

King Fahd University of Petroleum & Minerals

DEPARTMENT OF MATHEMATICAL SCIENCES

Technical Report Series

TR 250

February 2000

Alpha - Limits of Algebras

A. Laradji

α -Limits of Algebras*

A. Laradji

Abstract

In this note we prove some universal algebraic properties of α -limits, and apply them to characterize a certain class of Σ -pure injective rings. This will provide an answer to a generalized version of a problem of Jensen and Lenzing. Our results also yield a module-theoretic characterization of singular cardinals.

Let A be a general algebra and let α be an ordinal. Following [12], a retraction $f:A^{\omega_{\alpha}}\longrightarrow A$ such that $f(\{x_{\tau}\}_{\tau<\omega_{\alpha}})=f(\{y_{\tau}\}_{\tau<\omega_{\alpha}})$ whenever there exists an ordinal $\tau_0<\omega_{\alpha}$ with $x_{\tau}=y_{\tau}$ for all $\tau\geq\tau_0$, is called an α -limit over A. It is easy to see that if F_{α} is the filter $\{\{\tau:\tau_0\leq\tau<\omega_{\alpha}\}:\tau_0<\omega_{\alpha}\}$ on ω_{α} , then A has α -limits if and only if it is a retract of the reduced power $A^{\omega_{\alpha}}/F_{\alpha}$. α -limits were first used by Loś [8] to characterize algebraically compact abelian groups (see also [12] and [2]), and in [11] Wenzel proved that an algebra A of cardinality ω_{α} is equationally compact (in the sense of Mycielski [10]) if and only if it has β -limits for all ordinals $\beta<\alpha$.

In [4], Jensen and Lenzing posed the following problem: Is a module M necessarily equationally compact if the diagonal map $M \longrightarrow M^{\mathbb{N}}/M^{(\mathbb{N})}$ splits? Since algebras are equationally compact

^{*2000} Mathematics Subject Classification. Primary 08A45, 13C11

if and only if they have α -limits for all ordinals α (see [12]), this question can be rephrased as: Does the existence of a 0-limit over a module M force it to have α -limits for all ordinals α ? The question has a negative answer as was shown in [7] by using reduced powers of certain complete local noetherian rings, but the construction there cannot be extended to uncountable cardinals. It is worthwhile therefore to pose a generalized version of Jensen and Lenzing's question, namely:

If a module M has β -limits for all ordinals $\beta < \alpha$, then does M necessarily have α -limits? In our attempt to answer this question, we not only establish a cardinal-oriented characterization of commutative Σ -pure injective rings that are not principal ideal rings, but we also obtain, as a by-product, the following module-theoretic characterization of infinite regular cardinals:

An infinite cardinal ω_{α} is regular if and only if there exists a module without α -limits but which has β -limits for all $\beta < \alpha$.

Throughout, a theory of ordinals is assumed where an ordinal is the set of all smaller ordinals, and where cardinals are initial ordinals, R is an associative ring with 1 and all modules are unitary left R-modules. Given a family $\{A_i\}_{i\in I}$ of similar algebras and a filter F on I, an F-restricted product of the A_i 's is a subalgebra B of $\prod_{i\in I} A_i$ such that (i) $\{i\in I: a_i=b_i\}\in F$ whenever $a=(a_i),b=(b_i)\in B$ and (ii) if $a=(a_i)\in\prod_{i\in I} A_i$, $b=(b_i)\in B$, and $\{i\in I: a_i=b_i\}\in F$ then $a\in B$. (See [3].)

We first start with some preliminary results on α -limits.

Proposition 1. Let F be an ω_{α} -complete filter on a set I and let $\beta < \alpha$. If $\{A_i\}_{i \in I}$ is a family of similar algebras that have β -limits then so too does $B = \prod_{i \in I} A_i/F$.

Proof. For each $i \in I$ let $f_i : A_i^{\omega_\beta} \longrightarrow A_i$ be a β -limit, and define $f : B^{\omega_\beta} \longrightarrow B$ by

$$f(\{\overline{(a_{\tau i})_{i \in I}}\}_{\tau < \omega_{\beta}}) = \overline{\{f_i(\{a_{\tau i}\}_{\tau < \omega_{\beta}})\}_{i \in I}}.$$

Then f is a well-defined mapping. For if $\{\overline{(a_{\tau i})_{i \in I}}\}_{\tau < \omega_{\beta}} = \{\overline{(b_{\tau i})_{i \in I}}\}_{\tau < \omega_{\beta}}$ then the set $X_{\tau} = \{i \in I : a_{\tau i} = b_{\tau i}\} \in F$, for all $\tau < \omega_{\beta}$, so that, since F is ω_{α} -complete, $X = \{i \in I : a_{\tau i} = b_{\tau i} \text{ for all } I : a_{\tau i} = b_$

 $\tau < \omega_{\beta}$ is also in F, and therefore

$$\{i \in I : f_i(\{a_{\tau i}\}_{\tau < \omega_\beta}) = f_i(\{b_{\tau i}\}_{\tau < \omega_\beta})\} \in F.$$

It is routine to check that f is a homomorphism and that if $\partial: B \longrightarrow B^{\omega_{\beta}}$ is the diagonal mapping then $f\partial$ is the identity on B, that is, f is a retraction. Moreover, if for some $\tau_0 < \omega_{\beta}$ $\{\overline{(a_{\tau i})_{i \in I}}\}_{\tau_0 \le \tau < \omega_{\beta}} = \{\overline{(b_{\tau i})_{i \in I}}\}_{\tau_0 \le \tau < \omega_{\beta}}$, then the same argument we used for the well-definedness of f, can be applied to show that $f(\{\overline{(a_{\tau i})_{i \in I}}\}_{\tau_0 \le \tau < \omega_{\beta}}) = f(\{\overline{(b_{\tau i})_{i \in I}}\}_{\tau_0 \le \tau < \omega_{\beta}})$.

Remark. It follows from Proposition 1 that direct products of algebras with α -limits also have α -limits.

Proposition 2. Let $\{A_i\}_{i\in I}$ be a family of similar algebras with β -limits, and let F be an $\omega_{\beta+1}$ -complete filter on I. Then every F-restricted product of the A_i 's has β -limits.

Proof. Let B be an F-restricted product of the A_i 's, and let $f_i: A_i^{\omega_\beta} \longrightarrow A_i$ be a β -limit $(i \in I)$. Define $f: B^{\omega_\beta} \longrightarrow B$ by $f(\{(a_{\tau i})_{i \in I}\}_{\tau < \omega_\beta}) = (f_i(\{a_{\tau i}\}_{\tau < \omega_\beta}))_{i \in I}$. For each pair (σ, τ) of ordinals less than ω_β , denote by $X_{\sigma\tau}$ the set $\{i \in I: a_{\sigma i} = a_{\tau i}\}$. Clearly the set $X = \bigcap_{\sigma, \tau < \omega_\beta} X_{\sigma\tau}$ is a member of F, since F is $\omega_{\beta+1}$ -complete and B is an F-restricted product. For each $i \in X$, set $a_i = a_{\tau i}$ $(\tau < \omega_\beta)$. We then have $f_i(\{a_{\tau i}\}_{\tau < \omega_\beta}) = a_i$ and therefore $(f_i(\{a_{\tau i}\}_{\tau < \omega_\beta}))_{i \in I} \in B$. This shows that f is a well-defined mapping. f is also a retraction, as can easily be verified, and if there exists $\tau_0 < \omega_\beta$ such that $(a_{\tau i})_{i \in I} = (b_{\tau i})_{i \in I} \in B$ for each $\tau \geq \tau_0$, then $f_i(\{a_{\tau i}\}_{\tau < \omega_\beta}) = f_i(\{b_{\tau i}\}_{\tau < \omega_\beta})$ for each $i \in I$. \square

Proposition 3. Let $\omega_{\beta} = cf(\omega_{\alpha})$. Then an algebra A has α -limits if and only if it has β -limits. Proof. Let $\omega_{\alpha} = \bigcup_{\tau < \omega_{\beta}} v_{\tau}$ where $v_{\tau} < \omega_{\alpha}$, so that $\omega_{\alpha} = \bigcup_{\tau < \omega_{\beta}} \left((v_{\tau} \setminus \bigcup_{\sigma < \tau} v_{\sigma}) \right)$. Assume first that $f: A^{\omega_{\alpha}} \longrightarrow A$ is an α -limit, and define a mapping $g: A^{\omega_{\beta}} \longrightarrow A$ by $g((a_{\tau})_{\tau < \omega_{\beta}}) = f((a'_{i})_{i < \omega_{\alpha}})$, where $a'_{i} = a_{\tau}$ if $i \in v_{\tau} \setminus \bigcup_{\sigma < \tau} v_{\sigma}$. g is clearly a retraction, and if $(a_{\tau})_{\tau_{0 \leq \tau} < \omega_{\beta}} = (b_{\tau})_{\tau_{0 \leq \tau} < \omega_{\beta}}$ for some $\tau < \omega_{\beta}$, then $a'_{i} = b'_{i}$ for all $i \geq v_{\tau_{0}}$. Thus $f((a'_{i})_{i < \omega_{\alpha}}) = f((b'_{i})_{i < \omega_{\alpha}})$ and g is a β -limit. Conversely, if $g: A^{\omega_{\beta}} \longrightarrow A$ is a β -limit, define $f: A^{\omega_{\alpha}} \longrightarrow A$ by $f((a_{i})_{i < \omega_{\alpha}}) = g((a_{v_{\tau}})_{\tau < \omega_{\beta}})$. It is easily checked that f is a retraction and that if $(a_i)_{i_0 \le i < \omega_{\alpha}} = (b_i)_{i_0 \le i < \omega_{\alpha}}$ for some $i_0 < \omega_{\alpha}$, then $f((a_i)_{i < \omega_{\alpha}}) = f((b_i)_{i < \omega_{\alpha}})$.

Given an algebra A and infinite cardinals κ, λ we shall say that A is (κ, λ) -compact if every system of λ equations over A all of whose subsystems of size less than κ are solvable, is itself solvable. Thus, in particular, λ -(equationally) compact algebras are precisely the (ω, λ) -compact ones. The following result is a universal algebraic counterpart of [8, Corollary 5.2 and Proposition 5.3].

Proposition 4. (Cf. [11, Theorem 2].) Let A be an algebra.

- (a) If A has α -limits, then it is $(\omega_{\alpha}, \omega_{\alpha})$ -compact.
- (b) If A is $(\omega_{\alpha}, \lambda)$ -compact for all cardinals λ , then it has σ -limits for all regular cardinals $\omega_{\sigma} \geq \omega_{\alpha}$.

Proof. (a) Let $\{R_j\}_{j<\omega_{\alpha}}$ be a system of equations over A with a set of unknowns $\{x_s\}_{s\in S}$, and for each ordinal $\tau<\omega_{\alpha}$, let $\{a_s^{\tau}\}_{s\in S}$ be a solution to the subsystem $\{R_j\}_{j\leq \tau}$. If $f:A^{\omega_{\alpha}}\longrightarrow A$ is an α -limit, then $\{f((a_s^{\tau})_{\tau<\omega_{\alpha}})\}_{s\in S}$ is a solution of the system $\{R_j\}_{j<\omega_{\alpha}}$.

(b) It is clear that if A is $(\omega_{\alpha}, \lambda)$ -compact for all cardinals λ , then it is $(\omega_{\sigma}, \lambda)$ -compact for all $\sigma \geq \alpha$. Hence, assuming without loss of generality that ω_{α} is regular, we need only show that A has α -limits. By identifying each element of A with its image in $A^{\omega_{\alpha}}/F_{\alpha}$ via the diagonal mapping $h: A \longrightarrow A^{\omega_{\alpha}}/F_{\alpha}$, we may assume that A is a subalgebra of $A^{\omega_{\alpha}}/F_{\alpha}$. Let $\{R_j\}_{j\in J}$ be a system of equations over A with a set of unknowns $\{x_s\}_{s\in S}$ and constants $\{a_c\}_{c\in C}$. Suppose that this system is solvable in $A^{\omega_{\alpha}}/F_{\alpha}$ by $\{\overline{(b_{s\tau})_{\tau<\omega_{\alpha}}}\}_{s\in S}$ and let J_o be a subset of J of size less than ω_{α} . We claim that $\{R_j\}_{j\in J_0}$ is solvable in A. For if $R_{j\tau}$ is the equation obtained from R_j by replacing each constant a_c by its τ th coordinate in A, then the set $X_j = \{\tau < \omega_{\alpha} : \{b_{s\tau}\}_{s\in S}$ solves $\{R_{j\tau}\}_{s\in S}$ is in F_{α} . As ω_{α} is regular, $\bigcap_{j\in J_0} X_j \in F_{\alpha}$, and hence, choosing τ_0 in $\bigcap_{j\in J_0} X_j$, we obtain that $\{b_{s\tau_0}\}_{s\in S}$ solves $\{R_{j\tau_0}\}_{j\in J_0}$. It is clear now that $\{h(b_{s\tau_0})\}_{s\in S}$ solves $\{R_j\}_{j\in J_0}$. Consider the

system over A

$$x_{f((b_i)_{i \in r(f)})} = f((x_{b_i})_{i \in r(f)}), \ x_a = a$$
(1)

for any $b_i \in A^{\omega_{\alpha}}/F_{\alpha}$, $a \in A$, and any operation f on $A^{\omega_{\alpha}}/F_{\alpha}$ (with arity r(f)), and where the unknowns are indexed by $A^{\omega_{\alpha}}/F_{\alpha}$. This system is solvable in $A^{\omega_{\alpha}}/F_{\alpha}$ by $x_b = b$ ($b \in A^{\omega_{\alpha}}/F_{\alpha}$) and hence, by the claim above, each of its subsystems of cardinality less than ω_{α} is solvable in A. Since A is $(\omega_{\alpha}, \lambda)$ -compact for all cardinals λ , it follows that (1) is solvable in A by $x_b = \pi(b)$ ($b \in A^{\omega_{\alpha}}/F_{\alpha}$). It is now easy to see that π is a homomorphism of $A^{\omega_{\alpha}}/F_{\alpha}$ into A and that $\pi h(a) = a$ for all a in A. This shows that A is a retract of $A^{\omega_{\alpha}}/F_{\alpha}$, and therefore has α -limits. \square

Theorem 5. (Cf. [5] and [6].) Let R be a Σ -pure injective commutative ring with K_i ($1 \le i \le n$) the residue fields of its local ring factors, and let ω_{α} be an infinite regular cardinal $\le \min\{|K_i|: 1 \le i \le n\}$. Then the following statements are equivalent.

- (i) R is not a serial ring.
- (ii) There exists an R-module M with β -limits for all $\beta < \alpha$ but without α -limits.

Proof. If R is a serial ring then it is an artinian principal ideal ring (since it is perfect) and so every R-module is equationally compact, i.e. has β -limits for all ordinals β . We therefore have (ii) \Rightarrow (i). Suppose now that (i) holds. Without loss of generality, we may assume that R is local with maximal ideal J, and that there are elements u, v in R with $u \notin (v)$ and $v \notin (u)$. Since $|R/J| \geq \omega_{\alpha}$, there exists a subset H of $R \setminus J$ with $|H| = \omega_{\alpha}$, whose elements are distinct modulo J. For each $h \in H$, let $M_h = R/(u - hv)$, and let M be the filter sum

$$\sum_{F_{\alpha}} M_h = \{ m \in \prod_{h \in H} M_h : \{ h \in H : m(h) = 0 \} \in F_{\alpha} \}.$$

Since ω_{α} is regular, F_{α} is ω_{α} -complete and M is an F_{α} -restricted product of the M_h 's. By hypothesis, R is equationally compact, and hence so is each cyclic module M_h . Proposition 2 now implies that M has β -limits for all $\beta < \alpha$. But F_{α} is not a principal filter, and so M cannot

be ω_{α} -compact by [5, Lemma 1], hence by Proposition 4, M does not have α -limits.

Remark. As in the case of [5, Lemma 1], one can easily modify the proof of Theorem 5 and show that it holds for the more general Σ -pure injective duo rings. (A ring is duo if all its one-sided ideals are two-sided.)

Combining Proposition 3 and Theorem 5 we obtain

Corollary 6. A cardinal ω_{α} is regular if and only if there exists a module with β -limits for all $\beta < \alpha$ but without α -limits.

In [11] Wenzel conjectured that there exist algebras of size ω_{α} and with α -limits but without β -limits for some $\beta < \alpha$, and in [1] Bulman-Fleming and Taylor provided examples of unary algebras satisfying Wenzel's conjecture. Along this direction, we apply our results to construct an infinite cardinal ω_{α} and a *module* of size ω_{α} with α -limits but without n-limits for any positive integer n.

Construction. Let σ be an infinite ordinal and let R be a commutative artinian local ring that is not a principal ideal ring of size $|R| \geq \omega_{\sigma}$. (Such a ring is for example the K-algebra R generated by $\{1, a, b\}$ where K is a field of size ω_{σ} and $a^2 = b^2 = ab = ba = 0$; see [13].) By Theorem 5, for each positive integer n there exists an R-module M_n with 0-limits but without n-limits. Let $M = \prod_{n \in \mathbb{N}} M_n$ and let α be the ordinal sum $|M| + \omega_{\sigma} + \omega$. By Proposition 3, and since $cf(\omega_{\alpha}) = \omega$, M has α -limits. The free module $R^{(\omega_{\alpha})}$ is equationally compact (since R is artinian), and this implies that the module $N = M \times R^{(\omega_{\alpha})}$, of cardinality ω_{α} , has α -limits but no n-limits for any positive integer n.

Acknowledgment. The author gratefully acknowledges the support of King Fahd University of Petroleum and Minerals.

References

[1] Bulman-Fleming, S. and Taylor, W., On a question of G. H. Wenzel, Algebra Universalis 2 (1972), 142-145.

- [2] Fuchs, L., Infinite Abelian Groups I, Academic Press, 1970.
- [3] Gratzer, G., Universal Algebra, Second Edition, Springer, 1979.
- [4] Jensen, C. U. and Lenzing, H., Model-Theoretic Algebra with Particular Emphasis on Fields, Rings, Modules, Gordon and Breach Science Publishers, 1989.
- [5] Jensen, C.U. and Zimmermann-Huisgen, B., Algebraic compactness of ultrapowers and representation type, Pacific J. Math. 139 (1989), 251-265.
- [6] Laradji, A. Algebraic compactness of reduced powers over commutative perfect rings, Arch. Math. 64 (1995), 299-303.
- [7] Laradji, A. On a problem of 0-limits, Communications in Algebra 27 (1999), 4303-4306.
- [8] Łoś, J. Generalized limits in algebraically compact groups, Bull. Acad. Polon. Sci. 7 (1959), 19-21.
- [9] Megibben, C. Generalized pure-injectivity, Symposia Mathematica 13 (1972), 257-271.
- [10] Mycielski, J. Some compactifications of general algebras, Colloq. Math. 13 (1964), 1-9.
- [11] Wenzel, G. H. Eine Charakterisierung gleichungskompakter universeller Algebren, Z. Math. Logik Grundalagen Math. 19 (1973), 283-287.
- [12] Wenzel, G. H. Equational compactness, Appendix 6 in: Gratzer, G. Universal Algebra, Second Edition, Springer, 1979, 417-447.
- [13] Zimmermann, W. (Σ -) Algebraic compactness of rings, J. Pure Appl. Algebra (1982), 319-328.