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Abstract
We consider a special type of quasilinear wave equation and show that

classical solutions blow up in finite time even for small initial data.
AMS Classification 35L45.

1. Introduction.

In this work, we are concerned with a one-dimensional first order quasilinear
hyperbolic system of the form

{ w(@,t) = a (Zgg) Vo (2, t) (1.1)

v(z,t) = ugy(z,t)

where a subscript denotes partial derivative with respect to the relevant variable;

z€I=(0,1),and ¢t > 0.



It is well known that, generally, classical solutions for such systems break
down in finite time, even for smooth and small initial data. For instance, Lax [5]
and MacCamy and Mizel [6] studied the system for a depending on v only. They
showed that the solutions blow up in finite time even if the initial data are smooth
and small. Note in this particular case, the system is reduced to the nonlinear
wave equation. For systems with dissipation, similar results have been established
by Slemrod [9], Kosinski [4] and Messaoudi [7] .

It is worth mentioning that global existence for the system considered in [9]
has been established by Nishida [8]. Also, Aregba and Hanouzet [1] and Tartar
[10] have considered a class of semilinear hyperbolic systems and proved some
- global existence and blow-up results.

In this paper, we study the system (1.1) together with initial and boundary

conditions and prove a blow up result.
2. Local Existence.

We consider the following problem

=a uz,?) V(T
wle ) = o (520 (@ )
vz, t) = uy(z,1t), Vzel=1[0,1), t>0 (2.2)
u(z,0) = uo(z), v(z,0) = vo(z), Vzel (2.3)
u(0,t) = u(1,t) =0, v,(0,t) = v,(1,t) =0, ¢t>0 (2.4)

where a is a function satifying

a(§)>ap>0, VEER (2.5)



and the initial data satisfy
ug € H*(I) N HY(I), wo € H*(I), vo(z) #0, Vz € L. (2.6)

Proposition. Assume that a is a C? function satifying (2.5) and let ug and v
be given and satisfying (2.6). Then the problem (2.1) - (2.4) has a unique local

solution (u,v), on a mazimal time interval [0,T), satifying
u,v € C([0,T), HYI))nC*([o,T), H'(I)). (2.7)

This result can be proved by either using a classical energy argument [2] or the
nonlinear semigroup theory [3].

Remark 2.1. u,v are in C*(I x [0,7T)) by the Sobolev embedding theorem.
Remark 2.2. The local existence can be obtained even if (2.5) holds in a neigh-
bourhood of zero. In this case, we have to be careful with the choice of the initial

data.
3. Formation of singularities.

In this section, we state and prove our main result. We first begin with a lemma
that gives a uniform bound on u/v in terms of the initial data.

Lemma. Let a be as in the proposition. Then there exist initial data satisfying
(2.6), for wich |u(z,t)/v(x,t)| remains uniformly bounded on I x [0,T).

Proof. We define the quantities

r(z,t) == 1mvmu+/%* ©)de,  s(z,t) == 1mvxu—/$%m5@,@n



and the differential operators :

We then choose a, 8, and p in such a way that

at’f' = Dts =0. (33)

Straightforward calculations then yield

1

: 1
=4/a(§), a(é) = —F——o, e 3.4
P(é') (5) (5) a(g) ny: ,B(f) \/;(—-f—)“f ( )

Therefore as long as a smooth solution continues to exist and

u(z,t) u(z, t)

v(z,t) < CL(v(a:,t))’

(3.5)

r and s remain constant along backward and forward characteristics, respectively;

hence
17 oo =170 llooy Il 8 1loo =1 50 |loo- (3.6)

To establish (3.5), we need to choose the initial data in a conviennient way. To

this end we note, by (3.1), that

r__s___d)(u(w,t)), (3.7)

where

T 24/a(&)d
#(r) = [ 2y lE) (38)

is continuous and admits a continuous inverse 1, at least in a neighbouhood of

zero. By noting that the function g(¢) = a(¢)—¢? is continuous and g(0) > ag ,one

4



can choose € > 0 such that g(§) > ag /2, for all |£] < e. We then choose § > 0 so

that |[(£)| < ¢, for all |¢| < 6. Therefore as long as (r — s) < &, we have

U

v

=|Y(r—3s)|<e. (3.9)
Consequently, by choosing uy and vy such that
lIrolloo + [I50]leo < &, (3.10)

the relation (3.5) holds and the proof of the lemma is completed.

Theorem. Assume that, in addition to (2.5), a satisfies
a'(0) > 0. (3.11)

Then there exist initial data uo,vy satifying (2.6), for which the solution of the
problem (2.1) - (2.4) blows up in finite time.
Proof. We take an z-partial derivative of (3.3) to get

(041)e = Tt — Prog — Tepy =0 (3.12)
which, in turn, implies
a vug — uv,
6t(rm) =T, = 2\/&_ 02 Tz. (313)
By using
_ Vs U\ VU — Uy, _ Uz o (U VUg —uby,
ro="2+a (v) Ra e 5= ﬂ(v> T (3.14)

and substituting in (3.13), we obtain

o)1) - @

T




To handle the last term in (3.15), we set

W=\ (-"f) T (3.16)

v

and substitute in (3.15), to get |
o = (2) b (£) - ()12 () EiFe () - (&) e

g (%) ) (9> (3.17)

v

e

e (g

By using the equations, we estimate

5, (%) _ v(uy — \/a'uax)v—2 u(v; — /avy)

_ v(avy = vaug) — u(us — vav,)  (vavy — ug)(u + y/av)

v? v?

At this point, we choose A so that

A (0) 8 (9) (2 (3) e

(3.18)
By using the fact that

S = g(\/ﬁvac - Ug) = l~-—————1—(\/E'v,; — Uy) (3.19)

’ ya(®) - ()

and substituting in (3.18) we arrive, by simple computations, at

X(3) _ ()
A(E) T wl) o

v

which yields, by a direct integration,

A(€) = a*4(8); (3.21)
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consequently (3.17) reduces to

a (% 2
o = — 2o () (2w 52
nz)e() M/
Therefore W ( hence r,) blows up in a time, if we choose initial data satisfying

(3.10) with derivatives satisfying

) o (EQ) M >0 (3.23)

Vg v2

Remark 3.1. Similar result can be estaiolished for a/(0) < 0. In this case consider
the evolution of s, on the forward characteristics.
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