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Abstract

This paper is a sequel to our earlier paper on high order approximations of eigenvalues of
regular Sturm-Liouville Problems with separable boundary conditions. We shall extend the
approach based on sampling theory to the case of real coupled self-adjoint boundary conditions.
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1. Introduction

Sampling theory [23] has been used in [6] to compute the Dirichlet eigenvalues of Sturm-Liouville
problems. This approach has been extended in [9] to include general separable boundary con-
ditions. In [10], high order approximations of the eigenvaluesv of regular SL problems were
introduced together with very sharp error estimates of the eigenvalues. We shall extend this
approach to include the case of real coupled self-adjoint boundary conditions for which periodic
and semi-periodic BC constitute particular cases. Thus we are considering the Sturm-Liouville

system

Y +q@y=Xxy , z€l0,7]
(") 0) (1)
() = K (o)

where ¢ is a real valued function satisfying ¢ € L} _(0,7) and K € SL, (R), that is K is a real
2 by 2 matrix whose determinant is 1. The special cases K =T and K = —J correépond to the
periodic and semi-periodic problems respectively. It is well known [19] that the eigenvalues may
be simple or double and can be ordered to satisfy —oo < Mg < A1 < Ag < ... with A\, — +00 as
n — 0.

We are interested in computing the positive eigenvalues; all the negative ones (a finite number

of them) can be obtained by a simple shift in A [10].

2. Main Results

Let A = p? and y (z, u2) and ya(, 4?) denote the solutions of the initial value problems

(

—vi +a(@)y1 = Py
1 nd)=1 (2.1)

v1(0,4%) =0




and

(

-y + q(z)y2 = Y2

< y2(0nu'2) =0 (22)

yh(0,4%) =1
respectively. The general solution of

4

—y" + q(x)y = p?y

< (0,42 = o (2.3)

y'(0,p%) =8

can be written as y = ay; + By, so that at z = 7, we get
y(mp?)\ _ (owa(m i) + Bya(m i)\ _ (4012 _ o (e (2.4)
y'(m, 4?) oy (7, 42) + By (m, 4?) y'(0,12) B

that is,

(W, 1) - K) (g) = (g) (25)

where W (r, u?) is the wronskian matrix of y;,y2 evaluated at = = 7. It follows that
B(m,p) =0 (26)

where B(z, 1) := det[W(z, u?) — K]. We shall call the function B(w,-) the boundary function.
The zeroes of B(w,:) are the square root of the sought eigenvalues. Using the fact |K| = 1

and the fact |W(m, u?)| = 1, simple calculations show that the above expression for B(, 1)



simplifies to

B(m, ) = kygyh (m, u?) — koay1 (7, 4?) + karyo(m, p2) — k1ayh(m, u?) + 2 (2.7)

Generally B(w,-) ¢ PWy, PW, being the Paley-Wiener space

PW, = { fentire, | f(1)| < Ce* 1M, /R 17 ()P < o0}

However, an immediate consequence of Theorem 1 in [10] for the initial value problems (2.1),
(2.2) gives,

Corollary 1 Let

Whe,w) = yi@w) , i=1,2
[0] ’ .
vi(z k) = ti(z,p) + psinpz
(0] /

vy3(%, 1) = ya(z,p) — cospz

po,1(z,p) = cosuz

sin px
“

o2z, p) =

and

z sinu(z —t .
Son,i(x,lll) = /0 q(t)L(u—'-)"Pn-—l,i(t’#)dt y U= 1’2

[

'UE':;] (.’L‘, ,U,) = vl,'i 1](.,1:, ru’) - QDn_l,i(ib‘, ,LL) ) 1= 1’2

vgle(w,u) = vg,ﬁ"”(m,u)— /0 g(t) cos pu(z — tYpp-14(t, u)dt , i=1,2

Bl(z,p) = kiovl(z, 1) — kaovl (2, 1) + krvih(@, 1) — karolh (e, p)



for n > 1. Then

i, 1), Wz, 1), v (@, ), B (2, ) € PW, , i=1,2

Yo i, 1), 10 (o, ), Yol ), B () € L¥(~o00,00) , i=1,2

for n > 1. Furthermore, we have the following estimates

onslomil] < (Tm‘)" M =12

Iv{'ﬁ(w, lu')l S (&} 1(1 T I lﬂ.)n $|Imp,| , i= 1’2

|vgf,](w,/.z)| < 21(1 T l/,Llﬂ')n “’lImM , i= 1,2

Bl < n_oflmy

| (x,u)| > C3(1+ l'ullﬂ-) e
where

™
T
Coi = C1 /0 lg(t)dt, c3 = |kialea + |ka2ler,n + |kaler2 + [Kiaea,o

i=1,2.

Now recall the well-known

Theorem 1 (Whittaker-Shannon-Kotel’nikov) [23]Let f € PWy then

sinm(p — k)
Flu) = k_goof() e

where the series converges uniformly on compact set of IR and also in L?m
Since vj z](7r ), v[n] \(m, ), Bl (m, 1) € PWy, the above theorem is applicable and we can

reconstruct vﬁ] (7, @), 'v2"1] (m, ) for i = 1,2 and B (x, 1) from their samples v[n] (7, k), 'v["] ;(m, k)



for i = 1,2 and B (x, k), k € Z for any given n.

Once we reconstruct Bl (r, 1), we obtain

B(mu) = B, u)+k12{—#smwr+ | cosi(n =) 3" puat, u)dt}

k=0
—kao {ni Pr,1(T, M)} + ka1 {’i <Pk,2(7f,u)}

k=0 k=0

—k11 {cos U + / q(t) cos u(m —t) Z Pr2(t, p)dt} (2.8)

k=0

the zeroes of which are the square root of_the sought eigenvalues.

For a given n, let B (1r u) denote the truncation of Bl"l(, )

B (m, ) = Z_NB["'( m el (29)

and B}\';] (, 1) the corresponding approximation to B (7, u). Since p*~1Bl"l(, 1) € L?(—00,00)
Jagerman’s result (see (23], Theorem 3.21, p.90) is applicable and yields the very sharp estimate

Lemma 1 Truncation error

L +—1-]————1-———for||<N
V=5 VNTp N+

n n sin wu|cs
B, ) — B (, )| < | SmTlcs

/1 — 4—n+1

where cg = || B (7, 1)]|2.
As in [10], if 7z%is an exact eigenvalue and % is an approximation obtained as a square of

a zero of BI[:;] then

\B™(r,7) — BP(7, un)| = |BY(m, un) = BRI (7, )|

| sin 7 p|cg [ 1

1 1
i N T AN N T




from which we get the following

Lemma 2 Error bounds

e Simple eigenvalue

1 | sinpn|cs ( 1 + 1 ] 1
infz x| BV (m, D) nv1 =441 N—py ~ VN+pn (N +1)7-1

IE—pn| <

e Double eigenvalue

- | < 2 |sinun|ce [;_}____1___]___1__ L
AoiNl S infz seun |BIV (7, m)| mv/1T =41 N =y~ VN +py (N +1)71

Remark 1 If the eigenvalue is simple | By (un)| A0, if it is a double eigenvalue |Bj(un)| A0,
in both cases the inf is different from 0.The inequalities above result from the use of the mean

value theorem.

3. Conclusion

Sampling theory has been used in [6] to compute the Dirichlet eigenvalues of regular second
order Sturm-Liouville systems. We have shown in a recent paper [9] that the method is still valid
in the non-Dirichlet case by showing that a transform B of the boundary function B wss in the
Paley-Wiener space PW, and thus the Whittaker-Shannon-Kotel’nikov theorem was applicable.
Tha:t is, we can recover B from its samples; thus B, whose zeroes are the square root ‘of the
sought eigenvalues of the problem. However the error bounds on the eigenvalues were not tight
enough. We have introduced in [10] a transformation B (r, ) of B(w, ) satisfying B (m, p) €
L?(—00,00) and p*1BlP(r, ) € L2(—00,00). This fact lead to high order approximations of
the eigenvalues with very sharp error bounds.We have demonstrated in this paper that the

method based on sampling theory which was successful in providing good estimates for the



eigenvalues of Sturm-Liouville problems with separable boundary conditions is still applicable
when the boundary conditions are coupled by showing that a transform B of the boundary
function B is in the Paley-Wiener space PW;, and thus the Whittaker-Shannon-Kotel’nikov
theorem is applicable. That is, we can recover B from its samples, thus B, whose zeroes are
the square root of the sought eigenvalues of the problem. The computation of eigenvalues of
Sturm-Liouville problems both regular and singular is well documented (see [1-7,9-22] and the
references therein) and many packages/programs exist. We can quote SLEIGN (5], SLEIGN2
[4], SLEDGE [14], SLO2F [20],...Extensive numerical computations based on our method will

appear elsewhere and comparison will be made with output of the above packages.
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