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Abstract

The problem of finding the closest positive semidefinite Hankel ma-
trix to a given data covariance matrix, computed from a data sequence
is considered. It will be solved using the modified alternating projection
method. New reformulations of the problem will be proposed in the form
of a semidefinite programming problem and then in the form of a mixed
semidefinite and second-order cone optimization problem.
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1 Introduction

In some application areas, such as digital signal processing and control theory,
it is required to compute the closest, in some sense, positive semidefinite Hankel
matrix, with no restriction on its rank, to a given data covariance matrix, com-
puted from a data sequence. This problem was studied by Macinnes [16]. Similar
problems involving structured covariance estimation were discussed in [13, 11, 22].
Related problems occur in many engineering and statistics applications [8].

The problem was formulated as a nonlinear minimization problem with pos-
itive semidefinite Hankel matrix as constraints in [2] and then was solved by l2
Sequential Quadratic Programming (l2SQP) method. Another approach to deal
with this problem was to solve it as a smooth unconstrained minimization prob-
lem [1]. Other methods to solve this problem or similar problems can be found
in [16, 11, 13].

Our work is mainly casting the problem: first as a semidefinite programming
problem and second as a mixed semidefinite and second-order cone optimization
problem. A semidefinite programming (SDP) problem is to minimize a linear
objective function subject to constraints over the cone of positive semidefinite
matrices. It is a relatively new field of mathematical programming, and most of
the papers on SDP were written in 1990s, although its roots can be traced back
to a few decades earlier (see Bellman and Fan [6]). SDP problems are of great
interest due to many reasons , e.g., SDP contains important classes of problems
as special cases, such as linear and quadratic programming. Applications of SDP
exist in combinatorial optimization, approximation theory, system and control
theory, and mechanical and electrical engineering. SDP problems can be solved
very efficiently in polynomial time by interior point algorithms [26, 28, 9, 5, 18].

The constraints in a mixed semidefinite and second-order cone optimization
problem are constraints over the positive semidefinite and the second-order cones.
Although the second-order cone constraints can be seen as positive semidefinite
constraints, recent research has shown that it is more effecient to deal with mixed
problems rather than the semidefinite programming problem. Nestrov et. al. [18]
can be considered as the first paper to deal with mixed semidefinite and second-
order cone optimization problems. However, the area was really brought to life
by Alizadeh et al. [4] with the introduction of SDPPack, a software package
for solving optimization problems from this class. The practical importance of
second-order programming was demonstrated by Lobo et al. [15] and many sub-
sequent papers. The interior point methods were recently extended to deal with
mixed problems [20]. One class of these interior point methods is the primal-dual
path-following methods. These methods are considered the most successful in-
terior point algorithms for linear programming. Their extension from linear to
semidefinite and then mixed problems has followed the same trends. One of the
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most successful implementation of primal-dual path-following methods is in the
software SDPT3 by Toh et al. [25, 23].

Similar problems, such as the problem of minimizing the spectral norm of a
matrix was first formulated as a semidefinite programming problem in [26, 24].
Then, these problems and some others were formulated as a mixed semidefinite
and second-order cone optimization problems [15, 3, 21]. None of these formula-
tions exploited the special structure our problem has.

Before we go any further, we should introduce some notations. Throughout
this paper, we will denote the set of all n×n real symmetric matrices by Sn, the
cone of the n × n real symmetric positive semidefinite matrices by S+

n and the
second-order cone of dimension k by Qk, and is defined as

Qk = {x ∈ IRk : ‖x2:k‖2 ≤ x1},

(also called Lorentz cone, ice cream cone or quadratic cone), where ‖.‖2 stands

for the Euclidean distance norm defined as ‖x‖2 =
√∑n

i=1 x2
i , ∀x ∈ IRn. The set

of all n × n real Hankel matrices will be denoted by Hn. An n × n real Hankel
matrix H has the following structure:

H =


h1 h2 · · · hn

h2 h3 · · · hn+1
...

...
. . .

...
hn hn+1 · · · h2n−1

 .

It is clear that Hn ⊂ Sn. The Frobenius norm is defined on Sn as follows:

‖U‖F =
√

U • U = ‖vecT (U)vec(U)‖2, ∀ U ∈ Sn (1.1)

Here U • U = trace(U · U) =
∑n

i,j U2
i,j and vec(U) stands for the vectorization

operator found by stacking the columns of U together. The symbols � and ≥Q

will be used to denote the partial orders induced by S+
n and Qk on Sn and IRk,

respectively. That is,

U � V ⇔ U − V ∈ S+
n , ∀ U, V ∈ Sn

and
u ≥Q v ⇔ u− v ∈ Qk, ∀ u, v ∈ IRk.

The statement x ≥ 0 for a vector x ∈ IRn means that each component of x is
nonnegative. We use I and 0 for the identity and zero matrices. The dimensions
of these matrices can be discerned from the context.
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Our problem in mathematical notation can, now, be formulated as follows:
Given a data matrix F ∈ IRn×n, find the nearest positive semidefinite Hankel
matrix H to F such that ‖F − H‖F is minimal. Thus, we have the following
optimization problem:

minimize ‖F −H‖F

subject to H ∈ Hn,

H � 0.

(1.2)

It is worth describing the alternating projection method briefly; since this
method is the most accurate, and converges to the optimal solution globally.
However, the rate of convergence is slow. That makes it a good tool to provide
us with accurate solutions against which we can compare the results obtained by
the interior point methods. For these reason we devote Section 2 to the projection
method. A brief description of semidefinite and second-order cone optimization
problems along with reformulations of problem (1.2) in the form of the respective
class will be given in Sections 3 and 4, respectively.

2 The projection Method

The method of successive cyclic projections onto closed subspaces Ci’s was first
proposed by von Neumann [19] and independently by Wiener [27]. They showed
that if, for example, C1 and C2 are subspaces and D is a given point, then the
nearest point to D in C1 ∩ C2 could be obtained by the following algorithm:

Alternating Projection Algorithm
Let X1 = D
for k = 1, 2, 3, . . .

Xk+1 = P1(P2(Xk)).
Xk converges to the near point to D in C1∩C2, where P1 and P2 are the orthog-

onal projections on C1 and C2, respectively. Dykstra [10] and Boyle and Dykstra
[7] modified von Neumann’s algorithm to handle the situation when C1 and C2

are replaced by convex sets. Other proofs and connections to duality along with
applications were given in Han [14]. These modifications were applied in [12] to
find the nearest Euclidean distance matrix to a given data matrix. The modified
Neumann’s algorithm when applied to (1.2) yields the following algorithm, called
the Modified Alternating Projection Algorithm: Given a data matrix F , we have:

Let F1 = F
for j = 1, 2, 3, . . .

Fj+1 = Fj + [PS(PH(Fj))− PH(Fj)]
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Then {PH(Fj)} and PS(PH(Fj)) converge in Frobenius norm to the solution.
Here, PH(F ) is the orthogonal projection onto the subspace of Hankel matrices
Hn. It is simply setting each antidiagonal to be the average of the correspond-
ing antidiagonal of F . PS(F ) is the projection of F onto the convex cone of
positive semidefinite symmetric matrices. One finds PS(F ) by finding a spectral
decomposition of F and setting the negative eigenvalues to zero.

3 Semidefinite Programming Approach

The semidefinite programming (SDP) problem in primal standard form is:

(P ) min
X

C •X

s. t. Ai •X = bi, i = 1, · · · , m

X � 0,

(3.1)

where all Ai, C ∈ Sn, b ∈ IRm are given, and X ∈ Sn is the variable. This
optimization problem is a convex optimization problem since its objective and
constraints are convex.
We also consider SDP in dual standard form:

(D) max
y
bTy

s. t.
m∑

i=1

yiAi + S = C

S � 0,

(3.2)

where y ∈ IRm and S ∈ Sn are the variables. This can be written as

max
y
bTy

s. t.
m∑

i=1

yiAi � C,

(3.3)

The second dual form (3.3) will be used throughout this section due to its
simplicity and also the flexibility it provides for modeling.

Although the SDP problem (3.3) may appear quite specialized, it includes
many important optimization problems as special cases. For instance, consider
the linear program (LP)

min cTx

s.t. Ax + b ≥ 0
(3.4)
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in which the inequality denotes component wise inequality. Since a vector v ≥ 0
if and only if diag(v) � 0 (i.e., the diagonal matrix with the components of v on
its diagonal) is positive semidefinite, we can express the LP (3.4) as a dual SDP
problem (3.3) with

b = c, C = −diag(b), Ai = diag(ai), i = 1, · · · , m;

where A = [a1, · · · , am] ∈ IRn×m.
To introduce other examples, we have to present the following useful theorem.

Theorem 3.1 (Schur Complement)
If

M =

[
A B
BT C

]
where A ∈ S+

n and C ∈ Sn, then the matrix M is positive (semi)definite if and
only if the matrix C −BT A−1B is positive (semi)definite. �

The matrix C −BT A−1B is called the Schur complement of A in M .

Proof:
The result follows by setting D = −A−1B, and noting that[

I 0
DT I

] [
A B
BT C

] [
I D
0 I

]
=

[
A 0
0 C −BT A−1B

]
.

Since a block diagonal matrix is positive (semi)definite if and only if its blocks
are positive (semi)definite, the proof is complete.
Now, we introduce the so-called general convex quadratically constrained quadratic
program (QCQP)

min f0(x)

s.t. fi(x) ≤ 0, i = 1, · · · , L,
(3.5)

where each fi is a convex quadratic function fi(x) = xT Bix−2cT
i x−di, Bi ∈ S+

n .

Assume for simplicity that Bi ∈ S++
n , hence, let Bi = B

1/2
i B

1/2
i . Then using

Theorem 3.1, Problem (3.5) can be written as

min t

s.t.

[
I B

1/2
i x

(B
1/2
i x)T cT

i x + di + t

]
� 0,

[
I B

1/2
i x

(B
1/2
i x)T cT

i x + di

]
� 0.
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which is an SDP problem in the dual form with x ∈ IRn and t ∈ IR as variables.
This SDP problem has dimensions n + 1 and L× n + L + 1.

Inspired by the above examples, we will formulate Problem (1.2) as an SDP
problem in the dual form (3.3). To do so, we need to use some tools. The following
theorem, which can be considered as a corollary of Theorem (3.1), provide these
tools.

Theorem 3.2
Let a(x) ∈ IRn depend affinely on x. Then the following minimization problem:

min ‖a(x)‖2,

cab be solved by solving the following SDP problem:

min t, s.t.

[
I a(x)

(a(x))T tI

]
� 0,

where t is a nonnegative real scalar. �

Proof:
Since ‖a‖2 =

√
aTa, we may minimize ‖a‖2 by minimizing aTa. So, let aTa ≤ t.

Hence, tI − aT Ia � 0. So, by Theorem (3.1) the proof is complete.

3.1 SDV Formulation

We are now ready to introduce the first formulation of (1.2) as an SDP problem.
We have

‖F −H‖F = ‖vec(F −H)‖2

So by Theorem 3.2, Problem (1.2) is cast as

(SDV ) min t

s.t. t 0 0
0 H 0
0 0 V

 � 0,

(3.6)

where

V =

[
I vec(F −H)

vecT (F −H) t

]
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and t ∈ IR+. Problem (3.6) is an SDP problem in dual form (3.3) with dimen-
sions 2n and n2 + n + 2. To see this, we identify

y1 = t, yk = hk−1, k = 2, · · · , 2n

b =
[
−1 0 · · · 0

]T
,

A1 =


−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

 ,

Ak =


0 0 0 0
0 −Ek−1 0 0
0 0 0 vec(Ek−1)
0 0 vecT (Ek−1) 0

 , k = 2, · · · , 2n

C =


0 0 0 0
0 0 0 0
0 0 I vec(F )
0 0 vecT (F ) 0

 ,

The matrices Ek−1 are defind as follows

Ek(i, j) =

1 if i + j = k + 1,

0 otherwise.
(3.7)

which form an orthonormal basis for Hn, where where (i, j)-entry of each Ek

To illustrate how can we use the formulation SDV to model Problem (1.2),
we consider the following example:

Example 3.1
Consider Problem (1.2) with

F =

−4 2 1
−6 −1 0
3 2 7


and let t ∈ IR+. Then we have
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• SDV: The SDV formulation is

min t
s.t.

t 0 0 0 0 0 0 0 0 0 0 0 0 0
0 h1 h2 h3 0 0 0 0 0 0 0 0 0 0
0 h2 h3 h4 0 0 0 0 0 0 0 0 0 0
0 h3 h4 h5 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 s1

0 0 0 0 0 1 0 0 0 0 0 0 0 s2

0 0 0 0 0 0 1 0 0 0 0 0 0 s3

0 0 0 0 0 0 0 1 0 0 0 0 0 s4

0 0 0 0 0 0 0 0 1 0 0 0 0 s5

0 0 0 0 0 0 0 0 0 1 0 0 0 s6

0 0 0 0 0 0 0 0 0 0 1 0 0 s7

0 0 0 0 0 0 0 0 0 0 0 1 0 s8

0 0 0 0 0 0 0 0 0 0 0 0 1 s9

0 0 0 0 s1 s2 s3 s4 s5 s6 s7 s8 s9 t



� 0,

where

s = [si]
9
i=1 =



−4− h1

−6− h2

3− h3

2− h2

−1− h3

2− h4

1− h3

−h4

7− h5


or equivalently,

max − t
s.t.
A1t + A2h1 + A3h2 + A4h3 + A5h4 + A6h5 � C
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where

A1 =



−1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1


and for k = 2, · · · , 6 we have

Ak =


0 0 0 0
0 −Ek−1 0 0
0 0 I vec(Ek−1)
0 0 vecT (Ek−1) 0


Finally

C =



0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 −4
0 0 0 0 0 1 0 0 0 0 0 0 0 −6
0 0 0 0 0 0 1 0 0 0 0 0 0 3
0 0 0 0 0 0 0 1 0 0 0 0 0 2
0 0 0 0 0 0 0 0 1 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 1 0 0 0 2
0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 7
0 0 0 0 −4 −6 3 2 −1 2 1 0 7 0


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4 Mixed Semidefinite and Second-Order Cone

Approach:

We consider the second-order cone program (SOCP)

min fTx

s.t. ‖Aix + bi‖ ≤ cT
i x + di, i = 1, · · · , N,

(4.1)

where x ∈ IRn is the optimization variable, and f ∈ IRn, Ai ∈ IR(ni−1)×n, bi ∈
IRni−1, ci ∈ IRn, and di ∈ IR are given data. The norm appearing in the con-

straint is the standard Euclidean norm, i. e. , ‖u‖ =
(
uTu

)1/2
. We call the

constraint
‖Aix + bi‖ ≤ cT

i x + di,

a second-order cone constraint of dimension ni, simply because

‖Aix + bi‖ ≤ cT
i x + di ⇐⇒

[
cT

i

Ai

]
x +

[
di

bi

]
∈ Qni

Recall that a second-order cone of dimension ni is defined as

Qni
=

{[
t
u

]
: u ∈ IRni−1, t ∈ IR, ‖u‖ ≤ t

}
,

and hence the set of points satisfying a second-order cone constraint is convex.
Thus, the SOCP (4.1) is a convex programming problem since the objective is
convex function and the constraints define a convex set.
Second-order cone constraints can be used to represent several common convex
constraints. For example, when ni = 1 for i = 1, · · · , N, the SOCP (4.1) reduces
to the LP problem:

min fTx

s.t. 0 ≤ cT
i x + di, i = 1, · · · , N.

Another interesting example is convex quadratically constrained quadratic
program (QCQP) (3.5, page 6). In this example we have the problem

min xT B0x− 2cT
0 x− d0

s.t. xT Bix− 2cT
i x− di ≤ 0, i = 1, · · · , L.

(4.2)

This problem can be rewritten as

min ‖B1/2
0 x−B

−1/2
0 c0‖2 − d0 + cT

0 B−1
0 c0

s.t. ‖B1/2
i x−B

−1/2
i ci‖2 − di + cT

i B−1
i ci ≤ 0, i = 1, · · · , L,
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which can be solved via the SOCP with L + 1 constraints of dimension n + 1

min t

s.t. ‖B1/2
0 x−B

−1/2
0 c0‖ ≤ t,

‖B1/2
i x−B

−1/2
i ci‖ ≤ (di − cT

i B−1
i ci)

1/2, i = 1, · · · , L,

(4.3)

where t ∈ IR is a new optimization variable. Problems (3.5) and (4.3) will have
the same optimal solution and the same optimal values up to a constant.

This shows that SOCP contains interesting examples. On the other hand, it
is itself contained in SDP. This can be seen by the following property which is
true for each vector u and scalar t:

‖u‖ ≤ t ⇐⇒
[

tI u
uT t

]
� 0,

using this property SOCP (4.1) can be expressed as SDP

min fTx

s.t.

[
(cT

i x + di)I Aix + bi

(Aix + bi)
T cT

i x + di

]
� 0, i = 1, · · · , N.

(4.4)

Solving SOCP via SDP is not a good idea, however. Interior point methods
that solve the SOCP directly have a much better worst-case complexity than an
SDP method applied to (4.1): the number of iterations to decrease the duality
gap to a constant fraction of itself is bounded above by O(

√
N) for the SOCP al-

gorithm, and by O(
√∑

i ni) for the SDP algorithm (see [17]). More importantly
in practice, each iteration is much faster: the amount of work per iteration is
O(n2 ∑

i ni) in the SOCP algorithm and O(n2 ∑
i n

2
i ) for the SDP. The difference

between these numbers is significant if the dimensions ni of the second-order con-
straints are large.

Returning to Problem (4.1) we see that it may be written in such a way to
have a constraint over the positive semidefinite cone and a constraint over the
second-order cone, namely: H � 0 and ‖F − H‖F ≤ t, respectively. Thus, in
order to take advantage of the good behavior of the SOCP we need to deal with
mixed SDP and SOCP problems. Fortunately, interior point methods that solve
such mixed problems are available. Indeed, these methods are the same as those
of SDP with slight modifications. We will discuss these methods in the coming
chapter. But now let us study our problem in a more general framework.

A cone-linear programming (Cone-LP) is a unified way to study SDP and
SOCP problems. The standard canonical form of Cone-LP problems is

min cTx s.t. Ax = b, x ∈ K, (4.5)
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where x ∈ IRn is the vector of decision variables, K ⊂ IRn is a pre-specified con-
vex cone, and b ∈ IRm, c ∈ IRn and A ∈ IRm×n are given data. Despite its name,
Cone-LP is non-linear, since K need not be polyhedral.

Important subclasses of Cone-LP are linear programming, semidefinite pro-
gramming, second-order cone programming, and a mixture of these. These sub-
classes arise by letting K in (4.5) be the nonnegative orthant K = IRn

+, the cone
of positive semidefinite matrices S+

n , the second-order cone Qn, or a mixture of
them, respectively.

A mixed semidefinite and second-order cone optimization problem can be
formulated as a standard Cone-LP problem (4.5) with the following structure:

min CS •XS + CT
QXQ + CT

L XL

s.t. (AS)i •XS + (AQ)T
i XQ + (AL)T

i XL = bi, i = 1, · · · , m

XS � 0, XS ≥Q 0, XL ≥ 0, (4.6)

where XS ∈ Sn, XQ ∈ IRk and XL ∈ IRnL are the variables. CS, (AS)i ∈ Sn,
∀i, CQ, (AQ)i ∈ IRk ∀i and CL, (AL)i ∈ IRnL ∀i are given data. Each of the
three inequalities has a different meaning: XS � 0 means, as we have seen, that
XS ∈ S+

n , XS ≥Q 0 means that XQ ∈ Qk and XL ≥ 0 means that each component
of XL is nonnegative. It is possible that one or more of the three parts of (4.6)
is not present. If the second-order part is not present, then (4.6) reduces to the
ordinary SDP (3.1) and if the semidefinite part is not present, then (4.6) reduces
to the so-called convex quadratically constrained linear programming problem.
The standard dual of (4.6) is:

max bTy

s.t.
m∑

i=1

yi(AS)i � CS

m∑
i=1

yi(AQ)i ≤Q CQ

m∑
i=1

yi(AL)i ≤ CL.

(4.7)

Here, y ∈ IRm is the variable. The dual problem is interesting because it provides
a machinery to formulate many problems in a natural manner.

In this context, we may drop the third part of the constraints in (4.6) and its
dual (4.7), since we do not have explicit linear constraints. In the remaining of
this chapter we discuss different ways to put Problem (1.2) in the form of (4.7).
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As a matter of fact, we can do that in three different ways depending on how we
define the Frobenius norm ‖F −H‖F .

4.1 SQV Formulation

One way to define ‖F −H‖F is

‖F −H‖F = ‖vec(F −H)‖2.

So, if we put ‖F −H‖F ≤ t for t ∈ IR+, then by the definition of the second-order
cone, we have [

t
vec(F −H)

]
∈ Q1+n2 .

Hence, we have the following reformulation of (1.2):

(SQV ) min t

s.t.

[
t 0
0 H

]
� 0,[

t
vec(F −H)

]
≥Q 0.

(4.8)

This problem is in the form of (4.7) with

b = [−1 0 · · · 0]T ,

(AS)1 =


−1 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 , (AS)k =

[
0 0
0 −Ek−1

]
, k = 2, · · · , 2n− 1,

(AQ)1 =


−1

0
...
0

 , (AQ)k =

[
0

vec(Ek−1)

]
, k = 2, · · · , 2n− 1,

CS = 0(n+1)×(n+1), CQ =

[
0

vec(F )

]
,

where the matrices Ek−1’s are defined in (3.7), page 8. Although this formulation
is natural and straightforward, we notice that the dimension of the second-order
cone constraint is large, 1 + n2. Also, in this formulation the special structure
of Problem (1.2) is not fully exploited. Hence we should look for another way of
formulation which exploits the structure and has a dimension of less magnitude.
The SDP part of any mixed formulation will be the same as above. However,
the second-order cone part will make the difference; since it is what we can
manipulate.
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