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Abstract

Methods for solving the educational testing problem are considered. One
approach (Glunt [7]) is to formulate the problem as a linear convex program-
ming problem in which the constraint is the intersection of three convex sets.
This method is globally convergent but the rate of convergence is slow. How-
ever the method does have the capability of determining the correct rank of the
solution matrix, and this can be done in relatively few iterations. If the correct
rank of the solution matrix is known, it is shown how to formulate the problem
as a smooth non linear minimization problem, for which rapid convergence can
be obtained by I3 SQP method [6]. This paper studies hybrid methods that
attempt to combine the best features of both types of method. An important
feature concerns the interfacing of the component methods. Thus it has to
be decided which method to use first, and when to switch between methods.
Difficulties such as these are addressed in the paper. Comparative numerical
results are reported.

Key words : Alternating projections, positive semi-definite matrix, non-smooth
optimization, educational testing.
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1 Introduction

The problem to be considered in this paper is the educational testing problem. Such
o;\)timization problems come up in many practical situations, particularly in statistics
where we have a matrix F' which is usually a covariance matrix with varying elements.
The educational testing problem is; given a symmetric positive definite matrix F

how much can be subtracted from the diagonal of F and still retain a positive
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semi—definite matrix this can be expressed as

mazimize €70 6 € R"

subject to F — diag8 > 0

;>0 i=1,.n (1.1)
where e = (1,1,...,1)7. An equivalent form to problem (1.1) is

minimize e'x x € IR"
subject to F + diagx > 0

z <y i=1,.,n (1.2)

where ' = F — Diag F, and diagv = Diag F.

An early approach in solving the educa.tiona‘l testing problem is due to Bentler
[2]. He writes F — diag @ = CCT, where C is unknown and minimizes trace
(CCT) subject to certain conditions. He found that there are a large number of
variables, and also it does not aczcunt for the bounds 6, 2. 0 Vi, Furthermore,
some difficulties in convergence to fhe optimum solution arise.

Woodhouse and Jackson [14] have given a method for solving the problem by
searching in the space of 8. However their method does not work efficiently and
failed for particular examples.

Fletcher (5] has solved the problem in which the semi-definite constraint is reduced
to an eigenvalue constraint and standard nonlinear programming techniques are used.
But still some difficulties arise with the rates of convergence. Also the presumption
that the eigenvalue constraint would be smooth at the solution, except in rare cases, is

not correct and in fact the majority of such problems are nonsmooth at the solution.
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In [6] Fletcher developed a different algorithm for solving the educational testing
problem. He gives various iterative methods for solving the nonlinear programming
problem derived from the educational testing problem (1.2) using sequential quadratic
programming techniques (SQP). One of these algorithms is the use ?f an [, exact |
penalty function. This algorithm works well with second order convergence and the
function converging to the optimal solution. The only problem in these algorithms is
the requirement to know the exact rank for the matrix A* = F 4 diag x* where
x* solves (1.2) .

Glunt [7] describes a pro jection method for solving the educational testing prob-
lem. His idea is to construct a hyperplane and then carry out the method of alternat-
ing projections (von Neumann [12]) between the convex set K and the hyperplane.
His method converges globally and the order of convergence is very slow.

New methods for solving the educational testing problem are introduced. The
methods described here depend upon both projection and I; SQP methods using a
hybrid method. The hybrid method works in two stages. First stage is the projection
method which converges globally so is potentially reliable but often converges at slow
order. Meanwhile in the second stage there is l.l SQP methods, in particular the
method described in Section 4, which converges at second order if the correct rank

7.*

is given. The main disadvantage of the [; SQP methods are that they require the
correct 7*. A hybrid method is one which switches between these methods and aims
to combine their best features. To apply an [; SQP method requires a knowledge of

the rank r* and this knowledge can also be gained from the progress of the projec-

tion method. Hybrid methods have often been used successfully in optimization, for

example Hald and Madsen [10] and Al-Homidan and Fletcher [1].
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The statistical background involved in the educational testing problem is described
in Section 2. In Section 3 the educational testing problem is solved using the von
Neumann algorithm. Section 4 contains a brief description of the I; SQP method for
solving problem (1.2). In Section 5 two new hybrid methods are described. Firstly,
there is the projection—1;SQP method, which starts with the projection method to
determine the rank 7*) and continues with the I; SQP method. Secondly, the
ly SQP—pro_iection method is described, which solves the problem by the [; SQP
method and uses the projection method to update the rank. Finally in Section 6

numerical comparisons of these methods are carried out.

2 The Educational Testing Problem

This section explains the educational testing problem which arises from statistics.
The problem is to find lower bounds for the reliability of the total score on a test (or
subtests) whose items are not parallel using data from a single test administration.
The educational testing problem consists of a number of student (NN) taking a test
or examination consisting of (n) subtests. The problem is to find how reliable is
the students’s total score in the sense of being able to reproduce the same total on
two independent occasions. Specifically it is required to know what evidence about
reliability can be obtained by carrying out a test on one occasion only.

In this paper we do not develop the entire theory (see [5]) but just give enough
information to construct the test problem (1.1). The data for the problem is an
N x n table of scores [X;;] (see for example [5]) such that X; gives the observed

score of student ¢ on subject j.
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Define the mean observed score of subject j by

- 1

Then the n X n matrix F' given in (1.1) is constructed from an N x n data

matrix [X;;] in the following way

1 _ _
fin= =7 2K — X)X — Xi) (2.2)

i

see [9]. Then problem (1.1) is constructed with 6 as the unknown vector.

3 A Projection Method

In this section a projection algorithm due to [7] for solving the educational testing
problem is described. The method described here depends on the basic iterated
projectios algorithm by [12]. |

It is convenient to define three coﬁvex sets for the purposes of constructing the

probem. The set of all n X n symmetric positive semi~definite matrices
Kp = {A:AeR™™", AT = Aand 274z > 0 VzeR"} (3.1)

is a convex cone of dimension n(n+1)/2. I F € R™" is any given symmetric

positive definite matrix then define
Ky = {AtAeRY™ A — Diag A = F}. (3.2)

where ' = F — Diag F. This is the set of matrices whose off-diagonal elements

are equal to those of F. Also, let diag v = Diag F' then define

Ky = {A:AeR¥", A=A + diagx, z < v; i=1,2,..n} (3.3)
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where A = A — Diag A. This is the set of matrices that is obtained by reducing
the diagonal of A. K,;; and K, are convex subspaces.

Then problem (1.2) can be expreséed as

minimize eflx x € R"
subject to F' + diagx € Kg N Ko N K, (3.4)
The iterated projections in the case m = 2, with K; and K, are subspaces of

Hilbert space H and P, and P, are respectively the orthogonal projections onto K;

and Kpy, is generated by the following algorithm:

Algorithm 3.1 (von Neumann algorithm) Given a point f

3

The sequence in Algorithm 3.1 converges to Py Ky (f), which is the orthogonal
projection onto the intersection of Kj and Kj.

Glunt’s idea is to take account of the function eTx by defining the hyperplane

L = {Y =Y + diagy € R &7y = 7}

{Y € RV tr(Y) = 7} (3.5)
where DiagY = diagy and 7 is chosen such that

T < mine’x (3.6)
x€EK
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then thesets K = KgNK,;;NK,and L, are disjoint. Given a matrix F € R™",
with F' = F' + diag f and A = A + diag x. Glunt then applies the von Neumann

Algorithm 3.1 to the problem

minimize [If — x|

subject to A € K N L, (3.7)

which has no feasible solution, Now problem (3.7) generate the sequences {Y®} € L,
and {A®} € K converges to the points Y* € L, and A* € K such that
| Y — Allz attains the minimum distance between K and L., [3]. It can then be
deduced from the relationship of L, and e’x, that A* solves problem (3.4).
The von Neumann algorithm involves computing alternately the projections onto

L; and K. That onto L. is straightforward given by

T — tr(Y)I.

P, (Y) =Y + -

(3.8)

see [7]. For problem (1.2) we need the projection Px(A) where K = KgNK,;;NK,
for any matrix A. The projection on the K = (2, K; is computed by using an
inner iteration based on the Dykstra algorithm [4] and included as an inner iteration
inside the following algorithm equations (3.9) and (3.10). It follows from [4] that the

resulting method is globally convergent.
Algorithm 3.2 Given any positive definite matrix F,let F©® = F

For k =1, 2

B&+) — PLT( F(k))

For 1 =12, .. (3.9)
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A — g+
ABD = A 4 BP, Pr(AD) — Pr(A®) (3.10)

F®+) — PP, Pr(A®)

The projection map Pg(A) formula on to Kg is given by [11]

P (F) =UAYUT. (3.11)
where
A, O
AT = [O 0] (3.12)
and A, = diag [M, Ay, ..., )] is the diagonal matrix formed from the positive

eigenvalues of F.

Since K,sr consists of all real symmetric nXn matrices, in which the off-diagonal

elements are fixed to F (the given matrix) then

Pyt (A) = F + Diag A. (3.13)

Also, since K, consisting of all real symmetric nxn matrices, in which the diagonal

elements are not greater than diag v = Diag F , we have
P, (A) = A + diag [, ha, ..., hsl. (3.14)
where

h — {hi = ay if ay S'Ui}
hi = v if as > v

4 The [SQP Method

This section contains a brief description of 1;SQP method for solving the educational

testing problem. This method was given by [6].



Educational Testing Problem 9

Problem (1.2) can be expressed as

minimize e’x x e R"
b4

subject to A + diagx € Kgr NKyy, x < v (4.1)

where diag v. = Diag A®. We can follow [6] for full details in solving (4.1).
However in this section we give a summary of what has been given.

Optimality conditions follow using the first orc'}er conditions theorem. The first
order necessary conditions for x* to solve (4.1) are that x* is feasible and there exist

a matrix B* e O(Kr N Kosr)(A*) and a vector w* > 0(w* € R") such that

e+ b" + 7" =0 (4.2a)

T (v—-x*) =0 (4.2b)

where diag b* = Diag B*.
It is difficult to deal with the matrix cone constraints in (4.1) since it is not easy to
specify if the elements are feasible vt not. Using partial LD LT factorization of A this
difficulty is rectified. Assume that r, the rank of A*, is known theén for A sufficiently

close to A* the partial factors A = LDL” can be calculated where

Ly ] [ D, ] [ An A7 ]
L [ Ly I}’ D, |’ Ay Ap
then
Dy (A) = Agy — A21A1_11 A%; . (43)

and

Dz(x) = Dz(/-i + diag X) = Dz(A)
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Therefore an equivalent problem to (4.1) with the constraint D, = 0 is considered

and expressed as

minimize e’x x € R"
X

subject to Dy(x) = 0, x <'v (4.4)

To eliminate the variables z;, i = r+1,...,n (4.3) is utilized by using the diagonal
elements of Dy(x)
) .
dis(x) = m — ) ap [Afu aa = 0 i=r+1,...,n (4.5)
k=1
where a;; and ay are elements in Asi. Therefore the unknown variables are
reduced to x = [z, Ty, ..., 7] € R".

This formulation will enable us to derive algorithms with a second order rate of

convergence.

Now using the constraint D, = 0, this will produce an equivalent problem to
(4.4). The number of variables in this new problem can be reduced to r variables
which gives the new reduced problem

minimize f(x) = Xr:xk + zn:-xi(x)
k=1

i=r+1
subject to dij(x) = 0, 4 # j, x < v. 4,j=r+1,....,n (4.6)

where z;(x) indicates that x; is the function of x determined by (4.5).
The expressions for the derivatives %%‘f and ;ggi—t are given in [6] which enable
us to find expressions for V f, V2 f and W), Then using these expressions the

QP subproblem

minignize f® + viks + 1 6wk § ¢ R
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subject to diY + VdT6 = 0 i#j dj=r+1l,....n

x® 4+ 6 < v (4.7)

is defined. Thus the SQP method applied to (4.6) requires the solution of the QP

subproblem (4.7). The matrix W® is positive semi-definite see [6].
5 Hybrid Methods

In this section new methods for solving the educational testing problem are intro-
duced. The methods described here (%epend upon both projection and I; SQP meth-
ods using a hybrid method. The hybrid method works in two stages. First stage is
the projection method which converges globally so is potentially reliable but often
converges at slow order. Meanwhile in the second stage there is I; SQP methods,
in particular the method described in Section 4, which converges at second order if
the correct rank r* is given. The main disadvantage of the I; SQP methods are that
they require the correct r*. A hybrid method is one which switches between these
methods é,nd alms to combine their best features. To apply an l; SQP method re-
quires a knowledge of the rank 7* and this knowledge can also be gained from the
progress of the projection method. This Hybrid method can work well but there is
one disadvantage. If the positive definite matrix have the same rank as the optimal
positive semi-definite matrix in which the {; SQP method works well, then most of
the time will be taken up in the first stage, using the projection method. If this
converges slowly then the hybrid method will not solve the problem effectively. Thus
it is important to ensure that the second stage method is used to maximum effect.

Hence in the algorithm of Section 5.2 the I SQP method is applied first.
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5.1 Projection—;SQP method

The main disadvantage of the I; SQP method is finding the exact rank T*, since
it is not known in advance it is necessary to estimate it by an integer 7", Tt is
suggested that the best estimate of the matrix rank r®) is obtained by carrying out
some iterations of the projection method given in Section 3. This is because the
projection method is a globally convergent method.

Consider A, in (3.12), then at the solution the number of eigenvalues in A, is

equal to the rank r*. Thus

No. A, = r* (5.1)

where No. A is the number of positive eigenvalues in A. A similar equation to (5.1)

is used to calculate an estimated rank 7*) given by
No. A® = p),

where A, is given by (3.12). The range of error is relatively small. Then the I, SQP
method will be applied to solve the problem as described in Section 4.
Another consideration is 7 how to be chosen, if 7 is close to the boundary of

the condition (3.6) then the equation
No. A® = ¢

may satisfied in the first few iterations. Experiments proved this fact see Table 5.1

The projection—I; SQP algorithm can be described as follows.

Algorithm 5.1 Given any positive definite matrix F = FT € IR™", let s be a
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positive integer. Then the following algorithm solves the educational testing

problem
i. Let FO=F
ii. Choose 7 to be close to the boundary of the condition (3.6).
iii. Apply Algorithm 3.2 until
No. A® = No. A j =12 ... s (5.2)

iv. 7® = No. A%

v. Use the result vector x from Algorithm 3.2 as an initial vector for I; SQP

method

vi. Apply !; SQP method to solve the problem with r = ),

If ||Dy(x)|| < € for some small ¢ Then

F* = F® ¢ = +® gnd terminate

vii. Apply one inner iteration of the Algorithm 3.2

viii. Go to (4).

The integer s in Algorithm 5.1 can be any positive number. If it is small then the
rank %) may not be accurately estimated, however the number of iterations taken
by projection method is small. In the other hand if s is large then a more accurate
rank is obtained but the projeétion method needs more iterations.

The advantage of using the projection method as the first stage of the projection—
l; SQP method is that if F(© is positive semi-definite (singular) then the projection

method terminates at the first iteration. Moreover it gives the best estimate to r®).
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5.2 [;SQP—-Projection method

Starting with projection method has the advantage of knowing if the given matrix
is a positive semi—definite (singular) or not, and it gives the best estimate for the
matrix rank 7). However sometimes it takes many iterations before equation (5.2)
is satisﬁed, especially if 7 is chosen to be small, this means slow convergence since
the projection method is slow converges method. In this method an algorithm starts
with the {;SQP method with an estimated rank r(® is considered. Then one iteration
of the projection method will be calculated after every stage of the I;SQP—projection
algorithm the resulting vector x(*) will be used as an initial vector to the next stage,
thus the vector x(*) is updated at every stage from the previous one.

Now the {;SQP-projection algorithm can be described as follows.

Algorithm 5.2 Given any positive definite matrix F = FT € R™" the following
algorithm solves the educational testing problem
i. Let FO = F
ii. Choose 7*) (small as possible based on one of Section 5.1 strategies).
iii. Apply I; SQP method if ||Dy(x)|| < ¢ for some small ¢, terminates.

iv. Use the result x(*) as an initial vector for projection method (Algorithm

3.2).
v. Choose T to be close to the boundary of the condition (3.6), (1 = Y z{¥).
vi. Apply one iteration of the projection method.
vii. 7®) = No. A®.

viii. Use the result x®) as an initial vector for [; SQP method.
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ix. Go to (3).

Another advantage of this algorithm is that if the rank is not correct then instead
of adding one to 7*) it goes back to the projection method to provide a better
estimate to r*). This will increase or decrease r® nearer to r*,  therefore
variables will be added to or subtracted from the problem. The new variables are
estimated using the projection method. Another advantage is that at every stage

only one iteration of projection method is used giving a faster converging algorithm.
6 Numerical Results and Comparisons

In this section numerical problems are obtained from the data given by [13]. The
Woodhouse data set is a 64 X 20 data which corresponds to 64 students and 20
subtests. Various selections from the set of subsets of columns are used to give
various test problems to form the matrix A. These subsets are those given in the
first columns of Tables 6.2-4, the value of n is the number of elements in each subset.
Equation (2.2) gives the formula for calculating the educational testing problems.
In Algorithm 3.2 7 must satisfy the condition (3.6). Since x* not known in advance
and with elements f;; S 100 then it is clear that the diagonal elements F'+ diag x(¥)

is greater than about 100 so e’

x S 100n since F is positive definite. Therefore
from (3.6) the choice 7 = 100 is recommended. In fact we recommend this choice
since the elements f;; are close to each either in magnitude. However, in general the
off-diagonal elements can play a role in making a better estimate for 7. If 7 chosen

randomly and does not satisfy the condition (3.6) then the matrix F' — diag x®) is

not positive semi—definite and the method is rerun with different 7.
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[7] and [6] tested their methods on the twelve test problems originally due to [13].
The same test problems are applied for the methods in this paper. In all the tables
of this section NOI gives the number of outer iteration when solved by von Neumann
Algorithm, TNII gives the total number of inner iteration used by von Neumann
algorithm in Algorithm 3.2 and 7 gives the number of positive eigenvalues in the
first iteration of Algorithm 3.2.

The projection method is very expensive in the sense that it consumed.a large
number of iterations whilst the I;SQP method takes a very small number of iterations.

The NAG routine is ﬁsed here to find the eigenvalues and eigenvectors for the
matrix F + diag x®. This matrix is reduced to a real symmetric tridiagonal matrix
by Householder’s method. Then the eigenvalues and eigenvectors are calculated using
the QL algorithm. The amount of work required by these algorithms is approximately
5n° multiplications per one inner iteration ([8)-

Again the NAG routine is used this time for solving the QP subproblem (4.7)
which is one iteration of the SQP method. The method used by the NAG routine to

solve the QP subproblem requires the solution for the system
ZO W ZWTp® = _Z®T(c 4 W x®) (6.1)

where ¢ = V f and Z® is a matrix whose columns form a basis for the null space of
A®)( the matrix of coefficients of the bounds and active constraints). p(® is a search
direction. The matrix Z®*) is obtained from the TQ factorization of A®) in which

A® is represented as

A®) [ZC(;)] = [0 T®W], (6.2)



Educational Testing Problem 17
The Lagrange multipliers A®) are defined as the solution of the system
AR A® = ¢ 4 W x®), (6.3)

Eqautions (6.1) and (6.2) costs approximately In® multiplications to solve and (6.3)

costs approximately §n3 multiplications to solve [8]. Thus one iteration of the SQP
method costs approximately 13;5-n3 multiplications.

Thus one iteration of the SQP method costs about 6 times greater as one iteration
of the projection method. Nonetheless the SQP method is much better than the
projection method since the number. of iterations taken by the projection method
“is about 60 times greater than the number of iterations taken by the SQP method.
However the hybrid methods as we can see from Table 6.4 use even fewer iterations.

Table 6.1 investigates the effect of varying 7. It shows the outcome from Algo-

rithm 3.2 for the following example

0 1 2 -2 2
_ 1 0 3 2 4
F=149 30 1 V=138

~2 21 0 10

with different 7. From Table 6.1 it is clear that small T increases the total number
of iterations performed by von Neumann algorithm, whilst on the other hand bigger
T decreases the total number of inner iterations and increases the number of outer
iterations which are very cheap to calculate using the projection (3.8) which costs
approximately n multiplications while one inner iteration costs approximately §n3
multiplications. Hence it‘is recommended to increase 7 to be close to the boundary
of the condition (3.6) which is compatible with the choice in Table 6.1. The result
obtained by the new method of Section 5.1 are tabulated in Table 5.2. In Table 6.2

the columns headed by NQP give the number of times that the major‘ [;SQP is solved.
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7 |[NOI|TNII| Yz |70 [
-30.0 | 2 | 2679 156 012
-20.0 | 2 2215 15 112
-10.0 | 2 1734 15 2 |2

-5.0 2 | 1571 15 2 12
0.0 2 11291 15 2 12
5.0 3 | 1308 15 2 12
100 | 3 960 15 2 12
140 | 6 787 15 2 12
149 | 15 891 15 2 12
15.0 | 30 | 792 |15.0061 | 2 | 2

Table 6.1: Numerical comparisons for same example with different 7.

In the projection—/; SQP method 7 needs to be estimated very close to " z?, this
will give us a very good estimate of the rank. | Since the average size of the educational
testing problem elements are more than 100, 7 = n x 100 is chosen as an initial value.
In Table 6.2 it is clear that when n > 10 then 7 becomes very small comparing with
3"z} which makes the projection method estimate () very small comparing with the
correct 7*. The result obtained by the new method of Section 5.2 are tabulated in
Table 6.3. In the l;SQP-projection method r*) updated using one iteration of the
projection method. In the projection method 7 estimated using the result from the
[;SQP method. In the 1-10 case the projection method estimated r®*) = 10 instead
of r®) = 9. In both Tables 6.2 and 6.3 it can be seen that the results we have are
exéctly the same as [6]. Also one or two of the variables are adjusted so that the
matrix F' — diag @ is exactly singular and positive semi—definite.

Finally in Table 6.4 the four methods are compared.
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Columns which

determine F 7 | TNII|»© | * | NQP >6r
1,2,56 400 | 4 3 | 3] 11 |542.77356
1,3,4,5 400 | 2 2 [ 2| 12 |633.15784
1,2,368,10 | 600 | 11 | 4 | 5| 8 |305.48170
1,2,4,5,6,8 600 | 4 4 | 4| 13 |564.46331
1-6 600 | 6 4 | 4] 10 |535.36227
1-8 800 | 13 | 5 | 6 | 14 |641.83848
1-10 1000 15 | 7 | 8 | 21" |690.78040
1-12 1200 23 | 9 | 9| 9 |747.48021
1-14 11400 | 25 | 10 | 12| 34 |671.27506
1-16 " 1600 | 22 | 11 |14] 44 | 663.46204
1-18 1800 | 20 | 12 | 15| 27 | 747.50574
1-20 2000 (- 29 | 14 | 18| 39 | 820.34265

Table 6.2: Results for the educational testing problem from the projection-I;SQP
method of Section 5.1.

7 Conclusions

In this paper we have studied certain problems involving positive semi—definite matrix
constraint. Two methods have given for solving the educational testing problem. One
is the I; SQP method [6]. the other is the projection method [7]. The hybrid methods
developed in Section 5 have good ratefof convergence specially the [y SQP-projection
method (Section 5.1) as compared with the methods of Section 4. The projection
method is not very effective in determining the rank when n > 12. This is because
a'small value of s is shosen in Algorithms 5.1 and 5.2. In the other hand if s is
increased then a large number of iterations are consumed by the projection method.
Hence a suitable way of chosing the integer s is needs some investigation. Various
examples are solved in Section 6 with different 7. The best way to choose 7 is given

there.
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Columns which

determine F' | r© | NQP | PMr®) NQP >6r
1,2,5,6 2 5 3 6 542.77356
1,3,4,5 2 | 12 633.15784
1,236,810 | 3 | 4 5 5 | 305.48170
1,2,4,56,8 3 6 4 4 | 564.46331
1-6 3 7 4 4 535.36227
1-8 5 7 6 6 641.83848
1-10 6 9 8 11 ] 690.78040
1-12 8 3 10 9 747.48921
1-14 101 6 12 9 671.27506
1-16 11 9 14 10 | 663.46204
1-18 13 7 15 16 | 747.50574
1-20 15 5 18 21 | 820.34265

Table 6.3: Results for the educational testing problem from the I,

method of Section 7.3.
PMr® rank r updated from the projection method.

20

SQP-projection

Columns which PM LSQP PLSQP [,SQPP
‘determine F [ r* || TNII || 7@ NQP || TNII | O [NQP | 7O | TN QP
1,2,5,6 3 197 2 14 4 3 11 2 11
1,34,5 2 224 2 12 2 2 12 2 12
1,2,3,6,8,10 5 580 3 9 11 4 8 3| 9
1,2,4,5,6;8 4 || 4994 || 3 13 4 4 13 3 10
1-6 4 || 1351 3 14 6 4 10 3 11
1-8 6 | 1948 5 29 13 5 14 5 13
1510 8 || 2918 6 34 15 7 21 6 20
1-12 9 || 2403 8 29 23 9 9 8 12
1-14 12 3196 || 10 | 36 25 10 | 34 10 15
1-16 14 )| 5215 || 11 | 42 22 | 11 44 11 19
1-18 15 | 14043 || 13 | 27 20 | 12 | 27 13 23
1-20 18 || 8255 || 15 | 39 29 | 14| 39 15 26

Table 6.4: Comparing the four methods.
Pl;SQP: the projection—I;SQP method.
[;SQPP: the I;SQP-projection method.
: total number of NQP.

TNQP
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