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Abstract

We consider the semilinear wave equation ug — Uze = f(u,us) associated
with mixed boundary conditions and prove a global existence, as well as, a
blow up result.

Keywords : wave equation, blow up, solution energy, global existence,
dissipative, antidissipative.

Subject classification 35 L45



1. Introduction

In [6] the following problem

Ugt — U = F(,t, 4, ug, us), zel=(0, 1), t>0
Uz (0,8) — u(0,8) = ug(1,8) +u(1,t) =0, t>0 (1.1)
w(z,0) = up(z), w(z,0)=1u(z), z el

has been considered and a local existence, as well as an asymptotic expansion result
have been established. The authors used a classical contraction argument to prove
their theorems. For this purpose they introduced a space W (M, T), which consists

of all measurable functions v satisfying
ve L ([0,T); HX()), w € L= ([0,T); H\(I)), va € L* (10,T); H'(I)), (1.2)

|0l|Ze0 o7y, mr2(ay) + Vel oo omy; w3ty + el |2 0,1y, EHo(1y) < M,

and made some assumptions on F' and the initial data; More precisely they require
that

(H1)  wo € H%*(I) and w3 € HY(I), with

uo(0) — u0(0) = tp(1) +uo(1) =0, u(0) ~ w1 (0) = wy (1) + (1) =0 (1.3)

H2) FeC'([0,1]x[0,00)x R?).



They also defined the following equivalent norm on the space H'(I)

1
1o g = v0) + [ v3@)de (14)

and proved the following :

Theorem 1. Let (H1) and (H2) hold. Then there exist M > 0 ( large enough ) and
T > 0 such that the problem (1.1) has a unique weak solution w € W (M, T).
Remark 1.1. By using the result of [9], we conclude that

weh C*((0, T)H(I)). (L5)

As the authors pointed out, their result is a relative generalization of [1]. It is also
worth mentioning that (1.1), for different forms of the function F' and different types
of boundary conditions, has been dicussed by Aregba and Hanouzit [2], Nguyen and
Alain [7] and many others ( See [6] for more references ).

In this paper, we consider the above problem and show that the solution can exist
global}y for small enough initial data if the forcing term F' takes certain form and it
blows up for some other forms. OQur method of proving the blow up is due to Levine
[4], [5]. This work is divided into three sections. In the first one, we establish the
global existence result. The other two sections are devoted to the blow up in the

dissipative and the antidissipative cases.



2. Global Existence.

In this section, we assume that F'(z,t, u, ug, u) := f(u,u;), where f satisfies
the following conditions
(GL1) f € CHR?
(GL2) f(0,0)=0, f£,(0,00=0, f,(0,0)=-c, a>0.

Therefore problem (1.1) takes the form

’u'tt_uwm:f(u:ut)af z€l, t>0
us(0,8) — u(0,1) = ug(1,8) +u(l,£) =0, ¢>0 (2.1)
’U;(.’I:,O) = ’U,g(m), 'u't(xio) = ul(x): z €l

Theorem 2. Let (GL1) and (GL2) be satisfied. Then there exists a positive constant

6 such that for any intial data satisfying (H1) and
Iluoll3 + lluafF < 52,- (2.2)
the problem (2.1) has a unique global solution
u gkriwo c* (1o, oo); H*(I)).

Proof. to establish the global existence, it suffices to show that

Sup { |Ju( DI + lluel HIE 0<t<T ) (2.3)



remains bounded independantly of T' . For this aim, we set
1
£(t) = [ (w4l +udy + )0, t)do

t rl
+ 204/0 /0 (uf + ul)(z, s)dzds + u?(0,t) + u2(0,1),
1 ! !
o= [ (uf + g+ g+ uff + u)(2)do + wd(0) +wd(0) + ud(1) + wi(1)

where

Uy = ug + f(uO’ul):

and

Q(t) := Sup{ju(=, s)| + Ju(z,5)|, 0<z<1, 0<s<t}

Remark 2.1. Note that up € H°(I) by virtue of (H1), (GL1), and (GL3) and
Q(t) < 4/e(t) by well-known Sobolev inequalities.

We first rewrite equation (2.1) as
Ust — U = —0Ug + h(u, uy), zel, t>0, (24)

where

- h(ug) = aus + f(u,ug),

then multiply it by u;, and integrate over I x (0,t), to get

1 ” ¢t 1
2 .2 2 2 2
/0 (uf + uz)(z, t)dz + u?(0,t) + w?(1,t) + Za/o '/0 ug(z, 8)dzds (2.5)
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= /01 (u} + ud)(z)dz + w3 (0) + ud(1) + 2 /Ot /01 h(u, u)ug(z, 8)dzds.

Next, we apply the difference operator
AW (z,t) :=W(z, t + &) — W(x,1)
to equation (2.4) to obtain
Agutt/ — Agtigs = —aleus + Aeh(u, ug). (2.6)

By multiplying (2.6) by Agu, integrating over I x (0,t), using integrating by parts,

dividing by ¢2, and letting € go to zero, we get
1 ¢t 1
/0 (2, + u2,)(z, t)do + u2(0, t) + u3(1, 1) + 20 /0 /0 2 (z, 8)dzds (2.7)

= [)l(ug + u?)(z)dz + u3(0) + w3(1) + 2/(: /Ol(h('u,, uy))t u(z, s)dzds.

To handle the last term in (2.5), we exploit Taylor expansion of h about (0,0); i.e :

1 1
h{u;u) = Euzhuu(ku,, Ag) + vthghyy, (A, Aug) + =

5 U Py (A, Mtg), 0 < A< 1

hence we have

|2/0t /01 h(u, ur)u(z, s)dzds.| < MQ(t)e(t), (2.8)

where M > 1 is generic positive constant depending on the upper bounds of the



partial derivatives, up to second order, of f on [0, 1] x [0, 1]. By estimating the last
term in (2.7), in a similar way, and combining (2.5),(2.7), and (2.8), uing (GL2), we

arrive at

1 ¢t pl
/0 (u? +ul + ul + ul,)(z,t)dx + 204[) /o (u? + ul)(e, 8)dzds (2.9)

+u?(0,8) + u*(1,2) + u7 (0,1) + u2(1,1) < €0 + MQ(t)e(2).

By using (2.1), (GL1), and (GL2), we have the estimate
/01 w2, (z,t)dz < Meg + MQ(t)e(t). (2.10)
Finally a combination of (2.9) and (2.10) leads to
(t) < Meo + MQ(t)e(t), (2.11)

provided that

0<u<l, 0<wu<1, z€l, 0<t<T (2.12)

To this end, we choose k > 0 so that M vk < 1/4 and 6 so that M 62 < k /4. Therefore
we conclude, from (2.11), that if () < k for some ¢ in [0, T) then (t) < k/3 ; hence
by continuity we have e(t) < k V ¢t € [0, T) and (2.12) is satified provided that
€(0) < 3k. Of course this can be done by choosing 6 small enough. Therefore (2.3)

holds which implies that T' = oo ( See [8] ).

6



Remark 2.1. The global existence can be obtained even if (GL1) is replaced by

f € C*(Q), where Q is a neighbourhood of (0, 0).

3. Blow up for dissipative equations.

In this section we study the case where f(u,u:) = —u; + blulPu, b > 0, and show
that, under appropriate conditions on the initial data and p, the solution collapses in

finite time. We thus consider

Ugp — Ugg = —Us + buffu, z€l=(0, 1), t>0, (3.1)

together with the initial and boudary conditions (1.1) and require, in addition to

(H1), that
(Bl) p>+2
(B2)  Jouo(z)us(z)dz >0

(B3)  f[ud(2) + | ug(e))de — 2 fo uo(2)F*?dz + u5(0) + (1) < 0.

Theorem 3. Let (H1),(B1) - (B3) be satisfied. Then the solution of (3.1), with
initial and boundary conditions (1.1), blows up in finite time.
To prove this theorem, we first establish two lemmas. For this aim we define

the formal energy of the solution

2b
p+2

B(:= 4 up? — =P a2 (2, ) +2(0,8) + w2(L,E). (3.2)

By multiplying equation (3.1) by u; and integrating over I, we easily see that
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E'(t) = — [} u?(z, t)dz; hence E(t) < E(0) < 0 by (B3).

Lemma 3.1. Assume that (H1),(B1) - (B3) hold. Then

1
F(t) := -% / uw¥(z,t)dz >0, V>0, (3.3)

0

Proof. We differentiate F twice to get
1 1
F'(t) =/ u(z, tyu(z, t)de, F"(2) =/ [uuy + uf)(z,t) dz.
0 0
Straightforward computations, using equation (3.1) and integration by parts, yield
1
F'(t) = / [u? — u2 + bluff*? — wug)(z, ) dz — u*(0,t) — u?(1,t) (34)
0

= --(-;-g +1)E() + -g—[uz(O,t) +u(1,t)] + (24 g—) /01 ur(z,t) dz
+§ /01 ul(z,t)dz — /01 uuy(2,t) do
> - E+1)B0) + Lp2(0,0) +02(,0)] +2 [(4d(e,0)da

1, !
+e+5-5) [ e nda=3 [w@ s, Vy>0

by Young’s inequality. We then use

1 1
/0 u?(z,t)dzr < 2 u(0,t) + 2/0 ul(z, t)dz (3.5)



to arrive at

F'(t) 2 =(5+DE) +E - Nw0,8) + 2w, 1)

+@2+2 —i)/luz(m t)dz + (& —7)/1u2(:n ) da
2 2 Jo V7 2 o =¥
By choosing v = 2 we deduce
1
F”(t)z(2+§-—%)/ﬂ w(z,t)de >0, Vp>6—2 (3.6)

which shows that F(t) is increasing; consequently F'(t) > F'(0) > 0 by (B2). Hence
(3.3) is established.
Next we set G(t) := F~P(t) and state

Lemma 3.2. Assume that (H1),(B1) - (B3) hold and 0 < 3 < (p* — 2)/4p. Then

G'(t)<0, G’(t)<0, Vit>0 (3.7)

Proof. Differentiation of G twice gives
(1) = -BF-CHWF(), @) = —pF- P (H)Q() (38)

where

Q(t) = FO)F"(t) — (B +1)F*(t)



1
- -( / (z,t) dz) F” () — (B + 1) / u(, t)uy(z, t) da]?.
0
By using (3.6) and Holder inequality, we obtain

1

Q(t) > —;-/01 u?(cc,t)dav(2+‘g—%)/Olu,f(a;,t)olm—(ﬂ+1)/01 uz(:v,t)d:c/o ul(z,t) dz

>l/1u2(:ct)dx(-zz—-l-—Zﬁ)/luz(wt)da;>0
~2Jo ’ 2 p o -

which implies that G”(t) < 0; hence G'(t) < 0, V t since G'(0) < 0. Therefore (3.7)

is established.

Proof of the theorem. Taylor expansion of G, using (3.7), yields
G(t) < G(0)+t G'(0), W, (3.9)

which shows that G(t) must vanish at a time ¢, < —G(0)/G'(0). Consequently F(t)
must become infinite at time t,,.
Remark 3.1. The above calulations, not only prove the blow up but also give an

upper bound to the blow up time

dp  Joul(z)dx
(p? - 2) fo uouy (z)dx

t* =

Remark 3.2. Note that no assumption has been made on the size of the initial data.

In fact the blow up takes place even for small data provided that (H1), (B2), and
10



(B3) are satisfied. However, a strong nonlinearity condition ( p > \/5) on the source
term is needed to overcome the damping effect of u;.

Remark 3.3. One might investigate a situation where p > 0 with large initial data.
In fact a close problem has been discussed in [3], where the authors claimed a blow

up result but the argument they used is completely false.

4. Blow up for antidissipative equations.

In this section we consider the situation where f(u,u) = u;+bJufPu, b > 0, and show
that, under weaker conditions on the nonlinearity of the source tern, the solution

blows up in finite time; hence equation (1.1) takes the form
U — Ugg = U+ bufPu, z €I, t>0. (4.1)

We also require, in addition to (H1), that
(Al) p>0

(A2)  Jo uo(®)lur(2) — duo(®)]dz > 0

(A3} flud+ ud — wour](z)dz ~ & 5 fuolP*2(x)dz + w(0) +ud(1) < 0.

Theorem 4. Let (H1),(A1) - (A3) be satisfied. Then the solution of (4.1), with
initial and boundary conditions (1.1), blows up in finite time.
Proof. We set

v(z,t) := u(z, t)e”H?
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and substitute in (4.1) to get

1
Vgt — Vaw = 7V = blufPver’?, zel, VYit>0. (4.2)

By multiplying (4.2) by v: and integrating over I, we obtain

—bp 1
T(£) == et Pt/ 2 P20 \dr < >
B() = =L /0|v| (2,t)dz <0, V>0,
where
E(t) = /1[v2+v2 - l'vz](:t: t)dz — 2ot /1 [v|Pt2(z, t)dz + v*(0,t) + v2(1,t)
0o T 4 ’ p+2 0 ’ ’ e

By using (A3) and noting that

1
Vo = U, U1=U1—5 Up,

we conclude that

E(t) < E0) <0, Vt>0.

As in’the previous section, we set F(t) := 4 fjv*(z,t)dz and differentiate twice,

with respect to t, to get F'(t) = [y v(z, t)vs(z,t) dz and

F'(t) = /01 [vvg + 0)(z,t) dx = (2 + zz)-) /01 v2 (4.3)

+3 [)l v = %/01 o+ ER(0,8) + (1, )] - (L + £) B ().
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Again by using (3.5), we easily arrive at

F'(t) > (2 + )/ e 4/v + v 0t)+ W(1, )—(1+§)E(t)zo, (4.4)

which implies that F'(t) > F’(0) > 0 by virtue of (A2) and (4.4). Therefore F'(t) > 0,
Vit>0.

Next we define G(t) := F7P(t), 0 < 8 < 2, and differentiate twice to get
(1) = —BF-COOF (@), O (1) = ~BF-C(OQ() (45)

where

Q(t) = F(t)F"(t) — (B + 1)F*(t)

AL [ -

+E10%(0,6) +%(1,6)] - 1 + 5)E()) - ﬁ+1)[/ vuf?

_2/ ——2ﬂ/vt p/v += v2(0t §v2(1,t)]20.

Therefore we conclude, from (4.5), that G"(t) < 0 and G'(t) < 0,V t > 0. Finally the
same argument as in the dissipative case completes the proof.
Remark 4.1. Note that, contrary to the dissipative case, no strong nonlinearity

assumption on the source term is needed. In fact we may have blow up even for small

intial data provided they satisfy (H1), (A2), and (A3)..
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Remark 4.2. The above calulations give an upper bound to the blow up time

P Jo uo(ur — uo)(z)dz
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