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Abstract

We consider a wave equation with an internal damping represented
by a fractional derivative of lower order than one. An exponential
growth result is proved in presence of a source of polynomial type. This
result improves an earlier one where the initial data are supposed to be
very large in some norm. A new argument based on a new functional
is proposed.
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1 Imtroduction

We are interested in the following fractional differential problem

u(z,t)=0, z €T, t>0, (1)
. u(z,0) = ug(x), w(z,0) = w(z), z € Q,
where p > 1, ~1 < a < 1, up(z) and u;(x) are given functions. § is a

bounded domain of RV with smooth boundary I'. Here 8} is the Caputo’s
fractional derivative of order 1+ a (see [17], Chapter 2.4.1) defined by

{ U+ 0} = Au+ jufftu, z€Q, t>0,

Ai+en(t) = I““%w(t), “1<ax0 @)
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and )

Bl+eu(t) = Il“"gﬁw(t), 0<a<l, 3)

where I#, 3 > 0, is the fractional integral

Pu(t) = I“”(lﬁi / (t — 8)°~1w(s)ds
0

See also [16,17,19,4] for more on fractional derivatives and applications.
In particular, in control theory, it is known that noise is amplified by the
differentiation process. To attenuate this noise one is lead to use derivatives
of lower order.

This problem was first studied for o = 1/2 by Lokshin in [11] and Lokshin
and Rok in [12]. Then, it has been considered (for 0 < o < 2) by Matignon et
al. [13]. The authors have managed to replace the hereditary equation by a
non-hereditary system for which the standard methods, such as the Galerkin
method and LaSalle’s invariance principle, apply. For the well posedness we
refer the reader to this reference (see also (8] for more on existence results).

Let us mention here that the case @ = 0 corresponds to an internal
damping. This damping competes with the polynomial source. As a result,
it was proved (see [14,15,18,5]) that solutions exist globally in time when the
initial data are in a stable set and blow up in a finite time when the initial
data are in an unstable set.

The wave equation without damping corresponds to the case a = —1. It
has been extensively studied by many authors (see, for instance [1,7,10,2,3,6,20]).
It has been proved, in particular, that solutions blow up in finite time for
sufficiently large initial data (in some sens) and also for small initial data
provided that the exponent p lies in some critical range.

In this paper we improve an earlier result by the present author with
M. Kirane in [9]. There, for sufficiently large initial data (in some sense),
it has been shown that the solution is unbounded provided that the initial
data are very large in some norm. In fact, an exponential growth result was
proved. Here we relax considerably this condition on the initial data. So the
space of initial data is enlarged. To this end we present a different argument
based on a new functional while the previous proof makes use of the Hardy-
Littlewood-Sobolev inequality and some ”convolution” inequalities.



2 Exponential growth
Let us define the classical energy by

1 1 1
Et) = / {-2-ut2 +5 |Vuf? - — [ullp"'l} dz

p+1
0
and the modified energy by
E.,(t) :=/ -1-u2 + 1 |Vu|® — cuuy — 1 luPtL ) da (4)
) 2772 p+1 ’
Q

for some 0 < e < 1.

Theorem 1 Letu(z,t) be a regqular solution of problem (1) with —1 < a < 0.
If the initial data ug and u; are such that E,.(0) < 0, then the solution u(z,t)
grows up exponentially in the Lyy,-norm.

Proof. Let us multiply (1); by (u; — eu) and integrate over Q, we get
f;g {%u? + 3 |Vuf® - euu; — A |u|”+1} dr
t
g [ [t~ 8)"@HDuy(s)dsde = ¢ [ |Vu|* dz
a0 a
+—I‘(_-€—a5 [uf(t—8)~(Dy,(s)dsdz — efulde—cf lufP*! da.
o o a 2
Recalling the definition (4) of E,(t), we see that
3
LEE‘E(Q + ﬁ';%y Ju [t — 8)~@+Dyy(s)dsdz
2 0

¢
= Ss{ |Vu|® dz + ﬂi_"sg‘{u‘o[(t — 8)~ (et (s)dsdx ()

. —¢ [uldz — ¢ [ |u/Pt da.
) o

Next, we define the auxiliary functional

¢
Fopo(t) = / / Gap(t — 8)e™"* |ug|? dzds (6)
0 0
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with
+00

Gap(t) := €7 / e~Peg=(2at3) g, (M

t
where 3 and o¢ are positive constants which will be precised later on. Since
there is no risk of confusion in the notation, we will drop the subscripts of F
and G for convenience.
A differentiation of F(t) in (6) with respect to ¢ gives

M = fG O)B—Ud |ut|2 dx

i
+ff{ (t-— 8 (201+3) +ﬂeﬂ(t-—s) f e-—ﬂz -—(2a+3)dz} —0€8 |ut'2 dxds.
0Q

t~8
(8)
Observe that
+00

G(0) = / ePog~(243) g = FUD(2q + 4),
0
Then the relation (8) becomes

0 = OD@at ) [l do = [ [(¢ 5049 u dods

+BF(t). o)

Now, we consider the functional
H(t) = e "®E,(t) + uF(t), t >0 (10)

for some p > 0 to be determined. Its derivative with respect to t is, according
to (5) and (9), equal to

"%@ = -—ase‘”‘EE(i)
+eo¢t {"T*Ti_an{“t Oft(t — 8)~(et Dy, (s)dsdz + s({ |Vul|? dz
-—es{ |ue|? dz + ﬂ{—a;r{uj'(t ~ 8)~(@+Dqy,(s)dsdx — e({ |ulPH dm}
+p { BHege(20 + 4)e—o%t f ug|? dz
- {t f{ (t — 5)~@ot+e-oes |y, |2 dpds + ﬂF(t)}

4



Using the definition (4) of E,(t), we may write

%ﬁ - (225 +e— ﬂ2(a+1)r(20 + 4 ) —aﬂf |’U, |2 dz

~ (% -¢) e [ |Vul|* dz + oece= [ upudz — (e - p"-'fi‘) —oet [ |u|P*! dz
a ! Q
¢ : ¢
—u [ [(t = s)~(Ratdg=0es |y, 12 drds + % Ju f(t = )~ @ty (s)dsdx
2 0

0 0
i
—% Jug [(t — 8)~ @ty (s)dsdz + pBF(t).
o o

(11)
By the generalized Young inequality and the Poincaré inequality, we clearly
have
/utud:r < ----/|ut|“2 dz + eC, /qu|2 dz, (12)
Q

where Cy, is the Poincaré constant. The seventh term in the right hand side
of (11) may be handled in the following manner. First note that

e~Iet E{ U ‘of (t — )@ty (s)dsdz
= e"’i‘t(j;ut 0ft(t — )~ (et~ F (-0~ F oy, (s)dsdz,
then by the generalized Young inequality, we find
‘“‘fu { (t — s)~@+Dy,(s)dsdr < L2 e"“‘f ue|? do
‘ot J (f (t.— s)~ (@l e=F (t-s)e- gﬂ“ut(s)ds)2d:c.

Using the decomposition a + 1 = ~1 + (- + ), we obtain by the htlder
inequality

e~ [uy f (t— 3) (+Dy,(s)dsdz < Me"’“[ |ug|? dz
’ (13)
+——5_12F(—a pooe f{‘{(t -— 8) (2a+3)e—aea Iut‘2 dsdz.



Similarly, we obtain for the sixth term in the right hand side of (11)

¢
e~ [u [(t — 8)~ (@t (s)dsdz < 8Cpe=oet | quIz dz
Q 0 . 0 (14)
o [ [(t — 5)~RatB)gmoes ug|? dsdz, &> 0.
Q0

Taking into account (12)-(14) in (11), we infer that
g%t_(_g < - [% +e— ﬂ,@2(°‘+l)l‘(2a +4) - :11_05 - g] e—asts{ Iut|2 de
- [925 —€ (1 +0£2Cp + -TE—”C_Z )] e~o¢ [ |Vu|* dz — (s - ﬁi) e~ [ |uft! da
, 0 o)
- [M - 40’551“2—-0:; (eﬂ?—a; + %)] {g{(t - s)—(20+3)e_6“ |ut|2 d.'BdS + MBF(t)
This inequality may also be written as follows

d—}—;gl < oeH(t) - [aa —£ (1 + 0e2Cp + r—?_‘%)] e““tfjl' |Vu|? de

- [as +e— ppreIr(20 + 4) - Loe - %] e~ [ |uy|* da
1 ) ’ S (15)
—_ ['u ~ SIS (m + %)] i{g{(t - s)—(2a+3)e—aea Iutl dxds

- (5 - 3_%) e-“t({ [Pt dx + aeze”’“gutudx + u(B — oe)F(t).

To get (15), we have added and sustracted oeH(t) in the right hand side of
the previous inequality.
Finally, we apply (12) to the term [ w;udz in (15), to obtain
) )
%Q <oeH(t)—¢ [a - (1 +20¢%C, + F%%S)] e'“t({ |Vu|? dr
2 -1 [ae + & — 2uB2@tI (20 + 4)] e"“’({ |ue)? dz

t
= 1~ b (e + 4)] [ [ 6 - Om¥ 0o s

—e (1 - g_-&) e | ufP* dz + (8 — o) F(t).

(16)



Choosing 6 = (p — 1)['(—a)/4C,, the inequality (16) reduces to
O < geH(t) — ¢ [0 — (2062C, + &E2)] et f |Vul? dz
-1 [ae + & — 2uB¥ I (2a + 4 ] —oet f |u 1 dz

— [/J _ WIIT’(:E; (.l; + {‘:—TCIL))] g‘f‘{(t - 8 "'(2a+3)e-—a‘ea |Ut| dzds
—¢ (1 - P-gf—l) e | lufP*! dz + p(B — o) F(t).

(17)

"If we choose £ < min {1, 3.1-;, [5{;?-:_1176;] i}, then it is possible to select o

such that
p+3 .<U<p+1
4(1 — 2Cpe?) 2 -

This ensures the negativity of the coefficients of [ |Vu|*dz and [ |u["*! dz.
y 0
Next, assuming u large enough, namely

| 2¢2C,
> p
#e 20%e3[%(—q) (1 + p— 1)

: E N
f < min {“’ [2uF(2a T 4)] } !

the remaining coefficients are also negative. Therefore (17) reduces to

dfift) < oeH(), t > 0. (18)
Observe that if
= E.(0): / ~u? -1—|Vu ? — euguy — |uo[P* b da
‘ 1+ 35 Vo oty — o It

Q

is negative, then defining

U(t) =-H(t), t 20,



we have ¥(0) > 0. By Gronwall inequality it is easy to see from (18) that
U(t) > ¥(0)e’®, t > 0. (19)

On the other hand from the definition of ¥(t) and (12) (w1th e =1/2),
we obtain

¥(t) < e‘"‘ f| P de — €22 f| w|* dz — &= f|Vu| dx

+s-:;-'i f{ |ut|2da:+ -QL--- {{ |Vu|2d:c,

or, for t > 0,

—act —oet -~0€t
ot / lufP* dg— E)e / g |? dr— Egp)e / Vul? da.
Q

From our choice of ¢, it is clear,

+1 (20)
9]

The relations (19) and (20) imply that

/ [ufP* dz > (p+ 1)2(0)e®, ¢ > 0.
This completes the proof. B
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