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On a property of large systems of equations over general
algebras
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Abstract

In this paper, we discuss a property of large systems of equations over universal algebras
which does not appear to be generally known. It is shown, for example, that if « is a cardinal
number with uncountable cofinality, then every finitely solvable system of « equations over any
countable algebra has a solvable subsystem consisting also of a equations. Some pathological
(and some not so pathological) aspects of this notion when compared with equational compact-
ness are presented. As an application, this property is used to generalize some model-theoretic
results of Jensen and Lenzing on the non-compactness of ultrapowers of modules.

In [12], McKenzie called a universal algebra 2 (equationally) a-incompact, where « is an infinite
cardinal, if there exists a system of o equations with constants in 2 and with no solution in 2, but
such that each subsystem of less than o equations is solvable in 2 (in the terminology of [8], an
algebra is a-incompact if and only if it is not (o, a*)-compact). The abelian group Z is known to
be a-incompact when o = Ry or ®; (see Mycielski [13] and McKenzie [12]), and Lo$ [11], proved
that for any non-measurable regular cardinal 3, there exists a cardinal o with 8 < a < 28 such that
Z is a-incompact. However, as we shall prove in this paper, Z (as well as all countable algebras and
all moduleé over any countable ring) has the following interesting property: every finitely solvable
system consisting of o equations over Z (where « is any cardinal with uncountable cofinality)
has a solvable subsystem consisting also of o equations. This property is motivated by Mycielski’s

seminal paper [13], where he mentions the possibility of infinite systems of equations which are



finitely solvable, but such that no infinite subsystem of which is solvable: the system of equations
T=y2+n (neN)

over the ring R of real numbers is finitely solvable but no infinite subsystem of it is solvable. Qur aim
is to discuss such a possibility for general algebras with emphasis on modules, and as an application,
to derive a sufficient condition for the non-compactness of certain reduced powers (Lemma 5). This
will yield a generalization of some results of Jensen and Lenzing [5]. Specifically, let us say that an
infinite system of equations over an algebra 2 is a-subsolvable, where o is an infinite cardinal, if it
has a solvable subsystem in 2 consisting of « ec}uations. An algebra 2 will be called a-subcompact,
if every finitely solvable system of a equations over 2 is a-subsolvable. We recall that an algebra
A is (equationally) a-compact if every finitely solvable system of o equations with constants in
2 is solvable. If 2 is a-compact for all ¢, it is said to be equationally compact. (By a result of
Mycielski and Ryll-Nardzewski [14], 2 is equationally compact if it is |A|-compact.) It is clear
that every a-compact algebra is a-subcompact, and, in fact, as we shall see (Proposition 3), these
two notions are equivalent for abelian groupskwhen o = Np; but, in general a-subcompact modules
need not be a-compact. We should point out that equational compactness of general algebras was
first introduced by Mycielski in [13], and is equivalent, for modules, to algebraic compactness (or

pure-injectivity) in the sense of Fuchs [2] or Warfield [15].

The paper is divided into two parts. In the first one, we give some general properties of a-

subcompactness and obtain such results as:

(i) Countable general algebras and modules over countable rings are a-subcompact for each
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cardinal oo with uncountable cofinality.

(ii) If a commutative noetherian domain is Ro-subcompact as a module over itself, then it is local.

The second part is devoted to the construction of systems of equations S, (n > 1) that are N,_;-
subsolvable but not R,-subsolvable, and modules M, (n > 1) that are X,_;-compact but not X,-
subcompact (and therefore not R,-compact). It is interesting to note that these S, and M,, will
be determined once we construct a finitely solvable system of equations Sy which is not countably
solvable, and a module My which is not Ro-compact.

Let us mention here that modules (over princ'ipal ideal domains) which are N,-compact but not
equationally compact have been discussed by Fuchs in [2], via a topological argument. However,
the construction suggested there used a result which has been shown in [6] to be true if and only if
« is not weakly inaccessible. (See also [9] for a construction over perfect rings of modules which are
a-compact but not a*-compact.) In addition, the construction we give here is purely algebraic.
Along another direction, Jensen and Lenzing proved in [5, Proposition 8.40] that if R is the poly-
nomial ring C[X], then there is no ultrafilter F on N for which the R-module RN/F is equationally
compact. We end this paper with a generalization of this and another result in [5], using subcom-
pactness. In particular, our Proposition 11 yields that if K is any uncountable field with R its
polynomiai ring K[X] and if F is any non-trivial filter on the integers N , then RN/F is not an

N;-compact R-module.

Throughout this paper, R denotes an associative ring with 1 and all modules are unitary left R-

modules. A theory of ordinals is assumed where each ordinal z = {y : y < z}, and where cardinals



are initial ordinals. For any infinite cardinal o, a’ denotes the successor cardinal of a and F,
denotes the Fréchet filter {J C a: |a\J| < a}. Given a set I and a module M, |I|, M! and MWD

denote respectively the cardinality of I, the direct product and the direct sum of |I| copies of M.

1. Results

Proposition 1. Let R be Ny-subcompact as a left module over itself, let » € R and let J be the

Jacobson radical of R. If (| (1 — )" R C J, then r has a right inverse.
neN

Proof. Let r € R and assume that [ (1 —r)" R C J, it is easy to see that the system
neN

reg+(1—71)"z, =1 (n € N)

is finitely solvable in R. It has therefore a solvable subsystem consisting of Ny equations. So there
exist a strictly increasing sequence {n; : i € N } of natural numbers and elements ag,a; (i € N ) in

R such that

1—Ta0=(1—r)n1a1=(1—7~)n2a,2=... .

Hence 1 —rap € () (1 —r)* R C J. This implies that rag is a unit and so r has a right inverse.
neN

Corollary 2. (i) Let R be a commutative noetherian domain, and suppose it is No-subcompact as
a module qver itself, then R is local.

(ii) For any ring R, R[] is not Ng-subcompact.

Proof. (i) Suppose that R is a non-local commutative noetherian domain and assume it is No-
subcompact. Since it is not local, R contains a non-unit 7 for which 1 — r is also a non-unit. By

Krull’s Intersection Theorem, (] (1 —r)® R =0, and by Proposition 1, r has an inverse, which is a
neN



contradiction.
(ii) Let J be the Jacobson radical of the ring R[z]. Then () z"R[z] = 0 C J, but 1 — z does not
neN

have a right inverse. By Proposition 1, R[z] is not Ry-subcompact.

Remark. If, in Corollary 2 (i), Ro-subcompactness of R as an R-module is replaced by the stronger
equational compactness of R as a ring (so that we allow for systems of equations to contain poly-
nomial equations instead of restricting them to the linear ones), then R is not only local, but has
 finite residue field and, if R is infinite, it has the power of the continuum as well (see [3] and [4]).
The existence of fields of arbitrary infinite cardinality, and the fact that fields are always compact
when considered as modules over themselves, show that the conclusion of Corollary 2 (i) cannot be

strengthened in this direction.
Proposition 3. An abelian group is No-subcompact if, and only if, it is (equationally) compact.

Proof. We need only prove that if G is an abelian group which is Rg-subcompact, then it is compact.

The proof is based on a result of Balcerzyk (see [1] and [16, Problem 11]). Let
zo — nlz, = a, (neN)

be a finitely solvable system of equations over G. It is enough to prove that this system is solvable
in G. Since G is Rp-subcompact, the system has a countable subsystem zq — nlTn, =an,, (i €
N,n, < my < ---) solvable in G by by, b, (i € N ), say. Assume that the whole system is not

solvable. We can clearly suppose that there exist i, € N such that

(a) j< n;



(b) by — klzy = ay is solvable whenever j < k < n;
(c) by — jlz; = a; is not solvable.

Now bo - (j + 1)!bj+1 = Q541 for some bj+1 eqG by (b), and Zg —j!(L'j = G4, g — (] + 1)!33j+1 = Q41
are simultaneously solvable by co, ¢;, ¢j1+1 say. Put b; = (j +1)(bj41 — ¢j41) +c;, then by — j'b; = a;,

which contradicts (c). This completes the proof.

Although Rg-subcompactness and No-compactness coincide for abelian groups, it is in general not

true that a-subcompact modules are o-compact. To see this, let us first note the following

Proposition 4. Let {M;}ics be a family of a-subcompact R-modules such that cf(a) > |I|. Then

P M; is a-subcompact.
icl

Proof. Let ) rjvar = a; (a; € @M, j < @) be a finitely solvable system of equations over

keK i€l
@® M;. Assume first that I is finite, say I = {1,2,...,n}. Since Y r;zzx = a;(1) is finitely solvable
i€l keK
in My, there exist {mi(1)}rex in My and J; C o with |J3| = o such that Y~ rjmyg(l) = a;(1)

kek
for each j € J;. Similarly, there exist {m(2)}rex in Mz and J, C J; with |J2| = a such that

> Tikmk(2) = a;(2) for each j € J,. Continuing in this way, we obtain for each i in I with i > 2,
k€K

a set {mi(4)}rex in M; and a subset J; C J;_; such that |Ji| = & and 3 rjem(i) = a;(i) for all
kEK

j € Ji. It is now easy to see that {(mx(1),mk(2),...,mk(n))}rex isasolutionof 3 rjzy =a; (j €
keK

Jn). Now suppose that I is infinite and let f : o — P, (I), where P, (I) = {X C I : X is finite}, be

the function given by f(j) = s(a;), the support of a; in @ M;. Since cf(e) > |I| = [I|* = |P.(I)],
i€l
it follows that for some X C P,(I), |[f~'({X})| = o. By the first part of this proof, @ M; is
. i€X

a-subcompact, and hence the finitely solvable subsystem > rjzr = a; (5 € f~1({X})) has a
kenK



solvable subsystem consisting of o equations, as required.

Remark. Let M be an equationally compact R-module such that M® is not Ro-compact (such
modules exist whenever the underlying ring R is not representation-finite). Then, for each cardinal

« with uncountable cofinality, M™) is a-subcompact by Proposition 4, but is not a-compact.

A further peculiarity of subcompactness is that a-subcompact modules need not be a-subcompact.

To show this, we shall use reduced products. We first need

Lemma 5. Let 2 be an algebra and let o, be cardinals such that cf(a) > 8. If AP/F is

a-subcompact for some non-trivial filter F on 3, then so also is 2.

Proof. Let {R;};<a be a finitely solvable system of equations in 2 with a set of unknowns {z }rex
and a set of constants C. The system of equation {&;};<, obtained from {R;},<. by replacing each
c € C by its image under the diagonal map d : % — 2P/F is also finitely solvable in 2%/F. Since
this is o-subcompact, there exist {@x }rex in AP/F satisfying {R;};cs, where J C a and |J| = o
This means that for each j € J, the set X; = {0 < 8 : {ar(0)}xek satisfies R;} € F. For each
J € J pick a o; in X, and consider the map f : J — f given by f(j) = o;. Since cf(a) > B,it
follows that there exists oo € § such that |f~!({o0})| = . It is now clear that {ax(0¢)}rex satisfies

{Bj}ier-1({ood)-

Remark. The foregoing lemma shows that, under rather mild conditions and in contrast to equa-

tional compactness, subcompactness of a reduced power of an algebra 2 is inherited by 2.

An immediate consequence of Lemma 5 is



Corollary 6. Let R be a ring and let a be a cardinal with cf(a) > No + |R|. Then every R-
module is a-subcompact. In particular, every abelian group is a-subcompact for each cardinal o

with uncountable cofinality.

Proof. Using for example [5, Theorem 7.50], there exists an ultrafilter 7 on 8 = Ry + |R| such that

MP/F is equationally compact for each R-module M. By Lemma 5, M is o-subcompact.

For algebras we infer the following

Corollary 7. Suppose that 2l is an algebra such that |A| = X, for some non-negative integer m,

and let o be a cardinal such that cf(a) > N,,. Then 2 is a-subcompact

Proof. Put 2y = A and for each n > 0 let Apyy = A4~/ F,.. By [6], Any1 is R,-compact.
Hence 4,11 is Np,-compact and therefore equationally compact (by [14]). This means 2,1 is

a-subcompact and so, using Lemma, 5 repeatedly, we obtain that 2 is a-subcompact.

It follows from Corollary 6 that, although Z is not No-subcdmpact, it is a~subcompact for all o

with uncountable cofinality. It is however not R -subcompact as the following result shows.

Proposition 8. Let a, 3 be cardinals such that c¢f(e) = 3 and let 2 be an a-subcompact algebra.

Then % is S-subcompact.

Proof. By definition, 3 is the least cardinal such that « is the sum of 8 cardinals each of which is

less than a. So there are cardinals ¢; < o (t < 3) such that & = }_ ¢;. Let
t<B

A={z < a:z <} At={a:<a::c<ct}\UAs (t < B).

8<t

Define a function f : a — 8 by writing f(z) =t, wherex € A; (f is well-defined since a = |J 4;
t<f



and the A; are mutually disjoint). Let @ C o with |Q| = a. Then

z€Q yef(Q)

Hence o = |Q| < IUyEf(Q) Ay = Zyef(Q) |4y| < > t<plAtl = o. Thus o = ye‘fZ(Q) |Ay| and hence
|f(Q)] = B. Now let {R;},;<p be a finitely solvable system of equations over 2 and consider the
system {Ry() }ica. This is clearly a finitely solvable system of « equations in 2 and therefore has a

solvable subsystem of o equations. Thus there exists @ C « with |Q| = & such that {R;( }icq, i-e.

{B;}jes) » is solvable in 2. Since |f(Q)| = B, by the first part, it follows that 2 is S-subcompact.

2. Examples
Our objective in this section is to construct a ring R and for each R, (n > 0), an R-module which

is N,,-compact but not R,,;-subcompact. The following result is needed.

Proposition 9. Let M be an R-module, let o, 3 be cardinals such that @ > 8 and « is regular
and suppose that the system

Sg:erkxkzaj (ajeM, j<a)
keK

is 7y-solvable for all v <  but is not (-subsolvable. Then the system

Sﬂ+:erkwk=("'7aj,aj7"') (.7< ,3)

keK

over MP/F4 is -solvable but is not 47 -subsolvable.

Proof. We first prove that Sg+ is B-solvable. It is enough to show that the subsystem 5’;# :

2. Tikxy = (-++,a5,a5,...) (j < B) is solvable. Since Y rjuzr = a; (j < @) is y-solvable
kek keK



in M for all v < B, it follows that for each ¢ < 3, there exist m¢{ (k € K) in M such that

> riemy = a; (j <t). Let my € MP be defined by my(t) = mt (¢t < 8). Then for each j < 3,
keK

B\ 2} rame = -+, a5,05,..)) < |j] < B.

keK
Therefore M (k € K) solves S;,+ in F. We next prove that no S-subsystem of Sg+ is solvable.

Assume the contrary. Without loss of generality we can assume that

Y orime=(-,a5,05,...) (j<p?)

keK

has asolution @, (k € K) in MP/Fp. Then, using the same argument as in the proof of Proposition
6, we see that there exists a subset Q of % with |Q| = 8% such that 3" rjpur(i) = a; (j € Q) for
k€K

some ¢ < (. This clearly contradicts the fact that no S-subsystem of S is solvable.

Corollary 10. Let M be an R-module and let Sy be a system of X, equations over M, which is
finitely solvable in My but not Re-subsolvable in My. Then, for each positive integer n, there exist
an R-module M, and a system S,, of R, equations over M,, which is ®,_;-solvable in M,, but not

N,-subsolvable in M,,.

Proof. Let Sy be the system

erkmk = q, (a; € My, j <wy).

keK
For each n > 1, let M, = M,)"7'/Fo._1, let fa_1: Mu_y — M, be the homomorphism given by
fa-1(a) = (...,0,a,0,...) + F,,_, (where F,, _, is identified with the submodule {m € M2 7* :

n

z(m) € F,,._.}), andlet g, = fn_10f,_20---0fy. Consider the systems S,, : Y k= gn(a;) (G <
keK

10



wy). By Proposition 10, with & = w, and using induction on n, we obtain that S, is N,,_1-solvable

in M, but no R,-subsystem of it is solvable in M,,.

Remark. By [2] or [6, Theorem 2], for each n > 0, M, above is R,-compact but not R,i-

subcompact.

Construction (A.J. Douglas and A. Laradji). From Corollary 10, in order to construct the modules
M,, and the systems S, (n € N), we need only find a ring R, an R-module M; and a system S, of

R, equations over M, which is finitely solvable in M, but not Ry-subsolvable.

Let A be a commutative ring and suppose that .it contains a subset T' = {a;}ic; of N, elements that
are not zero-divisors and such that a; —a; is a unit whenever i # j. Let R be the polynomial ring A[t]
and let My = R considered as a module over itself. We introduce a partial order on the elements of
My. We say that p; < py (p1,p2 € Mp) if there exists r € R such that tpy+1 = r(tpy +1). It is easy
to check that < is indeed a partial order. We show that {M,, <} is directed. Let p,, P2 € My and
let ¢ = tpops + p1 + p2. Then tqg+ 1 = (tp; + 1)(tp2 + 1) and hence ¢ < p;, pp. We further observe

that if a;,, ..., a,, are distinct elements of T', and if ¢ > a;, (1 < k < n),where q¢ € My, then

tg+1e ﬂ R(ta;, + 1) = :”:R(tai,c +1),
k=1 k=1

since the ideals R(ta;, +1) (1 < k < n) are mutually coprime.This implies that degree(q) > n — 1.
Now consider the system over M,
So:z — (ait + 1z,, = a; (i € I).

We claim that Sp is finitely solvable in M. For, if ¢ > a;, (1 < k < n) then there exist i, € R
such that tq + 1 = p;, (a;,t + 1). Since p;, (0) = 1, it follows that p;, = s;,t + 1 for some s;, € R. It

11



is now easy to check that

¢ — (@t +1)sy = a;, (1<k<n),

which proves our claim. However, no countable ( and hence no X,-)subsystem of S, is solvable in
M,. For, if

q— (aikt + I)Sik = G, (k & N )

for some g, s;, (k € N) in Mp, then tg+ 1 = (a;t + 1)(s;,t + 1), and so ¢ > a;, (k € N) and this is

impossible, by the above observation about the degree of gq.
3. Application

The equational compactness of reduced products of modules has been studied for several types of
rings. It is shown in many instances that the equational compactness of certain reduced products of
modules, which, regardless of the structure of the underlying ring are always Ro-compact, forces the
ring to have certain properties (see for example [7] and [9] for more details and references). Lemma,
5 provides a universal algebraic result in that direction. (Note that if there exist countably many
members of a non-trivial filter 7 on §# whose intersection is empty, e.g. if F is an w-incomplete
ultrafilter on 3, then AP/ F is Ro-compact for any algebra 2.) In the case of modules this provides
a supply of reduced powers which fail to be equationally compact, as the following generalization

of [5, Proposition 8.40] shows

Proposition 11. Let n be a non-negative integer, and let A be a commutative ring containing an

uncountable subset {a;} of non-zero divisors such that a; — a; is a unit whenever i # j (e.g.

i<wn4i

if A is a field with |A| > R,,). If R is the polynomial ring A[X], then for each non-trivial filter F

12



on wy, the R-module R“~ /F is not N, ,;-subcompact, and therefore not equationally compact.

Proof. The construction above can be modified to show that R is not X,;-subcompact, and so by

Lemma 5, R“~/F is not N, ;-subcompact.
Proposition 11 also can also be used to extend [5, Theorem 8.45]:

Corollary 12. Let K be an uncountable field and let R be the polynomial ring in n indeter-
minates K[X, Xy, ..., X,]. Then for each non-trivial filter F on N , the R-module RN/F is not

R;-subcompact, and therefore not equationally compact.
Let us note finally that subcompactness can be used to refine results appearing in [10]:

1. If a non-zero free left R-module M is $-Ro-subcompact (that is every direct sum of copies of

M is No-subcompact), then R is left perfect.

2. Let R be a commutative ring and assume that the residue fields of the local ring factors of R
are infinite. If each R-module is Ro-subcompact, then each R-module is equationally compact, and
therefore R has finite representation type, that is the ring R is artinian and has only finitely many

non-isomorphic indecomposable modules.
The proofs follow from suitable modifications of those that appear in [10].
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