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Abstract

In this paper we prove the existence of coincidence points in Hausdorff locally
convex spaces for nonself single-valued and multivalued maps satisfying a non-
expansive type condition. The results herein contain the work of many authors
including recent results by Latif and Tweddle and Martinez- Yanez.

1. Introduction

Geometric fixed point theory in functional analysis for multivalued mappings has
been extensively developed. One of its developments has led to substantial weakenings
in the assumption that values of the mapping be subsets of its domain. We shall

continue this approach in our work.

The longstanding Horn’s conjecture about coincidence points in [4] reads: Let Y be
a compact convex subset of a Banach space X and f,¢:Y — Y commuting continuous

maps. Then f and g have a coincidence point.

Contributions in this area of investigations have been made by a number of authors;
see fo1: example [1, 2, 8, 9, 10, 11, 14, 18] and references therein. Recently coincidence
and common fixed point results have been obtained by Daffer and Kaneko [2], Kaneko
[6] and Latif and Tweddle [9] for self and nonself f-contraction and f-nonexpansive

single-valued as well as multivalued maps in the set up of metric spaces and Banach
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spaces. We shall generalize these results to the case of Hausdorff locally convex topo-
logical vector spaces for mappings without commutativity condition. In particular we
prove a coincidence point result for f-contraction maps satisfying the inwardness con-
dition in a Hausdorff locally convex space, which contains results of Massa [11] and

Martinez-Yanez [12].

As applications of our result, we establish some theorems éoncerning coincidence
points of f-nonexpansive maps, which in turn generalize and strengthen the results
due to Chang and Yen [1], Itoh and Takahashi [5], Lami Dozo [8], Latif and Tweddle
[9], Singh and Chen [15], Su and Sehgal [16], Taylor [18] and Zhang [19].

We now fix our terminology. Throughout this paper, X will denote a Hausdorff
locally convex topological vector space, P the family of continuous seminorms gener-
ating the topology of X and K(X) the family of nonempty compact subsets of X. For
each p € P and A, B € K(X), we define

D,(A, B) = max {ilelﬁ inf[p(a - b)]; sup inf[p(a - b)]} :

Although p is only a seminorm, D,, is a Hausdorff metric on K(X) [7].

Let M be a nonempty subset of X. A mapping T : M — K(X) is called a
multivalued contraction if there exists a constant k,, 0 < k, < 1 such that for each

z,y € M and for each p € P, we have

D,(T(2),Tw) <k pla—y).

The map T is called nonexpansive if for each z,y € M and p € P,

D,(T(2), T(y)) < pla ).

Let f : M — X be a single-valued map. Then T' : M — K(X) is called an f-

contraction if there exists k,, 0 < k, < 1 such that for each z,y € M and for each
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p € P, we have
D,(T@),TW) <k (f(2) - FB)).
If we have the Lipschitz constant k£, = 1 for all p € P, then T is called an f-

nonexpansive mapping. A point z in M is said to be a coincidence point of f and

T if f(z) € T(z). We denote by C(f N T), the set of coincidence points of f and T.

A subset M of X is said to be starshaped if there exists a ¢ € M, called the

star-centre of M, such that forany 2 € M and 0 < a <1, ag+ (1 — a)z € M.

For any z,y € X, we set

(z,y]={1—-a)z+ay:0<a<1}

[2,y] = {(1—a)e+ay:0<as<1).

A mapping T' : M — K(X) is said to satisfy the boundary condition (a) if for all
z € M and all y € T(z), (z,y] N M # ¢ (cf. [11] and [15]). As noted by Massa [11],

the boundary condition («) may be restated as:
forall ze M, T(z) CIy(z)={z:2=2+a(y—z), ye M, a > 1}.
In [19], Zhang called such a mapping T an inward mapping. If for all z € M, T(z) C
cl (I M(m)), then T is called weakly inward where cl stands for closure.
A variant of Theorem 2 due to Massa [11] stated below will be needed.

THEOREM A. Let M be a closed subset of a Hausdorff locally convex space X and

T:M — K(X) a contraction satisfying
(z,y)NM # ¢ forall € M and ye T(z).

Then T has a fized point.

The mapping T from M into 2% (the family of all nonempty subsets of X) is said

to be demiclosed if for every net {z.} in M and any y, € T(z,) such that z, — «
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and y, — y, we have z € M and y € T(z) where — and —> denote strong and weak
convergence, respectively. We say X satisfies Opial’s condition if for each z € X and

every net {z,} converging weakly to z, we have
liminf p(z, — y) > iminf p(z, — z), for y# z and p€ P.

The Hilbert spaces and Banach spaces having a weakly continuous duality mapping

satisfy Opial’s condition [8].

2. Results

We shall follow the arguments used by Latif and Tweddle [9] to prove the following.

THEOREM 2.1. Let M be a nonempty subset of a Hausdorff locally convex space X. Let
J i M — X be any map with its range G closed and T : M — K(X) an f-contraction

map such that T(z) C Ig(z) for allz € f~1(z). Then C(fNT) # ¢.

Proof. Define J : G — K(X) by J(z) = Tf!(z) for all z € G. For each z € @ and

z,y € f~!(z), the f-contractiveness of T implies that

D,(Ta,Ty) < k,p(f(2) — f(y)) =0.

Hence J(z) = T'(a) for all a € f~(z). Now we show that J is a contraction. For any
w,z € G, we have D,,(J(w),.](z)) =D, (T(:z),T(y)) for any z € f~H(w),y € f~1(2)
and p € P. But T is an f-contraction so there exists k, € (0,1) such that for all p € P,

we have

D,(J(w),J(z)) = Dy(T(2),7(»))

< kyp(F(2) = FW)) = ks plw = 2)

which implies that J is a contraction. Also note that for all z € G, J(2) C Ig(2);

that is, J is an inward mapping. It follows from Theorem A (cf. proof of Theorem
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1[15]), that there exists zp € G such that 2z, € J(20). Since J(z) = T(z) for any

zo € fY(20), s0 f(z0) € T(z0). O

The application of Theorem 2.1 yields the following coincidence point result for

f-nonexpansive maps.

THEOREM 2.2. Let M be a nonempty subset of a Hausdorff locally convezx space X
and f: M — X with its range G closed and starshaped. Let T : M — K(X) be an
f-nonexpansive map which satisfies the following conditions:

(i) T(z) C Ig(2) for all z € f7(2).

(it) T(M) bounded and (f —T)M closed.
Then C(fNT) # ¢.

Proof. Let q be a star-centre of G. Then I;(z) is also starshaped with respect to ¢ for

each z € G (see Theorem 1.2 [19]). For each n, define T, : M — K(X) by
To(z) = k. T(z) + (1 — ky)q

where {k,} is any sequence with k, — 1 as n — oo and 0 < k, < 1.

We have for all p € P,

D, (Tn(w),Tn(y)) < kn p(f(w) - f(y))-

This implies that each T}, is an f-contraction. The condition (i) and starshapedness
of I¢(z) imply that T,(z) C Ig(z) for all z € f~!(z). By Theorem 2.1, there exists
tn, € M such that f(z,) € Th(zn) = knT(zn) + (1 — kn)g. So there is some u,, € T(z,)
such that

Thus f(zn) — un = (kn — 1) up + (1 — k)¢ — 0 as n — oo, by the boundedness of
T(M).



As (f —T)M is closed and f(z,) — u, € (f — T)M, we get that 0 € (f — T)M.

Hence there is a point zo € M such that f(zo) € T(zq). O

THEOREM 2.3. Let M be a nonempty weakly compact subset of a Hausdorff locally
convez space X and f: M — X a weakly continuous map with its range G starshaped.
LetT : M — K(X) be an f-nonezpansive map which satisfies the following conditions:
(1) T(z) C Ig(z) for all z € f~1(z2).
(i1) f— T is demiclosed.
Then C(fNT) # ¢.

Proof. Note that G is weakly compact and hence it is a closed and bounded subset
of X. If ¢ is a star-centre of G, then Ig(z) is also starshaped with the star-centre gq.
As in the proof of Theorem 2.2, we get a sequence {z,} in M and u, € T(z,) such
that f(z,) —u, = l'lg—fﬂ (q - f(wn)) Since M is weakly compact, we may assume that
z, — z € M and hence f(z,) — f(z). It follows that for each p € P, supp(f(m) -
f(:vn)) < 4o00. Thus for each p € P, p(f(:vn) — un) = 1—;5“ p (q - f(xn)) — 0 as
n — oo. Hence by the demiclosedness of f — T, we get that 0 € (f — T)(zo). Hence

f(zo) € T(zo). O
We shall need the following variant of Nadler’s result [13], as stated in Lemma [15].

LEMMA 2.4. If A,B € K(X), then for each a € A, there is a b € B such that
pla—b) < D,(A,B) for allp € P.

An analogue of Lemma 3.1 due to Latif and Tweddle [9] is established below.

LEMMA 2.5. Let M be a nonempty weakly compact subset of Hausdorff locally convez
space X satisfying Opial’s condition. Let f : M — X be a weakly continuous map and

T:M — K(X) an f-nonezpansive multivalued map. Then f — T is demiclosed.

Proof. Let {zs} be a net in M and y, € (f — T')(z,) be such that z, — z and



Yo — y. Obviously z € M and f(z,) — f(z). Since y, € f(zo) — T(z,); therefore
we have y, = f(24) — Ua, for some u, € T(z,). As T'(z) is compact so by Lemma 2.4,

there is a u, € T'(z) such that for all p € P,

p(ta — va) < D, (T(ma),T(x)).

The f-nonexpansiveness of T' gives for each p € P,

D, (T(22), T(2)) < p(f(za) = £(2)).
Thus
P(ua = va) < p(f(2a) = f(2)) forall pe P.

Passing to the limit with respect to «, we obtain

liminfp(f(xa) - f(a:)) > liminf p(ug — v4)

*
= liminfp(f(a:a)——ya—va), for all pe P. *)

By compactness of T'(z), for a convenient subnet still denoted by {v,}, we have v, —

v € T(z). Consequently () yields

1iminfp<f(ma) - f(x)) > liminfp(f(wa) _y— v) for all p€ P.

Since X satisfies Opial’s condition and f(z4) — f(z) so f(z) = y +v. Thus y =

f(z) —v € f(z) — T(z), which proves that f — T is demiclosed.
The above Lemma leads to the following results for Opial spaces.

COROLLARY 2.6. Let M be a nonempty weakly compact subset of a Hausdorff locally
convex space X satisfying Opial’s condition and f: M — X a weakly continuous map
with its range G starshaped. Let T:M — K(X) be an f-nonezpansive map such that
T(z) C Ig(2) for allz € f~'(z). Then C(fNT) # ¢.

COROLLARY 2.7. Let M be a nonempty weakly compact starshaped subset of a Haus-
dorff locally convex space X satisfying Opial’s condition. Suppose that T': M — X is

a nonexpansive map such that T'(z) € Is(z) for all z € M. Then T has a fixed point.
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A generalization of a result in [5] is contained in the following.

COROLLARY 2.8. Let M be a nonempty weakly compact subset of a Hausdorff locally
convez space X satisfying Opial’s condition and f: M — X a weakly continuous map

with its range G starshaped. Let T : M — K(X) be an f-nonezpansive map such that
for each z € G (boundary of G), T(z) C G for allz € f~(2). Then C(fNT) # ¢.

Proof. For all z € G, G C Ig(z) and Ig(z) = X if 2z is an interior point of G so we

obtain that T'(z) C Ig(z) for all 2 € f~'(2). The result follows from Corollary 2.6.
Next we use Theorem 2.2 to obtain the following result.

THEOREM 2.9. Let M be a nonempty subset of a Hausdorff locally conver space X
satisfying Opial’s condition. Suppose f : M — X is a map with its range G weakly
closed and starshaped. Let T : M — K(X) be an f-nonezpansive map which satisfies
the following conditions:

(i) T(z) C Ig(2) for all z € f~1(2).

(1) T(M) C B for some weakly compact subset B of X .

Then C(fNT) # ¢.

Proof. If we can show that (f —T')M is closed, then the conclusion would follow from
Theorem 2.2. Let y be a limit point of (f — T)M. Then there is a net {y,} with
Yo € (f —T)M such that y, — y. Since yo € (f — T)M so there is {z,} in M such
that yo € (f — T)(za). Thus y, = f(2,) — u, for some u, € T(z,). This implies that
f(za) = Yo = us € T(z4) € B so thereis a b € B and a subset {f(xa) - ya} (say)
which converges weakly to bin B. Since y, — y, it follows that flzg) > y+b=2z
As G is weakly closed so z E‘ G and hence z = f(a) for some a in M. For each a,

f(za) — yo € T(z4) implies by Lemma 2.4 and f-nonexpansiveness of T' that there is



a 2, € T(a) such that

p(f(za) = va = ) <p(f(za) - 1(@).

Since T'(a) is compact so there is subnet still denoted by {24} such that z, — u € T(a)

and y, + 2o — y + u. Thus

liminfp(f(xa) -y — u) < liminfp(f(ma) - f(a)).

By Opial’s condition of X and f(z,) — f(a), we obtain y + u = f(a). That is

y= f(a) —u € (f — T)M as required. O

REMARKS 2.10. Let I denote the identity map on M.

(i) If f =1 and T is a single-valued rnr;mp in Theorem 2.1, then a fixed point result
of Martinez-Yanez [12] is obtained. Moreover, Theorem 2 of Massa [11] is a special
case of Theorem 2.1.

(ii) In case f = I in Theorem 2.2, we get Theorem 1 [15] and if in addition T is
a single-valued self map on M, then Dotson’s fixed point theorem [3] and Tarafdar’s
Theorem 1.2 [17] follow from it as immediate corollaries.

(iii) For f = I, Theorem 2.3 provides an analogue of Theorem 3.8 [19] for an inward
map on a locally convex space and if in addition, T is a single-valued self map on M,
then Corollary 2.6 (i) [18] follows from it.

(iv) Take f = I on a convex set M, X a Banach space and T : M — K(M). Then
Corollary 2.6 reduces to Theorem 3.2 [8].

(v) Corollary 2.7 generalizes Theorem 11 and Corollaries 12 and 15 due to Chang
and Yen [1]. |

(vi)lf f=1IandT:M — X, then Corollary 2.8 implies conclusion of Theorem 3
[16] for weakly compact sets of an Opial space.

(vii) Theorem 2.9 extends Theorem 2 [15].
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