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Abstract Some inequalities involving sample means, sample median, the smallest and
the largest observations are established. An upper bound of the absolute difference
between the sample mean and median are also derived. Interesting inequalities obtained
for cases whcn all the observatlons have the same sign.

1. Introduction

Inequalities involving sample means, median and extreme observations are not generally
known. This pedagogical note is inspired by Shiffer and Harsha (1980) and Macleod and
Henderson (1984) who worked on the bounds of sample standard deviation. Some
inequalities involving sample means, sample median, the smallest and the largest
observations are established. An upper bound of the absolute difference between the
~ sample mean and median are also derived. Interesting mequalltles are deduced for cases
when all the observations are nonnegative or have the same sign. We believe that the
inequalities will, in particular, provide additional information to students in statistics,
and, in general, open a new direction of further research to refine inequalities on other
sample statistics along the line of Shiffer and Harsha (1980), Macleod and Henderson
(1984) and Eisenhauer (1983).

- Both sample mean and median are popular measures of central tendency. However there
are situations when one is preferred to the other. The sample mean is rigidly defined,
fairly and easily calculated and quite intelligible to a layman. It also utilizes all the data
and is highly amenable to mathematical treatment. Advanced statistical theories related to
sample.mean appear to be very elegant while with sample median, sample mode or any
other measures of central tendency they are in most cases intractable. The main drawback
of the sample mean is that it gives equal wmght to all observations, and as such is
affected by extreme observations. '

Though the sample median is not rigidly defined for samples, it is easily computed,
readily comprehensible and is not affected by extreme observations. It did not get as
much popularity among statisticians because it is not well suited for algebraic
manipulations. However it is preferred to sample mean in the situations (a) when the
- relative frequency distribution of the sample is highly asymmetrical (b) when there is an
open class interval at one end or both ends of the relative frequency distribution (c) when
it is difficult to measure the variable numerically (d) when the characteristic under study
is population median (¢) when the population under study is not symmetrical rather



highly asymmetrical. Statistical theories related to sample median is related to Order
Statistics, an area of statistics that has slowly developed in the last four decades.

Let x,<x,<S--<x, be the order statistics corresponding to the

. U .
sample (x,, x,,*+*,x,) with median X = -2—(x({,l sas12p + Xn ,2+1])) where [m] is the bracket

function denoting largest integer not exceeding m . Also let the arithmetic, geometric
and harmonic mean be denoted by a(x,x,,:-,x,)=X%, g(x,, x,,++,x,)and

h(x,,x,,*-,x,) respectively. In this paper we establish interesting inequalities involving
some of the sample characteristics, namely, X, g(x;,x,, -, x,), b(x;, X,,,X,), X, X,
and x,.

2. Main Results

Lemma 2.1 Let x, <y, 15i<n).Then
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Consider the three sequences A={a,a,,',a,}, B={b,b,,":',b,,}and
C ={c,,c,,":",c,, }each having 2n numbers defined by

_|xqy if 1SksSn
*TlFif n+1<k<on’

Xif 1Sk<n

by = Xqxs2m/2p 80d €, = {x( yif n+1<k<2n

These sequences are then

A={x(l),x(,),---,x(l),x,x,m,x} B={xm,x(,),x(z),x(z),-.-,x(n),x(,,)} and
C={36,55,---,i,x(n),x(”),---,x(n)}where A and C contain nmedians (X¥). For 1<k <n,

1 ~
A = Xy S Xgesanrz =B < ‘z’(x([n/zﬂlzl) + x([n/2+l]))= X=c, andfor n+1<k<2n,



| .
a, =Xx 5‘5("([»/2+m]) +x([,,,2+,],)s Xarsasrap =0 S Xy =c,. Since the elements of the

three sets satisfy the conditions of Lemma 2.1, we have the following theorem .

Theorem 2.1 For any sample of n22 observations x;,x,,--,x, Wwith

X S X S+ S X, the following inequalities hold:

"

Xy +X X+x
i) —— < if x,, >0 and
(iii) T3 Sh(x;, %y, %,) S T 1 1% >0an
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where g(x) and h(x)are the geometric and harmonic means of a sample of n
observations. '

Proof.

" () Applying Lemma 2.1 (i) to the sets A and B, and then to Band C we have .
nx,, +nX <2nx and 2nX < nx,, +nX so that
nx,, +nx < 2nx < nx,,, +nx . Dividing this inequality by 2n we obtain the desired
inequality. |

(i) Applying Lemma 2.1 (ii) to the above three sets of numbers A, B and C we have

(x(,) 35)" <(oxx,) < (i x(n))‘ if xq 20. Since g(x,,%,,,%,) = (%%, %, )" is
the geometric mean of the observations, the proof is thus complete.

4

(iii) Applying Lemma 2.1 (iii) to the above three sets of numbers we have

2 1 2
- nsz 3 Z'Sn - if x5, 20.
—t= — -t =+
Yo X Xo X ORI
Since h(x,,x,,*+,x,) = 7 T z 7 is the harmonic mean of the observations,
' — et —
Yo *o WONS

the proof is complete.

[



Corollary 2.1 If x,, >0, then —;—h(x,,xz,---,x,,) S¥<2X%

Proof. By Theorem 2.1 (iii) we have

L <l gy, +F
/x+1/x,, 1/X

1 v
-2-h(x,,x2,---,x,,)s

and by Theorem 2.1 (i) we have x,, +% < 2X.

Theorem 2.2 For any sample of n22 observations x,,x,,

Xq) S X £+ S X, the following inequalities hold:
) x4+(n —i)X ) S X, for 1gi<n, Xqy = 0
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Proof. (i) Assume first that x,, =0. Then, for 1 <i < n, we have

+ Xy = Xgun) + (X = X)) o0+ (xg) = X))
S =Dxgy =[xy = X)) + (Xgagy = X))+ + () = %))]

SE-Dxy) —(n—i)(x) — %)
50 that
X +(n=Dx,, Snx.
(if) For odd n and i = (n+1)/2, it follows from (2.1) that

~, n-1 -
x +""§"‘ X(ns3)12) S NX
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where we have used the fact that ¥ = Xnityiz) S Xmenyy fOr odd n. Hence for any odd

n, we finally have



(n+DX¥ <2nx. 22)

When nis even, letting i =n/2 and i =n/2+1, it follows from (2.1) that

n % and n_ .
X(n12) +"2‘ Xinizery SHX and X, 5, + ‘2"’ Xenizezy SHX

n n ~ ‘ -
2 2

or,-;i'fc'+(-g-—l)5c’+2i'52n5c' . 2.3)

where we have used the fact that ¥ < x,,,,,, S X,/2.,, for even n, so that the inequality
(2.2) also follows from (2.3). Hence for any sample of size n 2 2with x,, =0, we have

(n+1)F < 2n%. " 2.4)

Suppose now that x, < x,, <--- < x,,, where x, is no longer assumed to be zero, and
let y,=x;, —xy (1Si<n)sothat y =X ~x,, J=X%-x,. Then it follows from (2.4)
that (n+1)y <2ny ie. (n+1)(F —x,)) S 2n(X - x,,) so that k‘(n =Dxg +(n+1)X < 2nX .

Next from - x,) < ~x,, S+ < -x,, similarly we obtain
- (n=1D(=x4,)) +(n+1)(-%) < 2n(-X) or, (n+1DX +(n—1)x,, 22nX.
The proof is thus complete.

n n

(l—-l)xm +(1+-1-)5c‘ < (1—-1-);+(1+—1-)is(1+l)5c'+(l—-l—)x(n)
n n n n n n

or, (1:1)(;?—%) < (1+1)(5e -%)< (1-1)(3—;:(1))
n n n

-1 Yo~ = -
or, _%—-{_—T (x(n)—x)Sx—x Sﬁ—;—_—i (x—x(l))

(iii) By writing 2x = (1 - -l—}z' + (1 + —1—}? , it follows from Theorem 2.2 (ii) that

~ =, n-1 . -
or, [ X=X S —— max (X —x,,,x,, —X).
’ 1 (ORI O

It is worth noting that the inequalities



1 - 1
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in Theorem 2.1 (i) can be deduced from Theorem 2.2 (ii) in the following way:
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SE[(lﬁ-;]x+(1—;)x<n)]=—2-'[x+x(n)—-’;(x(n)—x)]s—z-(?+x(n))

Corollary 2.2 The following inequalities hold for any sample of n = 2 observations:

(i) 21x12 1% 1, if the observations have the same sign. (2.5)
" 2n  _ 2n \ . : ’
(ii) Xa) < -’;-:'i- X +(1—-;:—1-) x < X(n) 2.6)

Proof. (i) If x,, 20, then both X and X are nonnegative, and X/2< (xm +X )/ 2 which

cannot exceed ¥ by (2.5). If x, <O then both Xand ¥ are nonpositive and

x< (J? +x, )/2 which cannot exceed X/2 by (2.5) again. Taking absolute values we
have the inequality in (i).

(ii) The 'inequalities follow directly from Theorem 2.2 (ii).

Remarks

(i) If the observations x,, < x,, <---<x,, have the same sign then 21X |=|X| occurs
exactly when all x’s are equal to 0. If x,, 20, then 21X |=1X| implies 2¥ =X so that

we have 0 < (1 - —l-}x(l) + (1 + -1—}? <X by Theorem 2.2 (ii) and hence
n n

td

1 X+ (1 __1_)‘(1) =0 which happens only if ¥ =0 i.e.if 2X =0 and so all observations
n n

are 0’s. A similar argument applies when x,, <0.

() If x4 >0,then 2x 2 -’—1:-1—)7 > X by Theorem 2.2 (ii). Similarly, 2x < ¥ if X <0.
n

(iii) In case not all the observations have the same sigh, an exampie of a sample showing
2x=X% may be: n=3, x; =-10, x, =10, x5 =15 which could be average
temperatures of three days in a city. ‘



(iv) If all the observations are nonnegative, then for a negatively skewed distribution we
have X¥/2< X <X, but for a positively skewed distribution we have X <X < (¥ +x,,)/2

Corollary 2.3 If n 2 2 observations have the same sign, then

3‘_-—1’51.
X

Proof. Since x’s have the same sign, it follows from (2.5) that

=

Z={H<2. Now if Z21, then |[~-1=2-1<1 and if Z <1, then
X X X X X X

-)_c:-f-l =l,—-§-<l.Thus,foranycase, -J;c--l <1.

X X
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