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ON SOME PROPERTIES OF BANACH OPERATORS
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Abstract

A mapping « from a normed space X into itself is called a Banach operator if
there is a constant k such that 0 < k < 1 and ||o?(z) — o(z)|| < klla(z) — z|| for
all z € X. In this note we study some properties of Banach operators. Among
other results we show that if a is a linear Banach operator on a normed space
X, then N(a —1) = N((a — 1)), N(e - 1) N R((a — 1)) = (0) and if X is
finite-dimensional then X = N(a~1) ® R(a—1), where N(a—1) and R(a — 1)
denote the null space and the range space of (a — 1), respectively and 1 is the
identity mapping on X. We also obtain some commutativity results for a pair of
bounded linear multiplicative Banach operators on normed algebras.

1. Introduction

Let X be a normed space and @ : X — X be a mapping. Following [5], o is
said to be a Banach operator if there exists a constant k& such that 0 < k < 1 and
llo?(z) — e(z)|| < k||a(x) —z|| for all z € X. Banach operators generalize contractions
and play an important role in the fixed point theory; their consideration essentially
goes back to Gheney and Goldstein [4] in the study of proximity maps on convex sets _
(see, e.g., [5] and references therein). The purpose of this note is to study some further
properties of Banach operators. In section 2, we prove some decomposition results for
Banach operators. For instance, we show that if « is a linear Banach operator on a
normed space X, then N(a—1) = N((a —1)2), N(a—1)NR(a~1) = (0), and if X is
finite-dimensional, then X = N(a~1)® R(a—1), where N(a—1) and R(a~1) denote
the null space of (¢—1) and the range space of (a—1), respectively and 1 is the identity
mapping on X. This result is no longer true when X is infinite-dimensional. However,

if o« is a bounded linear operator on a Hilbert space H such that o and o* have common
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fixed points, then it is shown that N(a — 1) + R(a — 1) is dense in H. Though this
result is not directly related to Banach operators, yet it provides information about
decompositions; therefore, it is of independent interest and we include it here. The
techniques in the proof of this decomposition theorem lead to an alternate proof of a

well-known result on the residual spectrum of a bounded normal operator on H.

In section 3, we study the operator equation o + ca™ = 8 + ¢8~! for a pair
of invertible bounded linear Banach operators on a normed space X where ¢ is an
appropriate complex number. We briefly recall that the equation a + a™! = 8 +
B3~! has been extensively studied for a pair of automorphisms ¢, 3 on von Neumann
algebras, C*-algebras and rings. Most of the results deal with decomposition of the
underlying structures with an additional assumption of commutativity of o and g.
Certain situations are identified when the equation itself implies the commutativity
of o and . Recently, this equation has been generalized as aa + bo~! = af + b5~!
for linear combinations ac + ba~! for appropriate real or complex numbers g, b. If we
put ¢ = 2, then the equation ac + bo~! = a8 + b3~! becomes & + ca™! = f + ¢4~
We obtain here some Banach operator analogues of some results of [3]. For instance,
we show that if o and § are invertible bounded linear multiplicative Banach operators
on a normed algebra X with identity such that a(z) + ca™(z) = B(z) + ¢~ (z) for
all z € X and if B is inner (that is, there exists an invertible element v € X such
that 3(z) = uzu™! for all z € X), then o, 8 commute. For more on these operator

equations we refer to {1, 3, 8] where further references are given.

2. Decomposition Results

Let X be a normed space and « a linear operator on X. Denote by N(c), the
null space of a and R(w), the range space of a. If X is finite-dimensional and N(a) =
N(a?) then by the dimension theory of finite-dimensional spaces, R(c) = R(c?) and X

admits the decomposition X = N(a) @ R(«). This result may not be true when X is

2



infinite-dimensional. In fact, one cannot expect even a weaker result that N(a) + R(a)
is dense in X. For instance, one can find an injective operator whose range is not
dense. However, if o is a bounded linear Banach operator on a normed space X, then
N(a —1) = N((e - 1)?),N(a — 1) N R(a — 1) = (0), where 1 denotes the identity
operator on X and if X is finite-dimensional, then X = N(a — 1) & R(c — 1). These

and some other results are proved in this section.

PROPOSITION 2.1. Let & be a linear Banach operator on normed space X, then (i)
N(a—1) = N((a—-1)?), (i) N(a-1)NR(a-1) = (0).

Proof. (i) N(e — 1) € N((a — 1)?) is obvious. Assume z € N((a — 1)?). Then
(a@—1)%(z) = o’z —2a(z) +z = 0; s0 a(z) — = o*(z) — a(z) and since « is a Banach
operator, we get ||a(z) — z|| = ||®(z) — a(:v)|| < klla(z) —z||- Since 0 < k < 1, we get
lla(z) — z|| = 0; that is, a(z) = z or z € N(a—1). Thus N((a — 1)?) C N(a—1) and
hence N(a — 1) = N((a - 1)?).

(ii) To prove N(a—1)NR(a~1) = (0), assume that y € N(a—1)NR(a—1). Then
(a—1)(y) = 0and y = (—1)(z) for some z € X and hence (e—1)(y) = (a—1)%(z) =0
so that z € N((a — 1)?) = N(a— 1), (by (i)). Thus y = (@ — 1)(z) = 0 and hence
N(a-1)N R(a—1) = (0).

It is obvious that R((a — 1)%) € R(er—1). Thus N((a - 1)) N R((a — 1)?) C .
N((e-=1)>)NR(a-1) = N(a—1)NR(a—1) = (0), so that N((a—1))NR((a—1)2) = (0).

If X is finite-dimensional then by the dimension theory of finite-dimensional spaces,

we can conclude that R((a — 1)%) = R(e — 1) and hence by Taylor [7, pp. 271-273

X = N(a— 1) ® R(a — 1). Thus we have the following proposition.

PROPOSITION 2.2. Let o be a linear Banach operator on a finite-dimensional normed
space X, then X = N(a—1)® R(a—1).
For certain operators on Hilbert spaces, we are able to get somewhat general form

of the above result though it would be interesting to obtain a similar result for Banach
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operators. However, this result is of independent interest in operator theory, so we

include it here.

PROPOSITION 2.3. Let o be a bounded linear operator on a Hilbert space H such that o
and o* have common fized points, then N(a—l)ﬂR(a‘—l) = (0) and N(a—1)+R(a-1)
is dense in H.
Proof. If z € N(a—1)NR(a—1), then a(z) = . Thus (by assumption) o*(z) = z; that
is,z € N(a*—1) = N((a—1)*) = R_(oz_:—ljl. This implies (z, z) = 0 and hence z = 0.
To prove the second part, assume that N(a—1)+R(a—1) is not dense in H. Then there
exists a nonzero continuous linear functional ¢ on H such that ¢ vanishes on N(a:—1)
and R(a.—1). That ¢ vanishes on R(a— 1) implies ¢(a(z) —z) = (poa)(z) — ¢(z) =0
or (¢ o a)(z) = ¢(z) for all z € H. By the Riesz-representation theorem, there is a
unique yo € H such that ¢(z) = (z,%) = (¢ 0 a)(z) = (a(z), y0) = (z, a*(y)) for all
z € H and hence o*(y) = yo. By assumption, a(yo) = yo; that is, yp € N(a — 1) and
hence #(y0) = (Yo, %) = |lvol|® = 0; that is, yo = 0. It follows that ¢(z) = 0 for all
z € H, so ¢ =0, a contradiction. This completes the proof.

If o is a linear contraction on H then o and o* have common fixed points (see, e.g.,

[2, p. 188]); therefore, we have the following corollary:

COROLLARY 2.4. If a is a linear contraction on a Hilbert space H, then N(ao —1)N -
R(a—1) = (0) and N(a — 1) + R(a — 1) is dense in H.

If  is a bounded normal operator on H, then ||(a — 1)(z)|| = ||(a* — 1)z|| for all
T € H and hence « and o™ have common fixed points; therefore, we have the following

corollary:

COROLLARY 2.5. If o is a bounded normal operator on a Hilbert space H, then
N(a-1)NR(a—1)=(0) and N(a — 1) + R(a — 1) is dense in H.
It is well known that the residual spectrum of a bounded normal operator on a

Hilbert space H is empty (see, e.g., [6, p. 479]). The techniques in the proof of the



above proposition can be applied to obtain an alternate proof of this result.

PROPOSITION 2.6. The residual spectrum R,(c) of a bounded normal operator o on
a Hilbert space H is empty.

Proof. Let A € Ry(). Then N(a— )) = (0) and R(a — A) # H. Let ¢ be a nonzero
continuous linear functional on H such that ¢ vanishes on R(ax — )). By the Riesz-
representation theorem, there is a unique yo € H such that ¢(z) = (z, o) for all z € H.
Now ¢ vanishes on R(a — \); therefore, ¢(a(z)) = (¢oa)(z) = A¢(z) for all z € H and
hence ¢(a(z)) = Ad(z) = XMz, y0) = (z, Ayo). Also, ¢(a(2)) = (a(), v0) = (z, 2" (30)),
so that (z, Ayo) = (z,@"(y0)) for all z € H and hence a*(y) = Myo. Since « is normal,
we get a(yo) = Ayo and hence yo € N(a — A) and consequently yo = 0. Thus ¢ =0, a

contradiction and hence og(c) is empty. “This completes the proof.

3. Commutativity Results

In this section, we mainly obtain some commutativity results for a pair of invertible
bounded linear Banach operators «, § satisfying the equation .+ ca™' = f+ ¢! on

normed algebras. We begin with the following basic result:

PROPOSITION 3.1. Let a be an invertible linear Banach operator on a normed space
X and 3y € X such that a(xo) + co~ (o) = (1 + c)zo where c is a real or compler
number with |c| > 1, then x4 is o fized point of .

Proof. The equation implies that o?(zo) + czo = (1 + c)a(zo) and hence c(a(zo) —
o) = o®(2o) — a(zy). Since o is a Banach operator, therefore there exists a constant
0< lc < 1 such that |c| [|a(zo) — zol| = [le®(zo) — a(z0)|| < k|le(zo) — zo|| and hence
la(zo) — zo|| < ﬁ”a(xo) ~ To|| < k||le(zo) — zo|| and since 0 < k < 1, we obtain
a(zg) — zo = 0 or a(zy) = Zo.

The following proposition shows that under certain situations the equation o +

ca~! = B+ ¢B~! implies the commutativity of o, 3.



PROPOSITION 3.2. Let o, 3 be invertible linear multiplicative Banach operators on
a normed algebra X with identity such that a(z) + ca™!(z) = B(z) + ¢B~(z) for all
z € X where ¢ is a real or complez number with |c| > 1; If B is inner, then «a,
commute.

Proof. Assume that B(z) = uzu~! for all z € X, u € X. Putting £ = u in the
equation, we get a(u)+ca(u) = (1+c)u and by Proposition 3.1, a(u) = u, and hence .
(Ba)(z) = Bla(z)) = ua(z)u™ = a(v)a(@)a(u) = o(uzu™) = a(B()) = () ()
for all x € X. This proves that a, 3 commute.

PROPOSITION 3.3. Let o, B be invertible bounded linear multiplicative Banach opera-
tors on a normed algebra X with identity such that a(z) + ca~!(z) = B(z) + ¢87'(z)
forallz € X,|la—1|| <1, |8~ 1| <1, where c is a real or complez number with
lc| > 4 and B is inner. Then a = (.

Proof. By Proposition 3.2, o, 8 commute. The equation a(z) + ca™(z) = B(z) +
¢B~'(z) together with the commutativity of o, 8 implies (a8 — ¢)(6~' — a™')(z) = 0.
Put (8~ —a~')(z) = y. Then (a8 —c)(y) = 0 or aB(y) = cy, so that cy — By = afy —
By = (a—1)B(y) and hence [lcy — B)|| = [I(a = DB < lla = 1]l 1B < IBW)II-
That is, [lley]| - 18)Il| < 18(v)]l- This implies that |e| vl < 20181l < 20181l llv]
Since || — 1]| < 1, we get ‘||;6|| ~ 1‘ < ||8-1]] < 1 and hence ||8]| < 2 so that
le| llyll < 4llyll- If y # 0, then we get || < 4, a contradiction; therefore y = 0 and
hence 8~}(r) — a~!(z) = 0 for all z € X. Since a, f commute and o is linear, we get
a(z) — B(z) = 0; that is, a(z) = B(z) for all r € X and hence o = B. This completes

the ;;roof.
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