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Abstract

It is shown that, the solution of the wave equatmn in RNV with
a nonlinear source of polynomial type and a nonlinear dissipation of
nonlocal nature, blows up in finite time. Precisely, the dissipation is
of cubic convolution type involving a singular kernel,
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1 Introduction

We consider the following equation

| g + Mo+ ue (Vo % ud) = Au+ajuff " u, in RV x (0,00) (1)
with initial data |

u(z,0) = ui(z) and w(z,0) = ug(z), z € R (2)
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?

where |
(V) @) = [ Vil - 9ty tay
N

and
Vo(z)=lz|7", 0<y< N, A>0,a>0,p>1.

We shall make use of the usual L?, 1 < p < oo spaces and Sobolev spaces
H* k=1,2,...(see [1] for instance)

Ifa =0and {u;,us} € H x (H' N L9), ¢ = 5%, then the problem
(1)-(2) admits a global solution (see [5,10,11]) satisfying

(i) u(t) € C ([0, 00); E) and is such that

@I + / / ue(, 5) / o =41l dydads = O

0 RN

for any ¢ > 0, where

1/2
1
E=w=(w,w): |w|g= 5 (/ )\'w1 + |V |2 +w2] d.z') <00 ).
N

(ii) u(t) € C ([0, T); L?) for a.ny T>0.
(iif) ue(t), Vue(t), Au(t), f |z — y|7" we(y, t)*dy € L*([0,T); L?)

for any T > 0.

In [9], Mochizuki and Motai proved some decay and non-decay results
depending on the initial data and the values of v. With the help of weighted
energy norms they obtained logarithmic and polynomial decay results for a
dense class of initial data in H* x (H' N L9).

The case of a source of the form h(t)u (V, * u?) (z, t) has been investigated
by the present author in [12]. We showed, among other results, that the
solution grows up polynomially as t — +oo for a weskly decaying potential
h(t). A strongly decaying potential forces the energy to remain umformly
bounded. Moreover, we obtain an asymptotic stability result.

The difficulties we encounter here arise mainly from the singularity of the
kernel in the convolution term in addition to the unboundedness of the region
and the nonlocal nature of the dissipation. To overcome these difficulties



we appeal to the Hardy-Littlewood-Sobolev inequality (see [3] or [8]) (see
also Lemma 1 below) and a convolution property satisfied by the kernel in
question.

Here, for the case a # 0, a > 0 i.e. in presence of a source of power
- type, we shall prove a blow up result in finite time. We will use a, by
now well known, argument due to Georgiev and Todorova [2] which has
been proved efficient for nonlinear dissipations (see [2,4,6,7,13]). Roughly, it
consists in verifying an ordinary differential inequality for an appropriately
chosen functional. The functional we propose in our proof has an advantage
on those usually used in the litterature in that it allows for a larger class of
initial data. Indeed, in contrast with the previous works, the initial energy
we consider may take positive values.

It is easy to see, using some Sobolev embeddings and (3) below, that if the
initial data u)(z) and ua(x) are of compact support, (say supp u;(z) U supp
uz(z) C {|z| < R}, for some R > 0), then the solution u(z,t) is also of
compact support (supp u(t,.) C {|z| < R+ t}, for any ¢t < T},, where T, is
the maximal time of exlstence) '

2 Blow up in finite time

Lemma 1 (Hardy-Littlewood-Sobolev inequality, see [8] or [8])

Letu € LP(RY) (p > 1), 0<y<Nandf>1-3, then (1/|z|") xu €
LIRY) with ¢ = § + % — 1. Also the mapping fmm u € LP(RN) into
(1/ ]z *u € L"(IRN ) is contznuous

Theorem 2 Let p > 3 and assume the above hypotheses. For any T > 0
we can find initial data uy(x) and uy(z) (of compact support) for which the
corresponding solution u(z,t) blows up at a finite time T* < T.

Proof. The multiplication of equation (1) by u; and the integration over
RY yield

) dE(t
T == [ [ve- i, e ®
RN RN
with 1
= el PO BT 2 p+1
B /[2,\u+2u, 31Vl = =S da.
RN



Observe that "—géﬂ < 0 and then
E(t) < E(0), forall t > 0. (4)
Let us introduce the functional |

t .
[ [le_ pr1_1y2 12 1, 0 / 2

H(t) = // {p+1 |u 2Au 5U ~ 3 |Vu|® p deds+(dt+1) [ uide

0 RN RN

The positive constants d and [ are to be chosen later on. A differentiation of
this functional (with the above observation (4)) implies that

H@t)=-E®t) +d [ widz>d — E(0). (5)
[z [ e
We readily choose d so that
d / - H () > ©)

It appears then from (5) and (6) that
H'(t) > H'(0)>0for all £ > 0.
Moreover the identity (3) yields

H(0) - H(t) = —//uf (Vs % u?) deds < 0. (1)

0 RN

Now we choose & second auxilliary functional

| | L(t) = H'™(t) +§ (.,/ uidz — / ufdz)

N RN

withe >0and 0 <o = 3{;—:%5 < 1. Our goal is to show that L(t) satisfies a
differential inequality of the form

L'(t) > CLi(t), ¢> 1.
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This will yield blow up in finite time.
It is clear that

. t t
L'(t)= (1—a)H"”(t)H'(t)+e/ulugdm+e//ufdzds+e'//uuuda:ds.
‘ 0 RN 0 RN

RN
(8)
The last term in (8) may be evaluated by multiplying equation (1) by u and
integrating over RY x (0, t). Indeed,

f [ wuydrds = —/\f f u?dzds — f f |Vuf® d:cds+af f [ulP*! dzds
0RN

—f J wue (Vy % u?) dzds,
0 mV

| | (9)
We have, by Parseval equality and a convolution property enjoyed by the
kernel V,(z) (see 3, chapter 7.1 and 3.4])

ffuuth(w y)uidydzds
0 RN

¢ 3 $
< ‘{ L{V (V_zgim *uf) dm} L_va (Vg_;»_-,_ :tc(utu))2 da:] ds.
In fact,

—
fuuth(ac - y)u dydz-—fuutV * uldz
RN

= uut lV@' uidz
o 2
<1 (V;;Iug) dx] 1 (i)

The hat"stands for the Fourier transform. Also, by Cauchy-Schwarz inequal-
ity

(10)
3

Viga * (uew) = m{' Viga (@ - y)ueu(y)dy

3
(f Vi (2 — y)ui (y dy) (f Viga (2 - y)u(y )dz/>

5
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That is

VKF * (uu) < (Vﬂp ak'u,.“)é (V#l * 1y )i.
Therefore,

t

f ut (@ — y)uidydeds
OR

e[ i
5{[& Vﬁéﬁ*ut ] [ VgF*u,)(VgF*uz) :I ds

t
Sf{f V_aﬂ*ut dm} [ Vy_au*u)dx] ds.
By the Young inequality, we get

] f [ ifo ~ piapiads
2
' 2 (11)
<éf f (Vﬂp *ut) dmds+;;§gf f (Vgp*uz) dzds, 6 > 0.
0 R 0 s

Taking into account (9)-(11) in (8), we find

Lt)2(1=o)H t)H (t) +¢ f Uru2dz + € 6[ [ uidzds
RN

~)e f [ vidzds — ¢ f f |Vu|® dzds + ae f f lufftldzds  (12)
0 N
t -~
-~ _ 3
[ (Vaga *ut) dods — 3 g’n{ (VEF *u) dads.
By a similar argument to that in (10) we obtain

f(VEF ) dm“/“?(%*u;")dw.

) RN . RN
Tt follows then from (7) that ’

/ / (V”-F *“?)2d~’”ds = H"(t)"'- H (0). (13)

t
0 RN



The last term in the right hand side of (12) may be handeled in the
following fashion, by Hélder’s inequality we see that

: j (V;!F * u2)2d:cds = j' Ju (v, » u?) dzds
0 RN ~ ORN
‘t 7 it
< (mf s da:) (f (Vy u’)ﬁ da:) ds (14)
0 \RN RN
[ e «
< (ff |ufP+? dmds) (f I (v *u’)ﬁ dmds)
O RN 0 RN
Using the Hardy-Littlewood-Sobolev inequality (Lemma 1), we get

 / (V4 *uz)ﬁ d:;: <A (’/u"dm) =

RN N

=1
P

with A > 0 and r = L.,

Observe that as p > 3 we have 2r < p+ 1 (in fact 2r < p+ 1). Indeed,
p>3impliesy< N < y—vp%'ll then 2r < p + 1. Hélder’s inequality implies

, w1
/(I/Z,*uz’)g% de < C(R+T)" (/ Iu|”+ldz)

RN

for some positive constant C' and py = ;s (p+1~2r). Therefore, as p > 3

¢ =t ¢ | 7t w
(ff(mwﬁ dwds) <C(R+TI (f(flul"“dm) ds)
0 \RrN

0 RN
7

‘b

<o@vry(Ji5ae) ™ (v aos)

where ¢ = CF7 and Py = -’}(l—ﬁ; . ‘From now on C will denote a
generic positive constant which may change from line to line. Hence, from
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(14)

t ¢ #T
f / (Vi »0?)” dads < C(R+TyoT5 ( f / |u|”+1dxds) . (15)

0 RV 0 RN
By (13) and (15) we obtain from (12) that
L'(t)> (1-0)H(t)H'(t) — e6H'(t) + eH'(0) + ¢ [ wjuadz
RN

t t t
+e [ [ uldzds — Xe [ [ wldzds—¢ [ [ |Vul|* dzds
0 RN 0 RN O RN (16)

t s [t 7
+ae [ [ |uff*! deds — £C(R + T)"“Tfﬁ (f [ Pt da:ds)
0 RN 0 RN ‘
Selecting § = M H~?(t), the inequality (16) becomes
L't)2((1-0)—eM)H°()H (t) + eMH™°(t)H' (0) + ¢ [ ujugdz
RN
¢ t ¢ t
+e [ [ uldeds — Xe [ [ widzds —¢ [ [ |Vu*deds +ac [ [ |uf*" deds
O RN O RN 0 RN Og
s ¢ C
— i C(R + T)» T H% (1) (f [ |ufft da:ds) .
(17)

Now we want to estimate the last term in the right hand side of (17), from
the definition of H(t)

(;%) 36 (/t [ o dwds) : +(dT+1)% (,[ u‘;’dw) SG] .

0 R

Haa(t) < 236-—1

Therefore,
h
p+1

| : h 30 [t Se+3tt
H% (%) ( I |u|p+1dwds) < 2%t (533) ( [ [ P da:ds)
0 RN . O RN B

30 ¢ 5_{1
- +2%-1(dT 4 1) ( J ufdz) ( I [ ! da:ds) .
RN ‘0 RN
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Asaag&%andp>3wehave3cr+;%_<_l.mthiacase
#h

R O RN '
. 3o
<230“1 (-&.)30+(dT+l)sa f zd, av 1+jf| |P+1d d

Inserting this estimate in (17) and choosing £ < 12, we obtain

Hbe (t) ( [ [ |uff*! dzds

L'it)ze f urugdz + € f f u}dzds — Ae f f wddzds — ¢ f f |Vu|”dxda
+ac f f lu[P** dzds — £ B(T) f f [u{""l dezds — ﬁB(T

where

: 30
B(T) = 2%-VC(R + T)MTﬁ% [(pi 1)3 + (ClT-i-‘l)‘a"r (I/ufdx) ] .

For a positive constant K to be determined we may also write

t ) t 1
L'(t)2 KH(t) - 2K [ [ |ufP*' dzds + A% [ [ wldeds+ & [ [ uldwds
. 0 RN 0 RN O RN
+& f f [Vu|? dzds — K(dT +1) f uldz +¢ f Urtigdz — £ B(T)

+€f fu?dacds-—/\ef fu“dmds——sf f |Vul? dzds
0 RN

+ag f [ [ufP*! dzds — £B(T) f [ |ulP*! dads.
ORN 0 RN

That is,

s

L'(t)> KH(t) + [e (a - Bﬁff ) - fﬁ-] j f lu|P*! dzds

+A (& —¢) f f widzds + (§ —¢) f f |Vul® dzds + (£ + ¢) f f uldzds
+e f wugds — K (dT+l) f uldr — £ B(T).



Putting K = 2¢, we infer that

P+l

t t
L'(t) > 2H({t) +¢ [a?-"-l - %ZTJ] [ [ 1wt deds + 2¢ [ [ uldeds
0 RN 0O RN

+e { [ wiugdz ~ 2(dT + 1) [ uldz —- %2} .
RN RN
Choose u; and u, such that

/u1u2dm - 2(dT+ l) /ufda: >0
RN RN

(18)

(this is possible, see Proposition 3 below) and then pick M large enough 80

that B(T
/u1’U,2d£B - 2(dT + l)/ufdx > 15/1) > 0.
RN RN
The constant M must also be sufficiently large so that
p-1_BT)
ap+ 1 > M
Once this is satisfied we select b such that
p—1 B(T)
——— > .
a,p ) 72 b>0

It follows that

t t
L'(t) > 2¢H(t) + b / / |u|P*! dzds + 2¢ / / uldzds.

0 RN 0 RN

Next, it is clear that

¢ ™
Li'&?(t) < at¥ H(t)+e'1'-1-"3 ( / / utudmds)

0 RN
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T

By the Cauchy-Schwarz inequality and Hélders inequality we have

J [ wudzds < | ( J uzdw) ( [ u dm) ds

0 RN 0 \R~N

‘ 1 4
<CR+T)s [ ( f uP"‘ld:c) ( f u?d:c) ds
RN

0

: CIALNS }
< C(R+T)ws { ({ (m[v’ up+1dz) ds} { of J ufd:cds}

where pg = § ( o ) Therefore,

( j J utud:zds) -~

O RN

t p+1)(1~c t
S C(R+T)mT™ {f up‘*‘ldmds} {f [ uldzds (21)
0 RN

0 RV

}m‘:«s

0 RN

t t p+1)(1-2e
< C(R+ T)mTe { [ [ uldzds + ( IN) u"*lda:ds) } ,
0 RN

where p, = #£& = 5?'11{75 (p+1) —-52—-1 and o = ; . We have used Young
s inequality with 2(1 — ¢) and %‘-1—"-‘1} in the last inequality.

Finally, it is easy to see, from (19)-(21), that we can find a sufficiently
large constant C' > 0 such that

L) < CL'(b).
An integration over (0,t) yields

1
L LT3 () > e :
L(0)"T5% — v
So L(t) blows up at a finite time
(1-0)CL(0) =

o

T <

11



l=o
As L(O) = H1-7(0) = (l I ufdx) , choosing | such that

(452" (/o)

Proposition 8 The set of z’mftz'al data satisfying (6) and (18) is not empty.

weseethat 7" < T. W

Proof. Precmely, we would like to prove that we can always select initial
data u; and u, satisfying both conditions

d/ufdx-—E(O) >0
RN

/ulugda: 2(dT+l)/ dac > 0
RN ; ,
Let us , first, prove that we can find u; such that

/ |u1;”+‘dm+d / 2dz. (22)

4(dT+z+-’§) / wldo+3 / Vual'de < —
RN RN

Suppose for contradiction that this is not true, that is we always have

p+1 'p+1d:c+d/ d"“<4dT+l+;)/“¥dxf%f|Vu1|2dx
RN RN

Let u; = b1y, then
@ f oy P’*‘ <& f 1P de + d [ vidz
RN
_<_ 4(dT +1+3) f v'fd:c +4 [ |Vv)da.
RN RN
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This is mpomible and therefore the mequa.hty (22) holds. Next, we select
ug > 2v/2(dT + Du, (in case dT+-l < 1 we choose up > 2,/2(dT + z'Sul) and
satisfymg

4(dT+t)fu§dm<§f
f |y P""lda;-{—( - %) fu?dx %f |Vv1|2dsc

In this way, it appears that

/ wytgde > 2V2(dT + 1) / uidz > 2(dT -H) / uide.
RN RN RN
. ‘
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