

King Fahd University of Petroleum & Minerals

DEPARTMENT OF MATHEMATICAL SCIENCES

Technical Report Series

TR 262

February 2001

On a Property of Large Inverse Systems

Abdallah Laradji

On a Property of Large Inverse Systems

Abdallah Laradji

Given a direct system $\{M_i\}_{i\in I}$ of modules, it is well-known that $\lim_{\longrightarrow} M_i$ is a pure quotient of the direct sum $\bigoplus_{i\in I} M_i$. In contrast, the dual statement that inverse limits are pure submodules of corresponding direct products is not always true:

For each prime number p, we can construct a descending chain $\{A_n\}_{n\in\mathbb{N}}$ of divisible abelian groups whose intersection A is isomorphic to $\mathbb{Z}/p\mathbb{Z}$ (see [2, Exercise 6 p. 101]). Since divisibility is inherited by pure subgroups and direct products and since A is not divisible, it follows that the inverse limit A of the divisible groups A_n is not pure in $\prod_n A_n$. However, as we shall show in this note, when certain settheoretic conditions are imposed on an inverse system of modules, the inverse limit is a direct summand of the corresponding direct product. This is motivated by the following observation:

Let p be a prime number and let J_p be the p-adic group $\varprojlim \mathbb{Z}/p^n\mathbb{Z}$. As each $\mathbb{Z}/p^n\mathbb{Z}$ is finite, J_p is linearly, and hence, algebraically compact. (See [1] and [2].) Since, as can easily be proved, J_p is pure in $\prod_n \mathbb{Z}/p^n\mathbb{Z}$, it follows that the canonical monomorphism $0 \longrightarrow \varprojlim \mathbb{Z}/p^n\mathbb{Z} \longrightarrow \prod_n \mathbb{Z}/p^n\mathbb{Z}$ splits.

The purpose of this note is to generalize this result in both set-theoretic and universal algebraic directions. We refer to [4] and [3] for the various notions used here from the theory of large cardinals and universal algebra respectively. Let us call a subalgebra B of an algebra A a retract of A if there exists a homomorphism $g:A\longrightarrow B$ whose restriction to B is the identity on B; such a g is called a retraction. A directed set

 $\{I; \leq\}$ is λ -directed for some infinite cardinal λ , if every subset of I of size less than λ has an upper bound in I.

First, we have

Lemma 1. A subalgebra B of an algebra A is a retract of A if and only if every system Σ of equations over B and with a solution in A has a solution in B.

Proof. (Cf. [2, Proposition 22.3].) Suppose B is a retract of A, with retraction g, and let Σ be a system of equations over B with set of unknowns $\{x_s\}_{s\in S}$. If $\{a_s\}_{s\in S}$ is a solution in A of Σ , then, clearly, $\{g(a_s)\}_{s\in S}$ is a solution of Σ in B. Conversely, let Σ be the system over B

$$x_{f((a_i)_{i \in r(f)})} = f((x_{a_i})_{i \in r(f)})$$
$$x_b = b$$

for any $a_i \in A$, $b \in B$ and any operation f on A (with arity r(f)), and where the unknowns are indexed by A. This system is solvable in A by $x_a = a$ ($a \in A$). Thus, if $x_a = g(a)$ ($a \in A$) is a solution of Σ in B, then the mapping $g: A \longrightarrow B$ is a retraction. \square

Proposition 2. Let α be a limit ordinal, κ be an infinite cardinal and $\{A_i; \sigma_i^j\}_{i \leq j < \alpha}$ be a well-ordered inverse system of algebras with $|\sigma_i^{i+1}(A_{i+1})| < \kappa < cf(\alpha)$. Then the inverse limit $\lim_{i < \alpha} A_i$ is a retract of $\prod_{i < \alpha} A_i$.

Proof. We first show that $\lim_{i \to a} A_i$ is a subalgebra of $\prod_{i < \alpha} A_i$, i.e. that $\lim_{i \to a} A_i$ is not empty. For each $i < \alpha$, choose p_i in A_i , and let $T_i = \{\sigma_i^j(p_j) : i \le j < \alpha\}$. Partial-order $T = \bigcup_{i < \alpha} T_i$ by setting x < y when $x \in T_i$, $y \in T_j$ and $\sigma_i^j(y) = x$ for some $i < j < \alpha$. It is easy to see that (T, <) is a tree of height α . For any $x = \sigma_i^j(p_j)$ in T_i , we have $x = p_i$ or $x = \sigma_i^{i+1}\sigma_{i+1}^j(p_j) \in \sigma_i^{i+1}(A_{i+1})$, so that $T_i \subseteq \{p_i\} \cup \sigma_i^{i+1}(A_{i+1})$, and therefore $|T_i| < \kappa$. If α is a limit ordinal, then T has a branch $b = \{x_i\}_{i < \alpha}$ of length α , by [5, Proposition 2.32 p. 304]. Clearly $\sigma_i^j(x_j) = x_i$ whenever $i < j < \alpha$,

so that $(x_i)_{i<\alpha}\in \lim A_i$, and hence $\lim A_i\neq\emptyset$. Next, let Σ be a system of equations over $\lim A_i$ with unknowns $\{x_s\}_{s\in S}$ and constants $\{c\}_{c\in C}$, and suppose it is solvable in $\prod_{i<\alpha}A_i$ by $\{a_s\}_{s\in S}$, say. For each $i<\alpha$, let Σ^i be the system obtained from Σ by replacing each c in C by its i-th coordinate in A_i . Fix s in S and denote by R the set consisting of all initial segments of the sequences $(\sigma_i^j(a_s(j)))_{i\leq j}$ $(j<\alpha)$ (where $a_s(j)$ is the j-th coordinate of a_s). It is easy to see that R is a tree of height α (ordered by inclusion). By an argument similar to the one used for T above, we infer that R has a branch $(\mu_s(i))_{i<\alpha}$. Since $\sigma_i^j(\mu_s(j)) = \mu_s(i)$ for all $i\leq j<\alpha$, we obtain that $(\mu_s(i))_{i<\alpha}\in \lim_{i\to\infty}A_i$. Now we have $c(i)=\sigma_i^j(c(j))$ for all $j\geq i$ (since $C\subseteq \lim_{i\to\infty}A_i$), so that for all $j\geq i$, $\{\sigma_i^j(a_s(j))\}_{s\in S}$ is a solution of Σ^i . By definition of R, for each $i<\alpha$, $\mu_s(i)=\sigma_i^j(a_s(j))$ for some $j\geq i$, i.e. $\{\mu_s(i)\}_{s\in S}$ is a solution of Σ^i . Since $(\mu_s(i))_{i<\alpha}\in \lim_{i\to\infty}A_i$ for all s in S, the proof is complete by Lemma 1. \square

We next turn our attention to cardinals with the tree property. Recall that \aleph_0 and weakly compact (e.g. measurable) cardinals have the tree property, whereas \aleph_1 and singular cardinals do not.

Proposition 3. Let α be a limit ordinal, κ be an infinite cardinal with the tree property, and $\{A_i; \sigma_i^j\}_{i \leq j < \alpha}$ be a well-ordered inverse system of algebras with $|\sigma_i^{i+1}(A_{i+1})| < \kappa \leq cf(\alpha)$. Then $\lim_{k \to \infty} A_i$ is a retract of $\prod_{i \in \alpha} A_i$.

Proof. If $\kappa < cf(\alpha)$, use Proposition 2. Suppose that $\kappa = cf(\alpha)$ with $\alpha = \sum_{t < \kappa} \alpha_t$, where $\alpha_t < \kappa$. Then, using the tree property of κ and an argument similar to that of Proposition 2, we obtain that $\lim_{t \to \infty} A_t$ is a subalgebra of $\prod_{i < \alpha} A_i$, and that $\lim_{t \to \alpha} A_{\alpha_t}$, the inverse limit of the inverse family $\{A_{\alpha_t}; \sigma_{\alpha_t}^{\alpha_s}\}_{t \le s < \kappa}$, is a retract of $\prod_{t < \kappa} A_{\alpha_t}$. Let $\varphi : \prod_{i < \alpha} A_i \longrightarrow \prod_{t < \kappa} A_{\alpha_t}$ be the canonical projection. Then (see for example the proof of [3, Lemma 7 p.133]), the restriction ψ of φ to $\lim_{t < \alpha} A_t$ is an isomorphism $\lim_{t \to \infty} A_{\alpha_t} \longrightarrow \lim_{t < \kappa} A_{\alpha_t}$ and we have $\varphi f = g\psi$, where $f : \lim_{t < \kappa} A_t \longrightarrow \prod_{i < \alpha} A_i$ and $g : \lim_{t < \kappa} A_{\alpha_t} \longrightarrow \prod_{t < \kappa} A_{\alpha_t}$ are the inclusion mappings. If $\pi : \prod_{t < \kappa} A_{\alpha_t} \longrightarrow \lim_{t < \kappa} A_{\alpha_t}$ is such that πg is the identity,

then $\psi^{-1}\pi\varphi f = \psi^{-1}\pi g\psi$ is the identity mapping on $\varprojlim A_i$, and so $\varprojlim A_i$ is a retract of $\prod_{i<\alpha}A_i$.

The conclusion of Proposition 3 can be arrived at for a wider class of inverse systems, provided κ is a compact cardinal. (An infinite cardinal λ is *compact* if, for any set S, every λ -complete proper filter on S can be extended to a λ -complete ultrafilter.) To prove that, the following lemma is needed.

Lemma 4. Let $\{A_i; \sigma_i^j\}_{i \in I}$ be an inverse system of nonempty sets and let κ be a compact cardinal such that $\{I; \leq\}$ is κ -directed and $\left|\bigcup_{j>i} \sigma_i^j(A_j)\right| < \kappa$, for every $i \in I$. Then $\lim_{i \to \infty} A_i$ is nonempty.

Proof. For each $i \in I$, let $p_i \in A_i$, $\pi_i : \prod_{j \in I} A_j \longrightarrow A_i$ be the i-th canonical projection, and let $T_i = \{\sigma_i^j(p_j) : i, j \in I, i \leq j\}$. For every $J \in [I]^{<\kappa} = \{S \subseteq I : |S| < \kappa\}$, let $X_J = \{x \in \prod_{i \in I} T_i : \sigma_i^j(p_j) = p_i$, for all $i, j \in J$ and $i \leq j\}$. Since I is κ -directed and κ is regular (compact cardinals are regular), $\emptyset \subset X_{\bigcup_{T < \lambda} J_T} \subseteq \bigcap_{T < \lambda} X_{J_T}$, whenever $J_\tau \in [I]^{<\kappa}$ and λ is a cardinal less than κ . It follows that the set $\{X_J\}_{J \in [I] < \kappa}$ generates on $\prod_{i \in I} T_i$ a κ -complete proper filter, which, as κ is compact, can be extended to a κ -complete ultrafilter U. For each $Y \in U$, let $Y_i = \{x_i \in T_i : x = (x_i)_{i \in I} \in Y\}$ and let $U_i = \{Y_i : Y \in U\}$. As in the proof of [3, Theorem 1, p.132], we obtain that U_i is a κ -complete ultrafilter on T_i . By hypothesis $|T_i| < \kappa$, so that U_i is principal generated by a singleton $\{y_i\}$,say. Now, for all $i, j \in I$, $\pi_i^{-1}(\{y_i\})$, $\pi_j^{-1}(\{y_j\})$ and $X_{\{i,j\}}$ are in U, so that $\pi_i^{-1}(\{y_i\}) \cap \pi_j^{-1}(\{y_j\}) \cap X_{\{i,j\}} \in U$. Therefore, if $i \leq j$, there exists $x = (x_i)_{i \in I} \in X_{\{i,j\}}$ such that $\sigma_i^j(y_j) = \sigma_i^j(x_j) = x_i = y_i$. This proves that $\lim_{i \in I} A_i$ is nonempty. \square

Remark. The foregoing proof is a straightforward adaptation of an argument of Grätzer [3, Theorem 1, p.132], where he used ultrafilters to prove the classical theorem that inverse limits of finite nonempty sets are nonempty. Indeed, since \aleph_0

is compact, the following proposition generalizes both [3, Theorem 1, p.132] (and hence König's Graph Lemma) and the observation on J_p mentioned above.

Proposition 5. Let $\{A_i; \sigma_i^j\}_{i \in I}$ be an inverse system of algebras and let κ be a compact cardinal such that $\{I; \leq\}$ is κ -directed and $\bigcup_{j>i} \sigma_i^j(A_j) < \kappa$, for every $i \in I$. Then $\lim_{k \to \infty} A_i$ is a retract of $\prod_{i \in I} A_i$.

Proof. That $\lim_{i \in I} A_i$ is a subalgebra of $\prod_{i \in I} A_i$ follows from Lemma 4. As in the proof of Proposition 2, let Σ be a system of equations over $\lim_{i \in I} A_i$ with unknowns $\{x_s\}_{s \in S}$ and constants $\{c\}_{c \in C}$, and suppose it is solvable in $\prod_{i \in I} A_i$ by $\{a_s\}_{s \in S}$. For each $i \in I$, let Σ^i be the system obtained from Σ by replacing each c in C by its i-th coordinate c(i) in A_i . Fix s in S, and set $B_i^s = \{\sigma_i^j(a_s(j)) : j \in I, i \leq j\}$. It is easy to see that $\{B_i^s\}_{i \in I}$ can be regarded as an inverse system of nonempty sets with bonding maps σ_i^j $(i \leq j)$. By Lemma 4 again, $\lim_{i \to \infty} B_i^s$ is nonempty. Clearly, if $\mu_s \in \lim_{i \to \infty} B_i^s$, then $\{\mu_s\}_{s \in S}$ is a solution of Σ in $\lim_{i \to \infty} A_i$. Now use Lemma 1.

Corollary 6. Let κ be a compact cardinal and let $\{A_i\}_{i\in I}$ be an inverse system of algebras such that I is κ -directed and $|A_i| < \kappa$ for all $i \in I$. Then $\lim_{i \in I} A_i$ is a retract of $\prod_{i \in I} A_i$. \square

Acknowledgment

The author gratefully acknowledges the support of King Fahd University of Petroleum and Minerals.

References

- 1. L. Fuchs, Note on linearly compact abelian groups, J. Austral. Math. Soc. 9 (1969), 433-440.
- 2. L. Fuchs, Infinite Abelian Groups I, Academic Press, New York, 1970.
- 3. G. Grätzer, Universal Algebra, Second Edition, Springer-Verlag, New York, 1979.
- 4. T. Jech, Set Theory, Academic Press, New York, 1978.
- 5. A. Levy, Basic Set Theory, Springer-Verlag, Berlin, 1979.