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Abstract

We prove a blow up result for the equation wy = a(we ) (we)wse,
which can be regarded as a model for a transverse motion of a string
with a density depending on the velocity.
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1 Introduction.

The aim of this paper is to study the existence and nonexistence of classical
solutions to the one-dimensional nonlinear equation of the form

we(z,t) = a(we(z,t))b(we(z, t))wee(z, t), (1.1)

where z € I ( bounded or unbounded interval), ¢t > 0. This equation can be
regarded as a model for a transverse motion of a nonhomogeneous vibrating
string, where the density is depending of the velocity w;. By assuming that

a(é) >0, b() >0, VEeER, (1.2)

the equation (1.1) is strictly hyperbolic.

Generally, classical solutions of problems associated with (1.1) develop
singularities in finite time, if the elastic response function a and b satisfy
some ‘genuine’ nonlinearity conditions. For ¢ = 1, Lax [5] and MacCamy
and Mizel [9] studied the problem and showed that classical solutions break
down in finite time even for smooth and small initial data. In his work, Lax
assumed that & does not change sign, whereas MacCamy and Mizel allowed
b to change sign. They also showed, under appropriate conditions on b, that
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intervals of z can exist, in which the solution must exist for all time ¢ even
though it breaks down for values z outside these intervals. For a depending
on z, Messaoudi [11] discussed the Cauchy problem and established a blow
up result for smooth initial data.

In the dissipative case, the situation is different. For initial data small
and smooth enough, the effect of the damping term dominates the nonlinear
elastic response and global solutions can be obtained (see [12]). However,
for large initial data the nonlinearity in the elastic response takes over and
classical solutions may develop singularities in finite time. These results have
been established by several authors (see [4], [10], [14]).

It is interesting to mention that nonlinear hyperbolic systems, of which
equation (1.1) with a = 1 is a special case, have attracted the attention of
many authors and several results concerning global existence and blow up
have been established (see (6], [7], (8], [13]). '

This work will be divided into two parts. In the first part we state,
without proof, a local existence theorem. In the second part, we state and
prove our main blow up result.

2 Local Existence.

In this section we state a local existence theorem. The proof is omitted. It
can be easily established by either using a classical energy argument [1], or
applying the nonlinear semigroup theory presented in [2]. We set

u(z,t) = w(z,t), v(z,t):=wy(z,t)

and substitute in (1.1) to get the system

u(z,t) = a(u(z,t)) b(v(z,t))vs(z,t)

w(z,t) = ug(z,t), zeR, t>0. (2.1)
We consider (2.1) together with the initial data

u(z,0) = up(z), v(z,0) = vo(z), z € R. (2.2)

In order to state the local existence result, we make the following hypotheses
(H1) o and b € C*(R)
(H2) a(§) 2@, B¢ 2c, (€R, a>0.

Proposition. Assume that (H1), (H2) hold and let w, vo in H*(IR) be given.
Then the initial value problem (2.1), (2.2) has a unique local solution (u,v)
defined on a mazimal time interval [0, T) such that

u,v € C([0,T); H*(R)) N C*([0,T); H'R)). (2.3)

2



Remark 2.1. The Sobolev embedding theorem implies that u,v are C!
functions on R x [0,T). Hence (u,v) is a classical solution.
Remark 2.2. If pis a O**! function and ug, vg € H*¥(RR), then u(:,t),v(:,t) €
H*(R), k>1.
Remark 2.3. A similar result can be obtained, if (H1) and (H2) holds only

in a neighbourhood of zero. In this case, we have to be carefull with the
choice of the initial data.

3 Formation of singularities.

In this section, we state and prove our main result. We first start with
establishing uniform bounds on the solution (u,v) in terms of the initial
data.

Lemma. Assume (H1), (H2) hold. Then for any & > 0, there exists 6 > 0
such that given any uop,vo in HX(R) satisfying
lup(z)] < 6, |vo(x)] <6, VzelR, (3.1)

the solution (2.3) obeys

lu(z, )| < e, lv(z,t)] <e, VzeR, tel0,T). (3.2)
Proof. We define the quantities
r(z,t) = A(u(z,t)) + B(v(z,t))
s(z,t):=  A(u(z,t)) - B(v(z,t)) (3.3)

where

A@=[%%ﬁs3@=fﬁ@@ (3.4)

and the differential operators

_ 0 0
at Ca ot - p(x:t)am
0 0
+.. 9 =
Ot = = + p(z,t) o (3.5)
where
p(z,1) = y/a(u(z, t))b(v(a, 1)). (3.6)
Straightforward computations yield
Oy r=08s=0. (3.7)
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Therefore as long as a smooth solution continues to exist, r and s remain
constant along backward and forward characteristics respectlvely, hence

17 lloo = 1170 lloos 118 [leo =1l 50 ||oo- (3.8)

By using (3.3), (H1), and (H2), the lemma is established.
Theorem. Assume that, in addition to (H1 and (H2), a and b satisfy

/0 , b0 a9)

Ve 5o

Then there ezist initial data ug,vo satifying (2.3), for which the solution of
the problem (2.1), (2.2) blows up in finite time.
Proof. We take an z-partial derivative of (3.6) to get

(at—r)-‘l-' = Tyt = PTez — TzpPz =0 (310)
which implies
[a, u)b(v)],, '(u)b(v)uz + a(u)b' (v)v,

T S aab) 2,/a(u)b(v)

8 (rz) = re.  (3.11)

By using

. = Yz o+ Jo(w 2y Sz = Y Jo(w Vg 3.12
T m (v) vz, s \/‘—;(—1:5 (v) ( )

and substituting in (3.11) we obtain, by direct calculations,

. = AR DTS W L
O re = \/—(\/_. bf) r"+4\/;5(\/5 b\/z)rzsz. (3.13)
To handle the last term in (3.13), we set
W = a(u) B(v)rs, (3.14)

for o and S to be chosen}suitably; thus we have

/

oW = -a (u) B(v)Vab (\/_ E—\/e) r§+-‘lia (u) B(v)Vab (_a\/_a_ - ;——\}5) TzSz
+72 (a'ﬁut + af'v; — Vabo! Bu, ~ \/Eaﬁ’vz) : (3.15)



At this point, we choose o and § so that
1 a v
Zaﬁ\/a—b (-\/—E - Fﬁ) TeSz + Tz (& Bus + af'v;)
—re (Vabo/ Bu, — Vabaf'v;) = 0. (3.16)

By using (3.12) to substitute for s, and (2.1), (2.2) to substitute for u, and
v; we arrive, by simple computations, at

iaﬂ\/az (_a.’_ - -—b-l--) (Eﬂ -vb v,,_.) Tz + ((a'ﬂab - af'Vab),

va  b/b/ \Va
+(af' — o/ BVab)uz) = =0, (3.17)
which yields
2V (- 51) (Vo) (3.1
+va ((aﬂ’ - a'ﬂ\/EIS)) (% —-vb vz) =0
hence

%aﬁm <\/E bf) + \/_((aﬂ’ - a’ﬁ\/—) =0. (3.19)

By using the fact that a and o depend on u only and b and § depend on v

only, we get ld o 1V g
1a-a Zz— =% (3.20)
Direct integration then yields
a(u) = a/4(u), B(v) = b¥4(v)
Consequently (3.13) is reduced to
oW = ia”“bl/“ ( \/_ ; \/.> we. (3.21)

Therefore W ( hence r,) blows up in a time, if we choose initial data small
enough in L* norm with derivatives satisfying

Uy

b(vo)vg > 0 (3.22)
a(ug)

Remark 3.1. Similar result can be established for 5’; + ;%; < 0. In this case
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consider the evolution of s; on the forward characteristics.
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