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FOCUSING SURFACES

1 Introduction

In standard textbooks (e.g., [7, p. 877]) as well as in Encylopaedia Britannica [6, Vol.

13, p.611], one finds variants of the following statement:

In spherical mirrors, rays parallel and very close to the principal axis are all reflected

through a single point.

This statement is actually false, and can only be understood in the following sense: It

is true only up to a linear approximation, and in fact, as soon as a mirror focuses parallel

rays, it must be a parabolic mirror.

This note makes these ideas precise by providing in Section 2 a novel approach to re-

flecting properties of surfaces. There, inward and outward pointing vectors are introduced,

leading to a straightforward derivation of reflecting properties of surfaces of revolution. In

this same section, a formula is given for the reflected ray from an arbitrary smooth surface

whose incident ray is parallel to a given direction. Its usefulness is demonstrated in Sec-

tion 3 by applying it to spheres and paraboloids, where we show that, whereas parabolic

mirrors are focusing surfaces, the only rays focused by the sphere have to originate at the

center, where they are all reflected back through the center. The same method works for

all surfaces of revolution generated by conic sections. (We refer the reader to, e.g., [7, p.

877] and [12] for erroneous explanations that spheres are focusing surfaces for a family

of parallel rays.) In Section 4, we prove the main result which gives a characterization

of surfaces that focus a pencil of rays from infinity or a finite point. Let us note that

even for conic sections, the usual verification that they are focusing curves is not entirely

straightforward as evidenced, for example, by the discussion in the archives of NRICH

MATH [13]. We have written this note with teachers of undergraduate calculus in mind,

hoping that our discussion is simple enough to be explained to their students.

The main result in this note is the following

Proposition 1 If all rays from a finite point or a point at infinity focus, or appear to

focus, after reflection from a smooth algebraic surface, then this surface must be a plane, a

paraboloid of revolution, an ellipsoid of revolution or a sheet of a hyperboloid of revolution.

Moreover, a pencil of incident rays on a spherical mirror never focuses unless the rays

originate at the center of the sphere.

By a smooth (or non-singular) algebraic surface we mean a connected component S

of a surface in R
3 defined by a polynomial equation E(x, y, z) = 0, with non-zero gradient

on S. A pencil of rays is simply a set of rays originating from a finite point or at a point
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at infinity (in this latter case, the rays are parallel). For a more advanced discussion of

smoothness see [9, p. 95].

Some words about the origin of this paper are in order. It arose in an attempt by one

of us to explain the focusing properties of the sphere, which are stated persistently in all

modern books on physics, although it was already known to Diocles that this was not

correct: see Hogendijk [8, p. 192] for an illuminating discussion and extensive references.

Since the sphere does not have such properties, it was natural to ask for surfaces with these

reflecting properties. After writing the first draft of this paper we found extensive work of

Daniel Drucker and Phil Locke on this theme: see [3, 4, 5]. The main technical difference

is the use of ideas of Section 2 of this paper which leads to substantial simplifications

in the arguments. We subsequently discovered the truly classical nature of this circle of

ideas. In Descartes [2, pp. 124–148], there is even a discussion of refracting properties of

certain quartics, which were subsequently called cartesians by Salmon [10, p. 99]. Salmon,

referring to Quetelet, also sketches a proof that the only curves which are refracting are

these cartesians. As our results deal with surfaces and were independenly arrived at,

they use contemporary ideas and standards of rigour and are sufficiently different that

we decided to submit them for publication. We hope that this paper and its sequel [1]

on refracting surfaces might encourage others to look for hidden gems in these classical

sources and recast them in a contemporary framework.

2 Incident and Reflected Rays

Let Ω ⊂ R
3 be a region with a smooth boundary. This means that there is a differ-

entiable function E such that Ω = {P ∈ R
3 : E(P ) < 0} and ∂Ω– the boundary of Ω – is

the set of all points P where E(P ) = 0. We assume that ∂Ω is nonempty and E has a

nonzero gradient on the boundary of Ω.

Definition 2 Given a point P ∈ ∂Ω, we say that a unit vector �e points outward if for

sufficiently small δ > 0, the points P + δ�e are outside Ω. Equivalently, if ∇E(P ) · �e > 0,

then �e is an outward pointing vector at P . (The equivalence of these statements follows

from a second degree Taylor polynomial.)

Inward pointing vectors are defined similarly. In particular, the inward normal at a

boundary point P is −→nP =
−∇E(P )

|∇E(P )| . An incident ray at a boundary point P is a ray of

the form P − t�e (t > 0) for some outward pointing vector �e at P : (see Fig. 1). So, if Q is

a point of Ω on this ray, then
−→
QP is a positive multiple of �e.

The corresponding reflected ray at P is a ray of the form P + t �f (t > 0) for an inward

pointing unit vector �f at P which is uniquely determined by the following requirements:

If �e is normal at P , then the reflected ray coincides with the incident ray. If �e is not

normal at P , then the reflected ray at P lies in the plane at P determined by �e and −→nP ,
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Fig 1. A paraxial ray (parallel to the chosen vector �e) is depicted by
−→
QP and the unit

normal at P by �np. The region Ω is shaded here and ∂Ω is its boundary. The reflected

ray along �f must make the same angle with �np as
−→
QP .

whose direction vector �f is not a a multiple of �e and �f satisfies Snell’s (or Descartes’) law

of reflection:
�f · −→nP = −�e · −→nP .

A computation shows that, in all cases,

�f = �e − 2(�e · −→nP )−→nP

We summarize this as follows:

Proposition 3 If �e is an outward pointing vector at a boundary point P of Ω and P −
t�e (t ≥ 0) is an incident ray at P , then its reflected ray at P is

P + t(�e − 2(�e · −→nP )−→nP ) (t ≥ 0),

where −→nP =
−∇E(P )

|∇E(P )| is the inner normal at P .

3 The Sphere and the Paraboloid

We apply the formalism of Section 2 to study focusing properties of spheres and

paraboloids. The same method works for determining the reflected ray of a ray incident

on a given surface.

A) Spheres: Let E(x, y, z) = x2 + y2 + z2 −R2. The domain defined by E < 0 has the

sphere as its boundary. So ∇E = 〈2x, 2y, 2z〉 is an outward normal and �e = 〈0, 0, 1〉
points outward at P = (x, y, z) if z > 0. For such a point P , a ray parallel to

�e and incident at P is reflected to the ray P + t(�e − 2(�e · �n)�n) (t ≥ 0), where

�n = 〈−x/R, −y/R, −z/R〉 is the unit inward normal at P . Therefore, the reflected

ray at P (x, y, z) is

(
x − 2t

xz

R2
, y − 2t

yz

R2
, z + t

(
1 − 2

z2

R2

))
.
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This ray intersects the z-axis at the point given by t = R2/2z; i.e. at the point

(0, 0, R2/2z).

Note that if all rays parallel to �e = 〈0, 0, 1〉 and near the z-axis focus at a point,

it must necessarily be on the z-axis. Therefore, more than two parallel rays never

focus after reflection from a spherical mirror (cf. [6] and [7])].

B) Paraboloids: A paraboloid of revolution has equation z = c(x2+y2). Let E(x, y, z) =

c(x2+y2)−z. We assume that c > 0. The domain given by E < 0 has the paraboloid

as its boundary, and as ∇E = 〈2cx, 2cy,−1〉, the vector �e = 〈0, 0,−1〉 is an outward

pointing vector and −→n = − ∇E

|∇E| =
〈−2cx,−2cy, 1〉√

1 + 4cz
is an inward normal vector

to the paraboloid. Therefore, if P (x, y, z) is a point on the paraboloid, then a ray

parallel to �e = 〈0, 0,−1〉 and incident at P is reflected to the ray P + t(�e−2(�e ·�n)�n).

This works out to be the ray

(
x − 4cxt

1 + 4cz
, y − 4cyt

1 + 4cz
, z +

(1 − 4cz)t

1 + 4cz

)
(t ≥ 0).

This ray passes through the z-axis for t =
1 + 4cz

4d
(t > 0 because P (x, y, z) is on

the paraboloid), and so it passes through

(
0, 0,

1

4c

)
.

Notice that if all rays parallel to �e = 〈0, 0,−1〉 focus, then they must focus on the

z-axis, because the z-axis itself is one of these incident rays. Therefore, all the

rays parallel to �e = 〈0, 0,−1〉 focus at the point

(
0, 0,

1

4c

)
, which is inside the

paraboloid [cf. 7].

The computations for rays originating from foci of ellipsoids of revolution and two-

sheeted hyperboloids of revolution are similar.

4 Focusing Surfaces

We prove Proposition 1 in several steps. A sketch of the argument is as follows: The

assumption that rays from infinity or a finite point focus after reflection from a surface

implies that the surface is a surface of revolution, i.e. invariant under rotations with

respect to some fixed axis. This reduces the problem to a two-dimensional situation.

In the case of parallel incident rays, the focus lies on the axis of rotation (see Fig. 2).

The normal at a point P of the reflecting surface intersects the axis of rotation at

a point Q which is equidistant from the incident and the reflected ray. This gives the

differential equation for the profile curve.

In the case of a pencil of rays emerging from a point F1 and focusing to a point F2

after reflection, the axis of rotation is the line joining F1 and F2. The normal at a point

P of the reflecting surface intersects the axis of rotation at a point Q which is equidistant
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Fig 2.

from the incident and the reflected rays. This again gives the differential equation for the

profile curve.

For the remainder of this section, we assume that the reflecting surface is a smooth

algebraic surface, and rays from a finite point or from a point at infinity all focus or

appear to focus, after reflection, to a finite point.

Step 1: The surface is a surface of revolution. Assume first that all rays parallel to a

given direction focus after reflection from the surface S to a point F0. We may assume

that this direction is given by �e = 〈1, 0, 0〉 and the focus F0 has coordinates (c, 0, 0). So,

for any point of S which lies on the x-axis, the incident, reflected and normal rays are all

along the x-axis. For a point P of S which is not on the x-axis, the incident, reflected

and normal rays are coplanar and the x-axis passes through this plane. Since P is not

on the x-axis, the normal −→nP is not parallel to �e, and so it intersects the x-axis, say at

the point (a, 0, 0). Therefore, if P = (x, y, z), then (x − a, y, z) is a non-zero multiple of

∇E(P ) =

〈
∂E(P )

∂x
,
∂E(P )

∂y
,
∂E(P )

∂z

〉
. Hence y = λ

∂E(P )

∂y
, z = λ

∂E(P )

∂z
for some λ, i.e.

y
∂E(P )

∂z
− z

∂E(P )

∂y
= 0. Using cylindrical coordinates with y = r cos θ, z = r sin θ, we

obtain
∂E(P )

∂θ
=

∂E(P )

∂y

∂y

∂θ
+

∂E(P )

∂z

∂z

∂θ
= 0. This shows that the surface S given by

E(x, y, z) = 0 is a surface of revolution about the x-axis. (In more technical terms, this

means that the vector field y
∂

∂z
−z

∂

∂y
is tangent to S with defining equation E = 0. This

field is generated by rotations whose axis is along the x-axis, and therefore, S is a surface

of revolution.)

Now assume that rays originating at a point F1 focus to a point F2 after reflection from

the surface with defining equation E = 0. We may assume that F1 = (−c, 0, 0) and F2 =

(c, 0, 0). If the normal ray at P is parallel to the focal line, then
∂E

∂y
(P ) = 0,

∂E

∂z
(P ) = 0;

otherwise, the normal ray at P is not parallel to the line F1 F2 and so it intersects it at

some point (a, 0, 0). Hence, we again have y
∂E(P )

∂z
−z

∂E(P )

∂y
= 0 for all points P (x, y, z)

on the surface. This implies that the surface S is invariant under rotations whose axis

is the x-axis. In particular, S is obtained by rotating its trace in a plane containing the

x-axis. Without loss of generality, we may take this plane to be the xy-plane.
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Step 2: The trace in the xy-plane is a smooth curve, except for possible singularities

along the focal line. The trace C in the xy-plane is given by the equation E(x, y, 0) = 0.

Assume that there is a point P (x, y, 0) on C where
∂E

∂y
(P ) = 0. By the above paragraph,

y
∂E(P )

∂z
− z

∂E(P )

∂y
= 0, so that

∂E(P )

∂z
= 0 or y = 0. Since S is a smooth algebraic

surface,
∂E

∂x
(P ) 	= 0 when y 	= 0. Therefore, the singular points, if any, of the trace are all

along the axis of rotation. As far as reflections are concerned, these points play no role.

Step 3: The trace on the xy-plane is part of a conic section or of the y-axis. First note

that we have chosen coordinates so that the foci - or focus in the case of parallel incident

rays- lie on the x-axis, which is also the axis of rotation. Since the incident, reflected and

normal ray all lie in the same plane and the angle of incidence is the same as the angle of

reflection, the normal at a point P of the reflecting surface intersects the axis of rotation

at a point Q which is equidistant from the incident and reflected ray.

Let P (x, y) be a point on the curve C such that the normal −→nP to C at P is not parallel

to the x-axis, and let Q(a, 0) be the point where −→nP intersects the x-axis, so that

(x − a)dx + ydy = 0. (1)

In the case of parallel incident rays, we obtain by the equidistance property above that

PF = QF, where F (c, 0) is the focus of the reflected rays. Thus (x− c)2 + y2 = (a− c)2.

Put u2 = (x− c)2 + y2, so that udu = (x− c)dx + ydy = (a − c)dx, which gives (udu)2 =

((a − c)dx)2 = (udx)2. Since np is not parallel to the x-axis, y 	= 0 and therefore u 	= 0.

Hence du = ±dx, and (x − c)2 + y2 = (K ± x)2 for some constant K, i.e. y2 = Ax + B,

where A = 2(c±K), B = K2 − c2. If A = 0 then B = 0 and C would be along the x-axis,

which is plainly impossible. Hence C is a parabola.

In the case of incident rays originating at a finite point F ′(−c, 0) and reflected by C
through the point F (c, 0), the angles QPF ′ and FPQ are equal, and hence the sine law

for the triangles QPF ′ and FPQ yields PF · QF ′ = PF ′ · QF, i.e.

(a + c)2((x − c)2 + y2) = (a − c)2((x + c)2 + y2). (2)

Put u2 = (x − c)2 + y2 and v2 = (x + c)2 + y2, so that udu = (x − c)dx + ydy and

vdv = (x + c)dx + ydy. By (1) udu = (a − c)dx and vdv = (a + c)dx, and by (2)

(a + c)2u2 = (a − c)2v2, so that u2v2((du)2 − (dv)2) = 0. Since y 	= 0, du = ±dv, and so,

for some constant K, u = K±v. We therefore obtain (x−c)2+y2 = K2±2Kv+(x+c)2+y2,

i.e.

(4K2 − 16c2)x2 + 4K2y2 = K4 − 4K2c2. (3)

If c = 0 then F, F ′ and Q coincide with the origin and xdx + ydy = 0, which implies

x2 + y2 = r2 for some constant r, and C is part of a circle. If K = 0 and c 	= 0, then x = 0

and C would be on the y-axis, which is impossible, because of the reflecting property of

the curve. If K 	= 0, then 4K2 − 16c2 	= 0 (otherwise y = 0), and C is an ellipse or a

branch of a hyperbola.
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Assume now that the normal −→nP to C at P is parallel to the x-axis. In the case of

parallel incident rays, the reflected ray at P must also be parallel to the x-axis, and since

it contains the focus F (c, 0), P itself must be on the x-axis. Since S is a smooth algebraic

surface and is generated by revolving C about the x-axis, the intersection of C with the x-

axis is finite, so that P,by continuity, satisfies Equation (3). If the incident ray originates

at F ′(−c, 0) then F is on the line containing the reflected ray and PF = PF ′, so that P

is on the y-axis. In this case, either C intersects the y-axis at infinitely many points, and

then C is part of the y-axis, or at a finite number of points and then, by continuity again,

P satisfies Equation (3).

Remarks. 1. The disc with the Poincaré metric is a classical example of a non-euclidean

geometry which has many features in common with ordinary geometry. (See [11].) For

example, any two points can be joined by a unique curve of shortest length, so one can

define ellipses, etc. as in Euclidean geometry. An interesting undergraduate project could

be to investigate whether these curves have similar focusing properties. There are several

computer programs – for instance [11] – that one can use for experimenting with these

ideas.

2. At a more advanced level, we note that the argument in Step 1 above carries over to

the general case of focusing hypersurfaces in Euclidean n-dimensional space because the

focusing property gives invariance under vector fields which generate the Lie algebra of

SO(n − 1). The set-up of Section 2 generalizes to simply connected homogeneous spaces

of non-positive curvature by replacing rays by geodesic rays since any two points can be

joined by a unique geodesic and the exponential map is bijective.
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