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Abstract

The problem of finding the nearest positive semi-definite Hankel matrix of
a given rank to an arbitrary matrix is considered. The problem is formulated
as a nonlinear minimization problem with positive semi-definite Hankel matrix
as constraints. Then an algorithm with rapid convergence is obtained by the
l;Sequential Quadratic Programming’(SQP) method. A second approch is to
formulate the problem as a smooth unconstrained minimization problem, for
which rapid convergence can be obtained by, for example, the BFGS method.
This paper studies both methods. Comparative numerical results are reported.
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1 Introduction

Hankel matrices appear naturally in a variety of problems of engineering interest:
comunication, control engineering, filter design, identification, model reduction and
broadband matching and in different fileds of mathematics, e.g., in systems theory,
integral equations and operator theory.

Hankel matrices possess certain properties regarding their rank and positive semi-
definite structures depending on the construction or arrangement of their elements.
In practical applications, these matrices are constructed from noisy observations and
hence some of their nice properties may be destroyed or changed. The signal process-
ing problem is to estimate the matrices with desired properties so that the estimated
matrix is close to the given observation in some reasonable sense.

We consider the following problem: Given an arbitrary data matrix F € IR™*",
find the nearest positive semi-definite Hankel matrix H of rank m to F. Use of the
Frobenius norm as a measure gives rise to

minimize ¢ = ||F — H||
subject to H € K, (1.1)
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where K is the set of all n x n symmetric positive semi-definite Hankel matrices
K={H:HeR"™, H>0, Rank(H)=m and H € H}, (1.2)

where H is the set of all Hankel matrices.

The problem was studied by MacInnes [9]; he proposed a method for finding the
best approximation of a matrix A by a full rank Hankel matrix. In [9], the initial
problem of best approximation of one matrix by another is transformed into a problem
involving best approximation of a given vector by a second vector whose elements are
constrained so that its inverse image is a Hankel matrix. Related problems were also
studied by [10, 11] and [12] in relation to signal processing problems.

A Hankel matrix H is denoted by

a; asg cea ay,
as as AP Anp+1

H=| . . | = Hankel(ay,as,as,...,a2,-1). (1.3)
An  Gpyr ... G2p—1

Section 2 contains a brief description of the SQP method for solving (1.1). The
problem is formulated as a nonlinear minimization problem and then solved using
techniques related to filterSQP . In Section 3 the problem is formulated as a smooth
unconstrained minimization problem then solved using BFGS method. Finally, in
Section 4 numerical comparisons of these methods are carried out.

2 The SQP Methods

In this section an iterative scheme is investigated in order to develop an algorithm
for solving problem (1.1). The problem is formulated as a nonlinear minimization
problem and then solved using techniques related to filterSQP [7] which provide global
convergence at a second order rate.

It is difficult to deal with the matrix set constraint in (1.2) since it is not easy
to specify if the elements are feasible. Using partial LDLT factorization of H, this
difficulty can be overcome. Since m, the rank of H*, is known, therefore for H
sufficiently close to H*, the partial factors H = LDLT can be calculated such that

I = [Lu .r]»D _ [Dl ],H _ [Hn Hé’i], 2.1)

L21 D2 H21 H22

where L3, D; and H;; are m x m matrices; I, Dy and Hyy aren—m xn —m
matrices; Lo; and Hy, are n — m x m matrices; D, is diagonal and D; > 0 and D,
have no particular structure other than symmetry. At the solution, Dy = 0 and H is
symmetric positive semi-definite Hankel matrix. In general,

Dy(H) = Hyp — HyH'HY. - (2.2)
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Now if the structure of the matrix H is in a Hankel form, i.e.,

Ty v Ty

H = = Hankel(z, - -, Zon_1), (2.3)

Tp -+ Top-1
then (2.2) enables the constraint H € K to be written in the form
D,y(H(x)) = 0. (2.4)

Hence, (1.1) can now be expressed as

minimize ¢

subject to Do(H(x)) = 0=ZTHZ, (2.5)
—Hpy H,

I

The Lagrange multipliers for the constraint (2.4) are A relative to the basis Z and
the Lagrangian for porblem (2.5) is

Lx®A®Y = ¢ —A: ZTHZ. (2.6)

where Z = ] is the basis matrix for the null space of H when D, = 0.

The above approach has been studied in a similar way by [5].
The structure of the Hankel matrix D has been given in (2.3), then

¢ Z fzy ‘L] = Z (fij - mi+j—-1)2a (27)
1,7=1 1,j=1
and ¢ = [6—‘3% e ﬁ%]T where V denotes the gradient operator
(0/0z1, ..., 8/0zn_1)T. Therefore
5583_2,2; fzs 1+1 s=1...,n
6¢ 2n—s
6.’15 =2 Z fn—i+1 s+i—n) s=n+1,...,2n—1. (28)
Differentiating again gives
0% .
57,53, =0 if  r#s,
where 3,7 =1,.--,2n ~ 1, and
0%
8953:23 s=1,...,n
2
6¢=2(2n——s). s=n+1,...,2n— 1. - (2.9)

2
Ox?
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The advantage of formula (2.4) is that expressions for both first and second deriva- -
tives of the constraints with respect to the elements of H can be obtained. The simple
form of (2.2) is utilized by writing the constraints Dy(H) = 0 in the following form:

dij(X) = Tiyjo1 — Z $i+k—1[Hﬁ1]kz ZTjpi-1 =0 (2.10)
k=1

where 4,5 =m+1,---,n and [H{;']; denotes the element of H{' in kl-position.
Thus (2.5) can be expressed as

n
minimize ¢ = Z (fij — wi+j_'1)2.
t,J=1

subject to d;;(x) = 0 (2.11)

In this problem, since the equivalent constraints d;j(x) = 0 and d;;(x) = 0 are both
present, they would be stated only for i > j.

In order to write down the SQP method applied to (2.11), it is necessay to derive
first and second derivatives of d;; which enable a second order rate of convergence to
be achieved.

Let I; be an m X m matrix given by

I; = Hankel(0,...,0,1,0,...,0),

where the “1” appearing in the first row is in the sth column and the “1” appearing in
the first column is in the sth row. Hence the matrix I, is a matrix that contains “1”s

in one across anti-diagonal and zeros elsewhere. Now differentiating Hy,H;! = [
gives -
-1
a—;{jsl— = — Hi' I, H s < 2m. (2.12)
-1
Oy _ s >2m
Oz, ‘
Hence from (2.2),
: D
%; = IL,+VTLV +UT +U, (2.13)
where ‘ oH SH.
VI=—HuyH}, U=IILV, II,= =2 and III, = -2
8.’135 81’3

II; and III, are matrices similar to I, with I, being an n — m X n — m matrix
which contains ones in one across anti-diagonal and zeros elsewhere, and I1], is an
n—m X m matrix which contains ones in one across anti~diagonal and zeros elsewhere.
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Furthermore, differentiating (2.12), we get

where
Y= —ZfHﬁlZs and Z; =1LV — IIItT.

Table 1 summarizes the state of the gradient and Hessian of D, with respect to z,
Now, let

%me Zt 8
VLV LV O0<s<m
VIILV+UT+U | LV - IIIT m<s<2m
UT+U -I7IF s=2m
II, +UT+U —~IIIT 2m<s<n+m
11, 0 n+m<s<22n-1

Table 1: Gradient and Hessian formulas for D,.

W = V2L(x,A)
= V% — Y Vi (2.14)

i,j=m+1

where V24 is given by (2.9) and -

82d. . 82d,;
n Zm )"J dzr101, Z%J )\’J 8210z,
2
2. MVidy = P :
i, j=m+1 82d;; 0%d;;
El:] )\” Ozn0x1 Z%J )‘U O0rndzn

Usually, V2L is positive definite, in which case, if x® is sufficiently close to x*,
the basic SQP method converges and the rate is second order (Fletcher [6]). Globally,
however (2.11) may not converge. An algorithm with better convergence properties,
when x(*) is remote from x*, is suggested by Fletcher at. al. [7] in which the filterSQP
can be used to slove (2.11). Now since the gradient and Hessian are both available,
therefore filterSQP can be used to slove the problem.

This description of iterative schemes for solving (2.11) has so far ignored an im-
portant constraint, that, is D; > 0 in which the varibles x*) must permit the matrix
A® to be factorized as in (2.1). However, since m is identified correctly and x(*) is
near the solution, this restriction will usually be inactive at the solution. If x®) is
remote from the solution, additional constraints

dﬁf)>0. r=12,...,m
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are introduced. However, strict inequalities are not permissible in an optimization
problem and it is also advisable not to allow d,.(x*)) to come too close to zero,
especially for small r, as this is likely to cause the factorization to fail. Hence the
constraints

md® /r >0 r=12,...,m

are added to problem (2.11). Finally, it is possible that partial factors of the matrix
A® in the form (2.1) do not exist for some iterates. In this case, the parameter in the
filterSQP method p*+1) = p(*¥) /4 is chosen for the next iteration in the trust region
method.

3 Solution by Unconstrained Minimization

In this section, we consider a different approach to problem (1.1). The main idea is to
replace (1.1) by a smooth unconstrained optimization problem in order to use super-
linearly convergent quasi-Newton methods. Partial connection between the problem
and signal processing is given in the following factorization.

Classical results about Hankel matrices that go back to [3] may be stated according
to which a nonsingular positive semi-definite real Hankel matrix can be represented
as the product of a Vandermonde matrix and its transpose and a diagonal matrix in
between

H=VvDVT, (3.1)

where D is an m x m diagonal matrix with positive diagonal entries and V is an n x m
real Vandermonde matrix

V=[z}], i=0,...,n-1, j=1,...,m (3.2)

(see [1, 8]).

Since m, the rank of the matrix H*, is known, it is possible to express (1.1) as a
smooth unconstrained optimization problem in the following way. Since the unknown
in (1.1) is the matrix H therefore the unknowns are chosen to be the elements of the
matrices V; z1,...,2m and D; dii,...,dny introduced in (3.1). This gives us an
equivalent unconstrained optimization problem to (1.1) in 2m unknowns expressed
as

minimize ¢(V, D) = ||[F — VDVT|%. (3.3)

Then the objective function ¢(V, D) is readily calculated by first forming H from V
and D as indicated by (3.1) and (3.2), after which ¢ is given by ¢(V,D) = ||F —
H||% = ||F — VDVT|/%. The elements of the matrix H take the form

hij = dek(E?—j—z. (34)
k=1
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Hence

VD) = S lhy — £y
f;({ki s ) (3.5)

hj=1 k=1

Our chosen method to minimize ¢(X) is the BFGS quasi-Newton method (see,
for example, [6]). This requires expressions for the first partial derivatives of ¢, which
are given from (3.5) by

ad) _ n m

i = 22X duai T — fy) (@i (3.6)
s 3,j=1 k=1
92 o S (Y duat T = f)(it g — Dt (3.7)
8:1:3 - iim1 = kkTe i)\t T ] 55T g .
i=j#1 -

The BFGS method also requires the Hessian approximation to be initialized. Where
necessary, we do this using a unit matrix.

Some care has to be taken when choosing the initial value of the matrices V and
D, in particular the rank m. If not, the minimization method may not be able to
increase m. An extreme case occurs when the initial matrix V = 0 and D = 0 is
chosen, and F' # 0. It can be seen from (3.6) and (3.7) that the components of the
gradient vector are all zero, so that V' = 0 and D = 0 is a stationary point, but not
a minimizer. A gradient method will usually terminate in this situation, and so fail
to find the solution.

4 Numerical Results

In this section, we report our numerical results. Fortran codes have been written to
program solver for (1.1) to both filterSQP and BFGS methods and executed on SUN
workstation.

The results were obtained by applying the methods of Sections 2 and 3 as follows.
A matrix H was formed from (3.1) by randomly choosing m weights d; in matrix
D, 0 < d; < 1.0 and m values z;,0 < z; < 1.0 to determine the Vandermonde
matrix V. The matrix thus obtained by (3.1) was perturbed by adding random noise
matrix S to H, where elements of S vary between —0.10 and 0.10. The problem
is to recover the m frequencies z; and weights d; that determine the matrix before
the noise was added. The convergence criterion is that the maximum changes of the
matrix H*) should be less than 1 x 1075, Typically, n was chosen to be 20, 10, 4
with m = 10, 4, 2, respectively.

Table 2 illustrates an example of the approximation described in Sections 2 and
3. The first two columns give the weights d; and frequencies z; used to generate the
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0.5916
0.6690
0.1158
0.5040
0.5890
0.3539
0.1753
0.0388
0.0647
0.0822

0.7590
0.4677
0.2630
0.1299
0.7915
0.5301
0.6123
0.7089
0.5516
0.7284

nq

Is

¢

d*

*

T

113

10

0.32737

Vi
0.5823 0.7078
0.1126 0.5037
0.5823 0.3518
0.2236 0.0377
0.0419 0.0377

2
0.7771 0.4824
0.2148 0.1595
0.7771 0.5333
0.6231 0.7414
0.5118 0.7414

87

0.32731

0.6514 0.6848
0.0912 0.4733
0.6193 0.3613
0.1581 0.0797
0.0622

0.7402 0.4836
0.2772 0.1409
0.7940 0.4529
0.6479 0.7349
0.5377

72

27

0.32729

0.6878 0.7484
0.0563 0.4243
0.5840 0.4262
0.1386 0.1157

0.7274 0.4478
0.3155 0.1194
0.7979 0.4715
0.7275 0.7214

96

39

0.32729

0.7069 0.7380
0.0755 0.4493
0.6266 0.4144
0.1707

0.7265 0.4652
0.3005 0.1296
0.7956 0.4699
0.7276

116

21

0.32730

0.8067 0.7309
0.0819 0.4611
0.6954 0.4053

0.7223 0.4603
0.2936 0.1356
0.7931 0.4885

89

25

0.32730

0.7948 1.0051
0.1707 0.4875
0.7232

0.7191 0.4619
0.4655 0.1373
0.7921

120

30

0.32738

1.2740 0.9119
0.3758 0.6196

0.7743 0.5323
0.4785 0.1668

80

31

0.32738

1.2796 1.2719
0.6299

0.7741 0.5177
0.1685

79

12

0.33105

1.5741 1.6007

0.7593 0.3602

o4

6

0.75111

2.8019

0.6735

Table 2: Comparing the methods with n = 20 and m = 10 .
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dj Z;
0.5326 0.8249 m|{ng|ls ) d; z}
0.7690 0.3051 9 | 70 | 55 | 0.1649725 | 0.5793 0.4719 | 0.8233 0.2515
0.4558 0.5136 0.6305 0.2394 | 0.5186 0.5163
0.2040 0.7090 0.0429 0.2326
4 165 |41 |0.1649723 | 0.5789 0.5183 | 0.8233 0.2509
0.6029 0.2639 | 0.5183 0.5194
3 | 77128 |0.1649723 | 0.5788 0.5192 | 0.8234 0.2512
0.8660 0.5188
2163 |12 | 0.166825 | 0.6925 1.2675 | 0.8095 0.3981
118 8 | 0.573705 | 1.6696 0.6814

matrix H before the noise is added using (3.1). The matrix is 20 x 20 and of rank 10
before the perturbation. In the last six columns, the approximations are obtained,
decreasing the rank of the approximation by 1 at each step. m is the rank of the
approximation, nq is the number of quadratic programming problem solved by filter-
SQP method to get convergence, ls is the number of line searches in the BFGS method
to get convergence, ¢ give the norm of F' — H where H is the approximated matrix,
d; and z} are the weights and frequencies in the approximating matrix. Note that
the norm of F' — H decreases as the rank of the approximation decreases until rank
seven (optimal rank) and then increases as the rank of the approximation decreases
until rank one. It is clear that the rank changes from ten to seven and ¢ remains

Table 3: Comparing the methods with n = 10 and m = 4 .

nonzero; this is because of the remaining noise.

d; T

0.1763 0.9218
0.4057 0.7382

m|{nq|ls ¢ d; z;

3 | 51|12 0.058136 | 0.1280 | 0.9386
0.2530 | 0.6789
0.1924 | 0.8297

2 | 471 6 | 0.059907 | 0.1730 | 0.9382
0.3999 | 0.7242

1172 8 | 0.066124 | 0.5584 | 0.8124

Table 4: Comparing the methods with n = 4 and m = 2.
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In Table 2, we show the results with 10 x 10 matrix and of rank 4 before the
perturbation. Comparing ¢ in all three tables, we find them proportional with the
size of the matrix. For ¢ since the process of the methods is to obtain the nearest
positive semi-definite Hankel matrix tends to minimize the effect of the noise. It is
to be expected that the noise would be more significant in smaller matrices. The
computations have shown that for matrices as large as 50 x 50, the results are quite
good compared with 10 x 10. The results are not as good in the 4 x 4 case; see Tables
2, 3 and 4. It seems that the noises are quite big to some degree for the smaller
matrices which makes ¢ almost equal in all cases in the four tables. Also, since ¢ is

very small, this means that the approximated matrix is very close to the original one
H.

5 Conclusions

In this paper, we have studied the Hankel matrix approximation problem involving
the positive semi-definite matrix constraint, using both filterSQP and BFGS methods.
Numerical comparisons are also given. The problem needs more study in terms of
the hybrid methods involving both current method and projection method [2]. Also
some numerical experiment comparisons with hybrid and projection methods need to
be carried out.
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