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1. Introduction

Elementary probabilities are obtained for the outcomes of situations conveniently called
random experiments. They are usually taught with the help of examples of dice, coins and
cards. Not everybody feels comfortable with these approaches. Experience shows that
conditional probability and statistical independence can better be explained with
contingency tables often encountered by them in real life. Consider a general 2x2
contingency table

B; B,
A | nio
Ay | ny oY)

The matrix given by

ngy n
N1 M2
na1 ho
will hereinafter be called incidence matrix. In this note some special cases of

2% 2 contingency table is considered. In turn a relation is observed between the
dependence structure of conditional probabilities, nonsingularity of the incidence matrix



N formed by the square contingency table, and statistical dependence of events. The
properties that are going to be discussed here will also be true for any rXc contingency
table collapsed as a 2X 2 contingency table.

The notion of statistical independence is closely related to conditional probability. Given
that B happens, the probability is

P(ANB)
P(B)
that the event A happens. The above ratio is usually denoted by P(Al B)i.e.
£(-‘éﬁﬂ:P(AlB). (1.1)
P(B)

The left hand side of (1.1 ) should be emphasized to the students as the right hand side is
usually misunderstood by them. If the ratio is the same as P(A), it implies that B does

not affect the occurrence of A.In other word,. A is statistically independent of B. Thus
in this case it follows from (1.1) that '

P(ANnB)=P(A)P(B) (1.2)

which is used as the definition of statistical independence in many books. It follows from
(1.2) that if A is statistically independent of B, then B is statistically independent of A .
Consider the independence of the categories of two attributes A and B. By definition
each pair of events (i) A, and B, (ii) A, and B, (iii) A,and B, and (iv) A, and B, are
independent if the following conditions hold:

(i) P(A 1 B)) = P(4))

(i) P(Al | B,)=P(4,)

(#ii) P(A, | B,) = P(A,) and (1.3)
(v) P(A, | B,) = P(4,)

respectively. But it is straightforward to prove that the above four (=2?) conditions are
equivalent (Hines and Montgomery, 1990, p.51). Thus if A, and B, are independent,

then so.are (a) A, and B, , (b) A, and B, and (c) A, and B,. That is if any pair of

events are independentin a 2Xx2 table, then other three pair of events in (1.3) are
independent and not mutually exclusive.

In what follows we provide two interesting results that provide some insight into
statistical independence. They follow from the rearrangement of the equations in (1.3).

(1) For any contingency table having attributes A and B with categories A, A, and
categories B,, B, respectively, the events A, and B, are independent if and only
ifAIB, and Al B, have the same probability distributions i.e.



() P(A|B,), P(4,|B,) and

. (1.4)
(i) P(A|B,), P(4,1B,)

are the same.

In a 22 contingency table it is conventional to write A, = Aand B, = Bso that A, = A

and B, = B . To explain (1.4), consider the following example of the breakdown of a
computers having circuit boards for a modem (A) or for a printer (B):

A A
B |10 15 25
B |30 45 75
40 60 100

The events A and B are independent if and only if AIB and A|B have the same
probability distribution i.e.
() P(AIB), P(AIB) and

(ii) P(AIB), P(AIB)

are the same. Since the two sets of probabilities

10 — 15
) P(AIB)=—=0.40, P(A|B)=-==0.60 and
@) ( ) T ( ) 5% an
- 30 — = 45
i) P(AIB)==—=040, P(A|B)=—=0.60
(i) ( ) =3 ( ) =3

are the same, the events A and B are independent .

(2) For any contingency table having attributes A and B with categories A,, A, and
categories B,, B, respectively, the events A, and B, are independent if and only

() P(A, | B,) = P(A, |B,)= P(A,) and
(i) P(A, lB1)= P(A, |32)= P(Az) (1.5)

The equation (i) of (1.5) says that neither the occurrence of B, nor B, affects the
occurrence of A,. Similarly the equation (ii) of (1.5) indicates that neither the occurrence
of B, nor B, affects the occurrence of A,.

In what follows we provide two other interesting results that are special cases of a
22 contingency table:



(1) For any contingency table having attributes A and B with categories 4,, A, and
categories B,, B, respectively, the following holds:

P(A, " B))=P(A, " B,) ifand only if P(A))=P(A,), P(B,)=P(B,).
This means that the 2Xx2 incidence matrix has equal diagonal elements.

(2) For any contingency table having attributes A and B with categories A,, A, and
categories B,, B, respectively, the following holds:

P(A) _ P(B)
P(4,)  P(B,)

ifandonlyif = P(A NB))+P(A4,NB,)=P(A NB,)+P(A,NB,).
This implies that the sum of the diagonal elements is the same as that of the off-diagonal

elements. Thus the probability of having exactly one of the two attributes is the same as
having none or both the attributes.

2. The Main Result

The main result is presented below in the form of a theorem.

Theorem 2.1 For any contingency table having attributes A and B with categories
A, A, and B,, B, respectively, the incidence matrix has the following implications:

(a) P(A/|B)<P(A)<P(4B,)iff INI<0 @2.1)
(b) P(A,1B))=P(A)=P(A | B,)iff INI=0 2.2)
(c) P(A/|B,)>P(A)>P(A |B,)iff INI>0 2.3)

Proof: (a) Let P(4, | B,) < P(A,) < P(4, | B,). Then

n n,+n ny+n n
11 < u 12 11 2 . 12

and

n, + Py, n n ny, + Ry,

Writing out n =n,, +n,, +n, +n,, and simplifying, we have from each of the inequality

Nyfgy — Ny, <0



or nyny, <n,n, (e INI<O0). (2.4)

Againlet | N1<O0,ie. n;n,, <n,n, .Now adding n, (n,, +n,, +n,,) to both sides of
this inequality, we have

MMy + 1y (Mg 1y, +0y,) < mgphy +ny (g +ny, +ny)
ie. ny n<(n, +n,)(n, +n,).
Dividing both sides by n(n,; +n,,) , we have

n n,+n
11 < 12

, 1e. P(A4 1B)<P(4).
Myt 1y n .
Similarly by adding n,,(n,; +n,, +n,,) to both sides of (2.4), we have

Ryl + Ry, (R + 0y, +1y) <ngny, +n,(ny, + 0y, +0y,)

or, (ny, +ny,)(ny, +ny) <np(ng, + Ny 1y +1y,)

or, (n, +ny)(ny, +ny)<nng,.
Dividing both sides of the resulting inequality by n(n,, +n,,), we have

n,+n n
11 12 12

, ie. P(A)<P(A B, .
n ny, + Ry,

(b) See Joarder (1998).
(c) The proof is similar to that in part (a) above.

The result in (a) here means that A, is less likely to happen if B, happens, while A is
more likely to happen if B, does not happen. The result in (c) similarly means that A is
more likely to happen if B, happens, while 4, is less likely to happen if B, does not
happen. The result in (b) means that the occurrence of B, does not affect the occurrence
of A, and vice versa.

Part (b) implies that the events A, and B, are independent if and only if any of the
following equivalent conditions is satisfied:



(i) rows are linearly dependent
(ii) columns are linearly dependent
(iii)  the incidence matrix N is singular

nn,
(iv) n,= "n" where n; =n; +npand nj=ny;+ny; (=1,2j=12).

ij

3. Some Illustrations

As earlier let A, = Aand B, = Bso that A, = A and B, = B . To explain (a) of Theorem
2.1, consider the following the breakdown of a computer having modem boards (A) or
printer boards (B):

A A
B |4 16 20
B |36 44 80
40 60 100

Here the following three probabilities

P(AIB)= 4 0.20, P(A) = 40 _ 0.40, P(A1B) = 36 _ 0.45
20 100 80

are not the same. Observe that | N|I<0 and P(AIB)< P(A)< P(Al B). This means that

that computers without printer boards are more likely to have modem boards than
computers with printer boards. In other words, they are statistically dependent.

Similarly, the probabilities
4 20 — _ 16
P(B!A)=—=0.10, P(B)=—=0.20, P(BIA)=—=0.26
40 100 60

are not the same. Observe thatl N1<0 and P(B|A) < P(B) < P(BI A). This means that

that computers without modem boards are more likely to have printer boards than
computers with modems. In other words, they are statistically dependent.

To explain (c) of Theorem 2.1, consider the following the breakdown of a computer
having a modem board (A) or a circuit board (B):

A A
B 12 8 20
B 28 52 80
40 60 100




Here the following three probabilities

P(AlB)= 12 =0.60, P(A) = 40 =0.40, P(AIB) = 28 =0.35
20 100 80

are not the same. Observe that! N 1> 0 and P(A|B) > P(A) > P(A| B). This means that
that computers with printer boards are more likely to have modem boards than
computers without printer boards. In other words, they are statistically dependent.
Similarly, the following three probabilities

12 20 8

P(BIA)=-—=0.30, P(B)=—=0.20, P(BI A)=—=0.13,
40 100 60
are not the same. Observe that| N |>0 and P(B|A) > P(B) > P(B| A). This means that

that computers with modem boards are more likely to have printer boards than
computers without printer boards. In other words, they are statistically dependent.

To explain (b) of Theorem 2.1, consider Example 1.1 that provides the following the
breakdown of a computer having a modem board (A) or a circuit board (B):

A A
B 10 15 25
B 30 45 75
40 60 100

Here the following three probabilities

P(A|B) = 10 =0.40, P(A) = 40 =040, P(AI1B) = 30 =0.40

25 100 75
are the same. Observe thatl N I=0 and P(Al1B)=P(A)=P(Al B) . The same is true for
the following three probabilities:

P(BlA) = 10 =0.25, P(B) = 2 =0.25, P(BI1A) = 15 =0.25,
40 100 60

Observe thatl NI=0 and P(B1A)= P(B)=P(BI A). Since the above three

probabilities are the same, it follows that having a modem has nothing to do with having
a printer or vice versa. In other words, they are statistically independent.

The notions discussed here are also true for any r X ¢ contingency table collapsed into an
appropriate 2 X 2 contingency table with categories of interest.
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