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Abstract
In this work we consider a hyperbolic nonlinear system describing heat
propagation with second sound in an inhomogeneous material. We establish a
blow up result for classical solution with large-gradient initial data.
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1. Introduction

In the absence of deformation and external sources, the equation of balance of energy
in the one-dimendional heat propagation is

£(0):+¢. =0, (1.1)

where 6 > 0 is the difference temperature, ¢ is the heat flux, and £ is a positive
strictly increasing function. In the classical theory, the flux g is given by Fourier’ s
law ~

g+x(0)6,=0
where k is a strictly positive function characterizing the material in consideration.

In the case where ¢ = £’ and k are independent of 8, we get the familiar linear heat
equation

0, =kb,,, k=2
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This equation provides a useful description of heat conduction under a large range
of conditions and predicts an infinite speed of propagation; that is any thermal dis-
turbance at one point has an instantaneous effect elsewhere in the body. This is not
always the case. In fact, experiments showed that heat conduction in some dielectric
crystals at low temperatures is free of this paradox and disturbances which are almost
entirely thermal propagate in a finite speed. This phenomenon in dielectric crystals
is called second sound. To overcome this contradictory paradox, many theories have
merged. One of which suggests that we should account for memory effects ( See [7],
[13]. [14] ). For this purpose, an internal parameter p has been introduced as

g=—a(f)p (1.2)

If the memory effect is considered as a functional of a history of temperature gradient
then

t .
m@@=/ e¥t-90. (7, 8)ds,  b>0. (1.3)

-0

A differentiation of (1.3) with respect to time gives

If o(0) is constant then (1.2) and (1.4) yield

gt + bg = —ab;.

This is a linear equation and does not fully describe the heat propagation in solids
~ (See [7], [13]). In fact this is a special case of Cattaneo’ s law [1], which has the form

7(0)q: + ¢ = —£(6)6,.

Here 7 and « are strictly positive functions depending on the absolute temperature
and characterizing the material on consideration. In this case the system governing
the evolution of § and g become '

c(0)6;+ g, =0

7(8)g: + ¢ + K(8)6, = 0. (1.5)

Global existence and decay of classical solutions, for smooth and small initial data,
to the ‘Cauchy problem, as well as to some initial boundary value problems, have
been established by Coleman, Hrusa, and Owen [2]. In their work, the authors
considered a system, which satisfies the requirements imposed by the second law of
thermodynamics discussed in [3], and showed that (6,g) tends to the equilibrium
state, however no rate of decay has been discussed. Messaoudi [11] showed that if
the initial data are small enough then the solution decays exponentially to the rest
state.

Concerning formation of singularities, Messaoudi [9], [10] showed, under the same
restrictions on 7, ¢ and «k, that classical solutions to the Cauchy problem of (1.5)
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break down in finite time if the initial data are chosen small in the L*® norm with
large enough derivatives.

In this work, we consider the situation when a in (1.2) is a function of z only.
This may be regarded as inhomogeneity in the material in consideration. Therefore
the system we study takes the form

c(6(z,1))6:(z, t) + gu(z,t) =0 (16)
g:(z,t) + bg(z,t) = —a(z)b,(z,t), ze€I=(0,1), t>0 '
~ This is a hyperbolic system for (6, q) and it will take care of the paradox of infinite
speed propagation known in the classical theory of heat propagation. We associate

with (1.6), the initial and the boundary conditions

0(9370) = 00(1:)’ q(m,O) = QO(m), rel= {Oa 1] ' (1 7)
6(0,t) =0(1,t)=0, t=>0 '

and prove a finite time blow up result similar to one in [9). We should note here that
hyperbolic systems similar to (1.6) have been discussed by many mathematicians
[6], [8], [14] and various results concerning global existence and blow up have been
established

In order to make this paper self contained we state, without proof, a local existence
result. The proof can be established by either a classical energy argument [4] or by
using the nonlinear semigroup theory [5]. We first start with the hypotheses on the
functions a, ¢, and the initial data.
- (H1) a € C%([0,1]) such that a > ag > 0 -
(H2) ¢ € C*(R) such that ¢ > cg > 0
(H8) 6, € H*(I) N H}(I) and qo € H?(I)
Proposition. Assume that (H1), (H2), and (H3) hold. Then problem (1.6) — (1.7)
has a unique local solution (6,q), on a mazimal time interval [0,T), satifying

bec(o), H(NNHW)NCO,T), HID) (L8)
eC(0T), HADNCO,T), H'D) |

Remark 2.1. 6, ¢ are in C*([0, 1] x [0,T")) by the Sobolev embedding theorem.

i

2. Formation of singularities.

In this section, we state and prove our main result. We first begin with a result,
which gives uniform bounds on the solution in terms of the initial data.

Theorem 1. Assume that (H1), (H2), and (H3) hold. Then the solution (1.8) satis-
fies

< .
B {10, +la@ 1) <T max (6@ + ()]} (21)
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where T" is a constant independent of 6, q, and t.
Proof. We introduce the quantities

r(@t) =120 _ a0,9), st =22 4 A0(z,)

\/c—z-(;S ’ a(z

and the differential operators

B

@

o189 .. 12 98
% = pdt Oz’ 2 p6t+3a:

p@8) = o) 01, AG) = [ elE)ae.

We then compute

where

_ 1
Or = -—rt—rm

_ c(9 ( \/—et)__ \/—Om)+ da~3/%

1
= —7(c9t+qm)+—[-(qt+a0) a'a=%%g

=(b‘f+; a=3?)q(z,t) = ( b\/—+a r+s

by virtue of the system (1.6). Simillar computations also yield

+o o __a_r+s
o's (ba 2a’ 2

We then define the nonnegative Lipschitz functions

R(t) := max Ir(z,t)|, S(z,t):= max |s(z, t)|.

For each fixed t > 0, we pick «; and 25 in [0,1] so that
R(t) = |r(zy,t)],  S(t) =|s(zs,1)];

therefore for so small h € (0,t), we have

R(t — h) 2 |r(z1 + hp(21,t),t - h)|
S(t — h) = |s(z1 — hp(z,t),t — h)|. |

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

2.7)

By substracting (2.7) from (2.6), dividing by h, and then letting A go to zero we get

R(@) < plz, )67 ra:l,t)|<\/—| b\/_ e r+8

Tl < J(Rw +S0)

4
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and
S'(#) < 2(R() + 5(¢))

where v = b+ (maxa’)/aoco. Therefore we have

2 R#) + 5] < R + SO
A simple integration leads to -
IR() + S0)] < [RO) + SO))e"” e

We using (2.2) and (2.5), the assertion of theorem 1 is established.

Theorem 2. Assume that (H1), (H2), and (H3) hold. Assume further that ¢/(0) > 0.
Then there exist initial data 6y and go, for which the solution (1.8) blows up in finite
time.

Proof. We ta.ke an t-partial derivative of (2.3) to have

6 = [( b\/—+“ rts, (2.9)

which, in turn, implies

ore = —-—rt + (= b\/— g- (2.10)
_ C a e + 8¢
= 2\/——9t7~t -+ ( —b Za)_—2 4\/_(7' -+ 3)
By using (2.2), it is easy to see that
‘ : 8t — Ty
%= 26
thus substituting in (2.10), we obtain
- = sy \/'c' a .1+ 8 bd 8 — Tt
Fr = 37w 2 o) 4\/&:‘("“) 2 (211)

_d g d \/E a \rets St =T
= deyact 4c\/&_c'rtst+( b a+2a) 2 \/a_c( T 5 2¢

In order to eliminate the second term in the RHS of (2.11), we set

g W = ct/*r,,
consequently we get
1
W = cMor, + Zc'3/4rt6'c (2.12)
—7/4 / -3/4

1/4 o ’”t"'st
4\/6 \/_rtst+c (- b\/-+

T -
‘waz(" +0) 2 o2, - 0,
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At this point we should note that, by (1.6) and (2.2), we have

_ & _ Ve, b
(Qt+bQ) NG \/Eot+aq.

Therefore (2.12) becomes

M, 4 . a.\r +3
- — _ /4 t t
oW W W 4\/_ rtst+c l b\/—+ (2.13)
‘ bC' S 1 _3/4 ’ t b
4\/a_c(r+8) ZC ]+4C rtc(_\/a-i-aq)
e, 1.d c b d
- AW +§§a—b\/£+8cﬁa(r+s)+za(r+s)]w
+l[i i (r+38)ls
2'2q a 8cy/ac t

Direct computation, using (1.6) and (2.2) again, gives
8 = +/af; 0 — \/_(s+r) r+ s =2r+ 2A(9).
So substituting in (2.13) yields

. ¢4 2, la \/"
oW = Wil -

8\/_(r+) :E(r+s)]W

—b\/—z— - \/az(r+4)]¢aa;o (2.14)
s+l — e - =+ o)

We now estimate the third term of (2.14) as follows

76 6 = o \/‘9)”(255)'
b c(o)a 6 = —b7bA
e \[ra 6 = --g-rg—3/2(9)c'(a)a;o (2.15)

b b, _ b _ -
= Zr@;‘c"l/z(ﬁ) = —6 [re2/%(9)] — 7° c M2 (0)o; r

= Lorirea(0) - B b\/_ o
2 (0)e (e)A(o)a;o = 257 /0 c‘3/2c’A(£)d£)

b
~ 5o/ 00
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By setting

£@,8) = (5728 = b+ reV26) = ([ i )

the estimate (2.14) takes the form

oW =W L o f - MW 4 N
where
1.d C bd c
M = Eﬁ_b E+—-——-\/_(T+3)+——(T+8)]

N = _a’__/___c-—l/z( \/— a ’I”+8

- [C
—m(s + r)[-2-a z b\/g - Scﬁé(r +3)]
When set F = W — f to obatain, from (2.16),

¢4
4\/a

where B = (M - 29-}77/2-91]”) and C =N + %“—’fz — M f are functions depending on
" a,b,0, and g only. Therefore by choosing the initial data small enough in L™ norm,
with sufficiently large derivatives (hence F' is large enough), it is standard to deduce
that F' blows up in finite time.

Remark 2.1. The same result holds for ¢(0) <"0. In this case consider the evolution
of s; on the forward characteristics.

Remark 2.2. Similar results can be obtained for the Cauchy problem, as well as
other types of boundary conditions.

O F = F?+BF +C (2.16)
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