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Abstract

In this paper we proposed new methods for solving the positive semi-definite
Toeplitz matrix approximation problem. Our approach is based on (i) a projec-
tion algorithm which converges globally but slowly; (ii) the filterSQP method
which is faster. Hybrid methods that attempt to combine the best features of
both methods are then considered. Comparative numerical results are reported.
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1 Introduction

The problem we are interested in is the best approximation of a given matrix by a
positive semi-definite symmetric Toeplitz matrix. Toeplitz matrices appear naturally
in a variety of problems in engineering. Since positive semi-definite Toeplitz matrices
can be viewed as shift-invariant autocorrelation matrices, considerable attention has
been paid to them, especially in the areas of stochastic filtering and digital signal
processing applications [14] and [20]. Several problems in digital signal processing
and control theory require the computation of a positive definite Toeplitz matrix that
closely approximates a given matrix. For example, because of rounding or truncation
errors incurred while evaluating F', F' does not satisfy one or all conditions. Another
example in the power spectral estimation of a wide-sense stationary process from a
finite number of data, the matrix F' formed from the estimated autocorrelation co-
efficients, is often not a positive definite Toeplitz matrix [19]. In control theory, the
Gramian assignment problem for discrete-time single input system requires the com-
putation of a positive definite Toeplitz matrix which also satisfies certain inequality
constraints [17]. Consider the following problems:

A) Given a data matrix F € IR™", find the nearest symmetric positive semi-
definite Toeplitz matrix A to F' that minimizes

minimize & = ||F — Alr (1.1)

where ||.||» denotes the Frobenius norm.
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B) This problem is similar to problem A except that there is an extra condition
on the matrix A, that is, rank(A) = m.

Problem B was studied by Suffridge et. al. [18]. They solve the problem us-
ing the self-inversive polynomial P(z). The roots of the derivative of finé% enable
them to approximate the data matrix. They also solve problem A using the ideas
of a modified alternating projection algorithm that was successfully used in solving
similar approximation problems for distance matrices [2]. In [11], alternating convex
projection techniques are used to solve problem B. Oh et. al. [16] use alternating
projection onto fuzzy convex sets when three or more convex sets do not intersect.
Toeplitz matrix approximations are also discussed in [4, 5] and [15].

In Section 2, problem A is solved using the von Neumann algorithm. In Sec-
tion 3, problem B is formulated as a nonlinear minimization problem with positive
semi-definite Toeplitz matrix as constraints, where a constraints formulation is also
given. Then an algorithm with rapid convergence is obtained by the filter Sequential
Quadratic Programming (SQP) method [10]. In Section 4, two new hybrid methods
are described to solve problem A: firstly, there is Algorithm 1, which starts with the
projection method to determine the rank m® and continues with the filterSQP
method; and secondly, Algorithm 2 is described which solves the problem by the
filterSQP method and uses the projection method to update the rank. Numerical
compressions are reported in Section 5.

A symmetric Toeplitz matrix A is denoted by

a, ay ... Qp |
ag Qg R ¢ e |

A= : ¢ | = Toeplitz(ay, ag, . . ., a,). (1.2)
Gn Qu_1 ... @

2 The Projection Algorithm

In this section, we describe a projection algorithm for solving problem A. This al-
gorithm is derived from an alternating projection algorithm due to Dykstra [6] for
finding the least distance from a fixed point to an intersection of convex sets. This
algorithm is given independently by Han [12]. An important feature of this algorithm
is the generation of formulae for certain projection maps that are needed.

The Dykstra-Han algorithm solves the problem

minimize If — x||2

m
subject to X € ﬂ K;,

i=1

where K; are convex sets in IR"™ and f is given. The algorithm initializes f° = f and
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generates a sequence {f()} using the iteration formula,
fEHD) = £® L p (.. P (E®) ) — P (E®). (2.1)

Here, P;(f) denotes the I, projection of f on to K;; that is, the (unique) nearest vector
to f in K. It is shown by Boyle and Dykstra [3] that P,(... P,(f®)...) — x* for any
i > 1. However, the sequence {f®} does not, in general, converge to x* (see [1]).

It is convenient to define two convex sets for the purpose of constructing the
probem. The set of all n x n symmetric positive semi-definite matrices

Kp = {A:AeR™", AT = Aand 274z > 0 VzeR"} (2.2)
is a convex cone of dimension n(n + 1)/2. Also, define
Ky = {A: AeR™", Ais Toeplitz}, (2.3)

which is a subspace of dimension n.
In applying the Dykstra-Han algorithm to the Toeplitz matrix approximation, it
is appropriate to use the Frobenius matrix norm, and to express (1.1) as

minimize |F — A|lr
subject to A€ KgNKr, (2.4)

where Ky and Kr are given by (2.2) and (2.3), respectively.

To apply algorithm (2.1), we need formulae for the projection maps Pgr(.) and
Pr(.), corresponding, respectively, to Pi(.) and Py(.) in (2.1). These are the maps
from K = {A: A€ IR™"} on to Kg and Kr. The projection map Pr(F) formula
on to Kpg is given by [13]

Pr (F) =UAYUT, (2.5)
where A o
+ m
At = [ ; 0], (2.6)
and A, = diag [M, A2, ..., Ay] is the diagonal matrix formed from the positive

eigenvalues of F'.
The projection map Pr(F) formula on to Kr is given by

Pr(F') = Toeplitz(t,ts,...,t,), (2.7)
where .
1 e
tot1 = m ;(fz ik + firk i)y k=1,2,...,n. (2.8)

We can now use the projection maps Pg(F) and Pr(F) given by (2.5) and (2.7)
to implement the Dykstra-Han algorithm (2.1). Given a distance matrix F' € R™ ",
the algorithm is initialized by F(O) = F and the iteration formula is

F+D) = F® 4 (Pp(Pr(F®))) — Pr(F®). (2.9)

The sequences {Pr(F®)} and {Pr(Pr(F®))} converge to the solution A* of (2.4)
and hence (1.1). This algorithm was also given by [18] and [11] in a similar manner.
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3 The SQP Algorithms

In the previous section, the alternating projection algorithm computes a unique so-
lution for problem A. It is the loss of convexity of the sets K and K7 that increases
the difficulty of problem B. In this section, We use techniques related to FilterSQP
[10] for solving nonlinear programming problems in order to develop an algorithm to
solving problem B.

It is difficult to deal with the matrix cone constraints in (2.4) since it is not
easy to specify if the elements are feasible. Using partial LDL” factorization of A,
this difficulty can be overcome. Since m, the rank of A*, is known, therefore for A
sufficiently close to A*, the partial factors A = LDLT can be calculated such that

L ] [Dl ] [Au A’a”l]
L= D= A= :
[L21 Iy’ Dyl An Ax

where Ly;, D; and A;; are m X m matrices; I, Dy and Ay are n —m X n—m
matrices; Lg; and Ay are n — m X m matrices; D; is diagonal and D; > 0, and Ds
has no particular structure other than symmetry. At the solution, D, = 0 and A are
symmetric positive semi-definite Toeplitz matrix. In general,

Dy(A) = Ay — AnA7lAL. (3.2)

(3.1)

Now, if the structure of the matrix A is in a Toeplitz form, i.e.

A = Toeplitz(zy, z2, . . ., Tn), (3.3)
then (3.2) enables the constraint A € K to be written in the form
Dy(A(x)) = 0. (3.4)
Hence, problem B can now be expressed as
minimize &
subject to Dy(A) = 0= 2TAZ, (3.5)
—A7AT
where Z = [ 111 21] is the basis matrix for the null space of A when Dy = 0.

The Lagrange multiplier for the constraint (3.4) is A relative to the basis Z and the
Lagrangian for porblem (3.5) is

L A®Y = & —A: ZTAZ. (3.6)

This approach has been studied in a similar way by [8].
The structure of the Toeplitz matrix A as given in (3.3), is

P = Xn: (fis = Tjicjrr)? (3.7)

t,j=1
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and v® = (09/0z1,...,09/0z,)T where V denotes the gradient operator
(0/0zy, ..., 8/0z,)T. Therefore,
0P n
o 2;(501 = fa),
and
0P iy
3 =2{D (®s+1 = firsi) + (Tor1 — fiirs)}s
Ts+1 i=1
where s = 1,---,n — 1. Differentiating gives
5%® 5?®
o2 _ T2 - =1, ,n—1 :
92 2(n), 5ot An-s) s=1,--,n—1, (3.8)
and o
So.0m. =0 - if 7r#s, (3.9)
where s,7 =1,---,n.

The advantage of formula (3.4) is that expressions for both the first and second
derivatives of the constraints with respect to the elements of A can be obtained. The
simple form of (3.2) is utilized by writing the constraints Ds(A) = 0 in the following
form: .

di(%) = Tpiojq) = D Ticks1[AT Ik @i =0,
k=1
where i,j =m+1,---,n and [A7]s denote the element of A in ki-position.
Thus (3.5) can be expressed as

n
minimize ® = Y (fij — Ti—je1))?
i,j=1

subject to d;;(x) = 0. (3.10)

In this problem, since the equivalent constraints d;;(x) = 0 and d;;(x) = 0 are both
present, they would be stated only for i > j.

In order to write down the SQP method applied to (3.10), it is necessay to derive
the first and second derivatives of d;; which enable a second order rate of convergence
to be achieved.

Let I, be an m X m matrix given by

I, = Toeplitz(0,...,0,1,0,...,0),

where the “1” appears in the s-position. Hence the matrix I, is a matrix that contains
“1”s in two off diagonal and zeros elsewhere. Now, differentiating A; A7l = T
gives
AT
Oz,

= — A7 I, A7l (3.11)
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Hence from (3.2)

2
0Dz _ IL+VTLV4+UT +U, and 0D, =Y +Y7,
Oz, 0z,0z,
where
=22, VT = — A% AT,
U, =111V, III, = 3’421,
0z,

Y =-ZTA7}Z, and Z, =LV - IIIT.

I11,, III, are matrices similar to I; with I, being an n — m X n — m matrix which
contains “1”s in two off-diagonal and zeros elsewhere, and III, is an n —m X m
matrix which contains “1”s in one off-diagonal and zeros elsewhere.

Now, let

W = V2L(x,A)
= V¥ — > \;Vidy (3.12)

i,j=m+1

where V2® is given by (3.8) and (3.9) and

82d. . 82d,; .
n E’L,J )"LJ 8x10z1 Z’L,J )"J Ox10z,
2. XNVidy = : :
i,j=m-+1 82dy; 8%d;;
Zi,j )\ij 8xndz1 Ei,j )"-7 OxpnOzn

Now since the gradient and Hessian are both avalible, therefore the filterSQP can
be used to slove (3.10).

This description of iterative schemes for solving (3.10) has so far ignored an im-
portant constraint, that, is D; > 0 in which the varibles x(*) must permit the matrix
A® to be factorized as in (3.1). However, if m is identified correctly and x(® is near
the solution, this restriction will usually be inactive at the solution. If x® is remote
from the solution, additional constraints

d® > 0. r=1,2,...,m

are introduced. However, strict inequalities are not permissible in an optimization
problem and it is also advisable not to allow d,,(x*)) to come too close to zero,
especially for small r, as this is likely to cause the factorization to fail. Hence the
constraints
md® /r >0 r=12,...,m

are added to problem (3.10). Finally, it is possible that partial factors of the matrix
A® in the form (3.1) do not exist for some iterates. In this case, the parameters in
the filterSQP method p*+V) = p®) /4, x*+1) = x(*) and A*+D) = A® are chosen for
the next iteration in the trust region method.
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4 Hybrid Methods

A combination of both algorithms are introduced in Sections 2 and 3. Projection
methods are globally convergent and hence potentially reliable, but often converge
slowly, which can be very inefficient. SQP methods are reliable and have a second
order rate of convergence, but require that the correct rank m* is known. We therefore
consider hybrid methods in which the projection algorithm is used sparingly as a way
of establishing the correct rank, whilst the filterSQP method is used to provide rapid
convergence.

In order to ensure that each component method is used to best effect, it is impor-
tant to transfer information from one method to the other. In particular, the result
from one method is used to provide the initial data for the other, and vice versa. This
mechanism has a fixed point property so that if one method finds a solution, then the
other method is initialized with an iterate that also corresponds to the solution.

We will evaluate two different algorithms which differ in respect of how m© is
initialized. Algorithm 1 is expressed as follows: Given any data matrix F' € R™*",
let s be some pre-selected positive integer number and € some small number. Then
the following algorithm solves problem A

Algorithm 1 (FO := F, s,¢):

repeat projection method

until m® =ml=9) =12 ...,s.
repeat
Apply one iteration of projection method;
m©® = m®;
x© = x®; (x® from projection method)

repeat filter SQP method;

until || Da(x)|| < ¢
until |x® — xO|| < ¢ (x(® filter SQP method)
return (F* = F®) x* .= x®) m* .= m)),

The choice of s is a compromise between two effects. If s is small then the rank
may not be accurately estimated, but the number of (expensive) iterations taken in
the projection method is small. On the other hand if s is large then a more accurate
rank is obtained but the projection method needs more iterations.

In Algorithm 2, m®© is supplied by the user. This approach avoids the initial
sequence of projection iterations, but works well if the user is able to make a good
estimate of the rank, which is often the case. Thus, we can express Algorithm 2 as
follows: Given any data matrix F' € IR™", let € be some small number; also choose
m© as a small integer number. Then the following algorithm solves problem A

Algorithm 2 (FO) := F,m© ).

repeat
repeat filter SQP method;
until || D2(x)|| < €
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x© = x*), (x® from filter SQP method)
Apply one iteration of projection method;

m® = .

x© = xO, (x® from projection method)

until ||x® — x| < ¢
return (F* = F®) x* .= x*) m* := m®),

5 Numerical Results

In this section, we report some numerical experiments with the proposed methods.
First, for testing the algorithms described above, the following example is consid-
ered: Consider problem (3.10) in which

323 4
F= 2 ; § "4 , with m=1. (5.1)
53 1 2
Let
T Yy zZ u
A* = z ‘; Z ; (5.2)
u z Yy x

In general, when n = 4, the number of constraints is six, of which three are:
dp=22—¢y’=0 = r=y, dyp=2'-22=0 = =z
and
d44=m2—u2=0 = I =1U.
Therefore
Tr = y = Z = u,

and this satisfies the rest of the constraints. Hence the problem will be reduced to
minimizing

h , ® = 162* — 106z + c, (5.3)
where c is a constant. Thus the minimum value of ® = 7.8382 for z = 106/32.

However, if the required rank is two, then we have three new constraints ds3 =
0, dgs =0 and d3s = 0. One of these constraints is

dss =2 -2z — 222+ 220> =0 = z==2

This reduces the next constraint to

2

du=2" -z —z22 — 2’ + yzu= (y—u)? =0 = y=u,
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and this satisfies the constraint ds4. Hence the problem will be reduced to minimizing
® = 82% — 562 + 8y* — 50y + ¢ (5.4)

where c is a constant. Thus the minimum value of & = 7.8022 for z = 2z = 56/16
and for y =u = 50/16.

Now if the rank is three then the filterSQP is used and we find that the minimum
value of ® = 7.1707 for x = 4.3345 y = 2.6714 2z = 2.7428 u = 4.3314 and this is
identical to the projection algorithm.

The algorithm has been tested on randomly generated matrices with values dis-
tributed between 1073 and 10%. Thus to test the efficiency of the algorithm, a
Fortran codes have been written to program solver for (3.10) using the filterSQP.
Projection computations have been coded in Matlab 5.3 and executed on SUN work-
station. The termination criterion for algorithm is ||[F® — F&-1| < 1075,
All four algorithms converge to essentially the same values. Table 1 summarizes the
results for the four different approaches, the projection method, the SQP Algorithm,
and the hybrid Algorithms 1 and 2. All four algorithms converge to essentially the
same values. An asterisk indicates where the correct rank has been identified. In
some cases, in particular, with Algorithm 1, the final rank is 7* 4+ 1 or 7* + 2 but the
solution is within the required tolerance.

PA filter Al A2 1)
niffr| NI |0 [nq| s [NI] +® ng | 7 | nq | r® | nq
: PA

4 1 G%) 1 |10 3| 3 2(1*) 14 1* | 10 2644.1
4 3 58 1 |36 3|5 3* 12 1 |16 3 | 11 || 2656.5
5 4 | 245 2 129 5 |11 4* 13 2 | 15| 4* | 12 | 4013.6
6 3 | 250 2 |28 56 4(3*) | 14* 2 13| 3* | 14 || 5741.2
7| 6 78 3 135619 6* 17 3 | 15| 5* |16 || 6059.3
8 6 44 3 |49 6 | 8 6* 29 3 119 6* | 22 | 6591.4
8 5 | 356 3 |39 6 |12 o* 18 3 | 15| 5* | 17 | 8270.9
10 6 | 140 3 |73 619 8(6*) 49 3 | 27| 6* | 34 | 9769.8
15 || 10 | 2661 5 |64 | 10| 15 | 11(10*) | 21 5 | 18 | 10* | 15 || 14274
20 || 15 | 272 7 | 79| 13| 22 15* 34 7 129 | 15| 31 || 19860

Table 1: Comparing the four methods.
PA: Projection Algorithm. A1l: Algorithm 1. A2: Algorithm 2.
NI: Number of iteration in projection algorithm.
ng: Number of quadratic programming problem solved.

For the projection algorithm, each iteration involves an eigensolution, which en-
tails relatively expensive O(n?®) calculations. Thus the projection algorithm is not
competitive. For other algorithms, the housekeeping associated with each iteration is
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O(n?). Also, if care is taken, it is possible to calculate the gradient and Hessian in
O(n?) operations. Thus each iteration is much less expensive than an iteration of the
projection method. For the filter-SQP algorithm, the initial value 7 is tabulated,
and r is increased by one until the solution is found. The total number of iterations
is tabulated, and within this figure, it is found that fewer iterations are required as
r increases. It can be seen that the total number of iterations is much greater than
is required by the hybrid methods. Also the initial value (¥ is rather arbitrary: a
smaller value of 7(®) would have given an even larger number of line searches.

Both hybrid algorithms are seen to be effective. As n increases, Algorithm 1 takes
an increasing number of projection iterations before the rank settles down. We find
it better to increase the value of s as the value of r* increases. Once the projection
iteration has settled down, the filter-SQP method finds the solution rapidly and no
further projection steps are needed. Algorithm 2 requires a relatively large number
of iterations in the first call of the filter-SQP method, after which one projection
step finds the correct rank, and the next call of filter-SQP finds the solution in a few
iterations. This is because of the good initial starting vector x given by the projection
method. Because the projection steps in Algorithm 1 are relatively expensive, the
difference in computing time between these algorithms is not very significant.
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