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Abstract

We consider an integro-differential equation of hyperbolic type
with a temporal non-local memory term. It will be shown by a new
argument that the dissipation induced by the memory effect is strong
enough to yield exponential decay of the energy.
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1 Introduction
In this paper we investigate the following problem

-~ k(0)Au — f k' (s)Au(t — s)ds + g(u) = f in Q x R*

) u(z,t) 0,z 60, ¢tER* (1)
u(z,t) = ug(z,t), € Q,t<0

with k(0), k(co0) > 0 and k'(s) < 0 for every s € R*. Here Q c R%is a
bounded domain with smooth boundary 8, A is the Laplacian operator
and ' denotes differentiation with respect to the time variable. The function
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ug(z, t) is a given initial data. As for the non-linear term g(u) and the time-
~varying source f, they will be specified later on.
This model arises, for instance, in viscoelasticity, in electromagnetxsm
and in heat conduction theory, see [2,3,10]. It concerns materials with fading
- memory. The convolution term in the equation expresses the dependence on
the entire past history of the solution.

This problem has been studied in [1,10,2,7,8,5,6,9] (see also references
therein). In [5] Giorgi, Rivera and Pata showed the existence of absorbing sets
and global attractors for solutions after proving in particular an exponential
decay of the energy (in the linear homogeneous case). See [11] for a similar
problem but in an abstract Cauchy form. Observe that there is no dissipation
besides the weak viscoelastic damping provided by the long-range memory
term. As is well known, the presence of an explicit dissipation (weak or
strong) produces loss of energy and therefore it is considered as a favorable
situation.

In this work we propose a new argument based on an appropriately chosen
functional which satisfies a certain differential equation. The ”standard”
condition on the derivative of the kernel is relaxed.

2 Reformulation and assumptions

In this paper we shall try to keep the same notation as in [5]. In particular,
the usual notation for Lebesgue and Sobolev spaces will be used together
with their scalar products and norms. By L2(R*, H}) we denote the weighted
Hilbert spaces of H}-valued functions on ]R“' endowed with the inner product

(o, "p)Lﬁ(]N,Hg) =/ (/ u(s)chvwds) dx

Q 0

We will denote by M the Hilbert space % = H} x L*x L3(R*, H}) endowed
with the usual inner product. The space 7 w1ll stand for the space of all
L} .-translation bounded L?-valued functions c on R*, that is

_ é+1
- {f € Li(R", L) : | fll7 =sup [ (n/ f(y)dm) dy} |
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(This space will be needed in case of the presence of f.)
Introducing the new variable

nt(wy 3’) = u(mat) - u(m,t - 3)

and setting u(s) = ~k (s), k(00) = 1 we may refoi'mulate problem (1) as

{uu = abu+ T u(e)Art(e)ds - ou) + 1 @)

N = —7s + Us.
If we designate by
{ up(z) = u(2,0),

~ vo(z) = Byuo(2, 1) im0
1o(z, 8) = up(z, 0) — uo(x, ~8),

then the initial and boundary conditions are given by

u(z,t) =0, z€0Q,t>0

n'(z,8) =0, (z,8) € xR, t>0

uo(z,0) = uo(z), z € N | (3)
u(z,0) = vo(z), z €N |

n°(z,8) = no(2, 8), (z,8) € A x RF.

We suppose that the new kernel u satisfies
(h1) p € CY(R*) and e*u € L} (R*) for some & > 0,
~ (h2) p(s) > 0 and p'(s) <0, for all s € R,
0
(h3) [ u(s)ds = ko > 0.
0
For the nonlineariry we assume that g € C’l(]R). Let us denote by
8

\ G(s) = /g(y)dy and G(u /G ))dz for u € HO Q).
' 0

We further require that g fulfills the following assumptions:
there exist Co > 0 and I > 0 such that
(1) lim inf £ >0

vl—oo



(2) lim inf WW=g3) > o,

(83) lg (y)l <T.
It has been proved in [4] that (gl1)- (gZ) imply

) +3 f [Vuftds > ~C, for all w € H(@),
K1

[ watids - Cogw) + 5 [ 19uftda 2 =Gy, for el u e HY ()
2 0

for some positive constants C; and Cs. It turns out that these inequalities
are of great help when examining the asymptotic behavior.

Finally, we make clear what we will mean by a solution to the initial
boundary value problem (1.3)-(1.4).

Definition 1 A function z = (u,us,n) € C(I,H) where I'= [0,T] is a
solution to problem (2) in I, with smtwl data z2(0) = 2o = (uo,vp,M0) € H
and f € L}(I,L?), if

o0

(e, B) = — n/ VuVids— n/ ( 0/ u(s)Vn(s)ds) Vids— n/ g(w)dda+ n/ fide,
n/ ( 0/ u(s) (m(s) + na(S))Aﬁ(S)dS) dz = n/ " ( / u(S)Aﬁ(S)dS) do

0
for all i € H}() and j € L2(R*, H*N H}), ond a.e. t € I.

For simplicity, we shall treat here the case f = g = 0, focussing only on
the main differences with the argument given in [5]. The case where f and
g are not both zero can be handeled in exactly the same manner and under
the same hypotheses as in [5] without any changes other than the ones we
are exposing here. So our result holds also in this case.



3 Exponential decay

In this section we shall presént and prove our result. First, let us introduce
some functionals. The energy associated to problem (2) is defined by

E(t) = -;- ()[aIVuI2 + lug® + /u(s) |Vn‘(a)|2ds) dz. 4)
0

O

The functionals to follow will help us built the Lyapunov functional £(t)
which will satisfy a certain differential inequality. Then an application of
Gronwall inequality (a generalized version of it) yields at once the desired

estimates. We set, _
FO =~ [u ( / #(S)W‘(S)dér) dz, (5)

0 0
H(t) = / upudz
Q
and .
K(t) = / / Pa(t — 8) [Vu(s)|? dsds, (6)
Q —o0
where

(]

Py(s) =e™ / p(r)e* dr.

8

Theorem 2 Suppose that the hypotheses (h1)-(h3) hold. Then there exist
positive constants C and & such that the estimate

E() < Ce™®

18 true for everyt > 0.



Proof. Differentiating (4) with respect to t and using (2), it appears that

£y .1 ( / W () |Vq‘(.s)|2ds) da. (7)
Q

0

Recell that u'(s) < 0. Therefore, the emergy is uniformly bounded (by
£(0))and decreasing.
A differentiation of F(t) (see (5)) with respect to t gives

é’%ﬂ = - / Ut ( / M(s)n‘(s)ds) dz — / Uy ( / M(S)ﬂﬁ(s)ds) dz. (8)
0 0 / 2

0

By the second equation in (2) and (h3) we may estimate the second term in
the right hand side of (8) in the following manner

- fut (f p(s)nk(s) ds) de = -fut (fu ) [us(t) = ni(8)] ds) dz
= —ko [ |ue|*dz — [, (fu (s)n‘(s)ds) dz.
! 2 \o

By the hélder inequality, Young inequality and Poincaré inequality (we shall
use these inequalities repeatedly in the sequel), we have

- [ (Futomt(o)ds) do < = (ko - 8u0) f
vz | (J-@1vr0Pas) s

where )\ is the Poincaré constant.
Using equation (2);, it is easily seen that

- f_{ Usy (Z’op(s)n‘(s)ds) dr=a ‘{ Vu (;#(B)Vﬂ 3)d3)
+f (Fuavrt(eas) aa

(9)



Young’s inequality, together with the Cauchy-Schwarz inequality, allow us to
write

o0 . ‘ o0 2
— [un ( f u(s)n‘(s)ds) dz < ap [ |Vul? dz + &/ ( J u(a)Vn‘(s)ds) dz
! 0 ! 2 \o
/oo 2
+1 (Tuovn@is) ds, p>0
a \0o
or
o0
- f_{' U ( g‘ u(s)n’(s)ds) dz
oo 2
< ap [ |Vul* dz + (-f-p + 1) i) (f /z(s)Vnt(s)ds) de.
) o \o
The assumption (h3) and Hélder’s inequality imply
- [ (Futoyt(o)as ) de
<apf IVu|2 dz + (2% + 1) koffp(s) |Vt (s)|? dsdzz.
Q 20
Another use of Young’s inequality leads to
..é‘u“ (f u(s)nt(s)ds) dz < ap [ |Vul? dz + (% + 1) ko
0 !
X [(1 +0)ko [ [Vul*dz + (1 + 2) [ [ u(s) |[Vu(t - s)[? dsda:] , 0>0
! Qo
or

- Juy z < |a 3 ul|® de
f (f,u(s)n(s)ds)d <°°[p+(1+0')( +1)k]g|v d w0

+(1+13) (f,;+1)kof0fu 8) |Vu(t — 8)|* dsdz, p,o > 0.

Using the above inequalities (9) and (10) in (8), we get
458 <~ o= 6Ot + g [ (T 01900 ) e
[qp+ (1+0) (& + 1) K| ({ Vu|? dz (11)

+(1+2) (g +1) ko J [ u(s) [Vu(t - )| dsda.
o
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Next, we examine the derivative of #(t). By the equation (2), we find
2 - %gmudm=ff;lm|2dm+‘f;uumiw
= s{ lue|®dz — a ‘j; |Vul? dz — g{ Vu (Zop(s)Vn"(s)ds) de.
The last term in the right hand side of (12) has already been estimated while

examining the first term in the right hand side of (8) (see proof of (10)).
Therefore

(12)

) g({|ut|2da:—ar{IVu|2dz+p({qu|2dm

+8 1+ a')ko‘j]‘ |Vul? dz + (1~+ 1) ‘j; Zou(s) |Vu(t — 8)? dsdm]

%tt < [lw|*dz - [a -p-q(1 +-0')’z°§] J1Vu|* dz
! e Q (13)
+R(1+1) ‘{ of u(8) |Vu(t — 8)|* dsdz.

Finally, we differentiate XC(t) with respect to ¢,

) = P(0) [ [Vul'do~ [ [ u(t - s) [Vu(s) dsdz
O Q —o0
—af f P.(t — 8) |Vu(s)|* dsdz.
Q -0

It is apparent that,

dK(t) _ (°° . ) o [T :
—_— = w(r)e* dr |Vul|* dz ~ u(8) |Vu(t — s)|" dsdz — aK(t).

(14)
We are now ready to define the functional L(t),

L(t) = NE(t) + F(t) + vH(t) + BK(t), N,v,8 > 0.

Clearly, for small  and large N, there exist positive constants D; < 1 and
Dy > 1 such that

Dy (E(2) + BK(t)) < L(2) < D2 (E(t) + BK()) - (15)

" b
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Taking into account the relations (7), (11), (13) and (14) we infer that

-‘-‘-‘a@ <&f (j’oy' a)‘ |Vnt(s)|? ds)k dx — (ko — 6u(0)) f ) [ |w)? dz
+ae [ (] ( — i (s) [Vt (s)? ds) dz + [ap+ (1+0) ( ) 2] [ |Vul? do
+(1+1) ( + 1) koffu 8) qu(t—s)Igdsdm+uf|ut|2dw
—v [a ~p—(1+0)% ] J |Vu|2da: +viR(1+3) g’{p(s |Vu(t — s)|* dsdzx
+8 (f u(r)e“'d'r) [ |Vu|? dz — BaK(t) ,Bg'zou(s |Vu(t — 3)|? dsdz
L0 < (¥~ ) [ [1(0) 1970 dada
- [u (a-—p-—- (1+a)5’-ﬁ) —ap—(1+0) (-‘1-+1) kg — ﬁ(fu(r)e“'dr)]
X f|"€7u|2 dz — (ko — v — b 0))f|ut|2 dz — BaK(t)
~[B- @+ (g+1) kvl 1+ -,;)] [ T u(s) IVu(t — 5) 2 dsd.
| 20
Choose v < ko, then § small such that u(0) < ko—v. Choose N large enough

so that & > o ie N> 535+ For small values of the integral f p(r)ec dr

(and therefore for small values of ko) we can choose N large enough and 6,v
and p small enough so that we can find a positive constant C for which the

relation ALl
2 < _o (e +xw)
holds for every t > 0. Making use of (15), we entail that

()

< - > 0.
S eL(t), t>0

Therefore
L(t) < e L(0), t>0
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and (15) again implies that
E(t) < Ce™ (£(0) + K(0)).
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