

l
m , C = z

n
p .

Clearly A,B,C ∈ A ∩ R and C 6= 0, so that, by Lemma 6, xr = ys = zt = 1, and

α
¡
xh
¢1/k

+ β
¡
yl
¢1/m

= (zn)1/p . This, by Lemma 7, implies xh = ρk, yl = σm,

zn = τ p for some positive integers ρ, σ, τ . Since h and k are coprime, x is a k-th

power by Lemma 4. Similarly y and z are m-th and p-th powers respectively.¤

Proof of Proposition 1. ‘If’ is clear. Next, we have Axis + Byis = Czis, where

A = x
m
n , B = y

m
n , C = z

m
n 6= 0. By Lemma 6, xs = ys = zs and (xm)1/n + (ym)1/n =

(zm)1/n. If s 6= 0 then x = y = z, contradicting that xu + yu = zu. Hence s = 0.

Assume first that m ≥ 1. By Lemma 4, there are positive integers a, b, c such that
(a, b) = 1, xm = bnc, ym = anc, zm = (a+ b)nc. Thus xman = ymbn, and if x = du,

y = dv where d, u, v ∈ N and (u, v) = 1, then uman = vmbn, i.e. um = bn and

vm = an. By Lemma 4, and since (m,n) = 1, there exist α, β ∈ N such that

a = αm, v = αn, b = βm, u = βn. This means (α, β) = 1, c = dm, x = dβn, and

y = dαn, so that zm = dm(αm+βm)n, i.e.
³z
d

´m
= (αm+βm)n. As before, we obtain

that for some positive integer γ, z = dγn and αm+βm = γm. By Theorem 2, m = 1

or 2. Suppose now that µ = −m ≥ 1. The equation (xm)1/n+(ym)1/n = (zm)1/n can
be written (xz)µ/n+ (yz)µ/n = (xy)µ/n, so that by the first part of this proof, µ = 1

or 2, xz = dβn, yz = dαn, xy = dγn, for some positive integers α, β, γ satisfying

(α, β) = 1, αµ + βµ = γµ. Thus (α, γ) = 1 and we have
x

z
=
³γ
α

´n
which implies

αn | z. Similarly βn | z, and therefore there exists t ∈ N such that z = tαnβn, and

so x = tβnγn, y = tαnγn.¤

Having disposed of the case of rational exponents in Fermat’s Theorem, we next turn

to the case when the exponents are irrational real numbers. Let a, b, c be positive

integers with a, b < c. Then there exists a unique positive real number r such that

ar + br = cr. To see this, let f(x) = αx + βx − 1, where α = a

c
, β =

b

c
∈ (0, 1).
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Since f(0) = 1 and limx→∞ f(x) = −1, the existence of r is guaranteed by the
intermediate value theorem. The uniqueness of r follows from the fact that f is

strictly decreasing as f 0(x) = αx lnα + βx log β < 0. On the other hand, consider

problem (P) mentioned above. The answer to it is yes, and in fact we have the

stronger

Proposition 9. For any positive integer n, and any positive real numbers r and

ε, there exist infinitely many primes p, q and infinitely many real numbers s with

|s− r| < ε such that pns + pns = 2pns = qns. Such s are necessarily transcendental.

To prove Proposition 9, we use the following results.

Theorem 10 (Euclid). There are infinitely many primes.

Theorem 11 (see [2]). There exists a real number x0 such that for all x ≥ x0, there

is at least one prime p between x− x0.525 and x.

Lemma 12. For any positive real numbers α, β such that α < β there exist infinitely

many pairs of primes p, q such that α <
p

q
< β.

Proof. Let θ = 0.525, γ =
α+ β

2
. For any prime q > max

Ã γ
θ

γ − α

! 1
1−θ

,
x0
γ

 (such
q exists by Theorem 10), we have x0 < qγ and qα < qγ−(qγ)θ , so that, by Theorem
11, there is a prime p with qα < p ≤ qγ < qβ. Hence α <

p

q
< β. Applying the same

argument again with the pair α and
p

q
yields primes p1, q1 satisfying α <

p1
q1

<
p

q
< β.

Continuing in this way, we obtain an infinite sequence of pairs of primes (pn, qn)

satisfying the required inequalities.¤

Proof of Proposition 9. We may obviously assume that ε < r. By Lemma 12, there

are infinitely many primes p, q such that 2
1

n(r+ε) <
p

q
< 2

1
n(r−ε) , and clearly p 6= q

since 2
1

n(r+ε) > 1. For each such pair (p, q) let f(x) = 2
1
nx q − p. Then f(r − ε) > 0

and f(r+ ε) < 0, so that for some s with |s− r| < ε, and depending on p and q, we

have f(s) = 0, i.e. 2pns = qns. The real number s must be transcendental. For if it

were algebraic and not rational, we would have
µ
q

p

¶ns

= 2 ∈ Q, contradicting the

6



Gelfond-Schneider Theorem; and if it were rational, s =
h

k
say, then 2kpnh = qnh,

which is impossible since p and q are distinct primes.¤

Proposition 9 implies that, although the equation xr + yr = zr is not solvable in N
for any given odd prime r, there exists a sequence (sn) of transcendental numbers

converging to r, such that xsn + ysn = zsn has prime power solutions.

In view of Proposition 1 and the preceding statement, it is fitting to end this note

with the following problems.

1. If r is an algebraic real number that is not rational, do there exist positive integers

x, y, z such that xr + yr = zr?

2. If r is a transcendental real number, do there exist positive integers x, y, z such

that xir + yir = zir?
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