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Abstract. Hysteresis phenomena in multi-phase flow in porous media has been recognized by many researchers
and widely believed to have significant effects on the flow. In an attempt to account for these effects, a
theoretical model for history-dependent relative permeabilities is considered. This model is incorporated into
two-phase flow and the corresponding flow is predicteci. Flow history is observed to have a notable impact on

the saturation profile and fluids breakthrough.
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1. Introduction

In studies of multiphase flow in porous media, like contaminant and oil reservoir flows, the
early practice was to use empirical correlations based on drainage (desaturation of nonwet-
ting phase) conditions alone to characterize flow properties regardless in which direction the
saturation change. However, for rocks exhibiting strong wettability preference for a specific
phase, experiments have shown that characteristics for imbibition and drainage of the wetting
phase are different. The difference is contributed largely to nonwetting phase entrapment and
lead to developing flow properties for imbibition as well as drainage flows.

For empirical relations, a typical test for a core sample is performed by first conducting
a drainage test until the residual level of the wetting phase saturation is reached. Then

an imbibition test starts from this residual saturation until a minimum saturation of the
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nonwetting phase is reached. This type of testing establishes bounding drainage-imbibition
curves,

Bounding drainage-imbibition curves are useful if we assume that the phases saturation
has reached the residual values and the direction of the flow under consideration agrees
with the direction of the proceeding flow in a medium. However, in many flows this can not
be predicted a priori and the porous medium may not have been subjected to one or more
phase saturation extrema. Therefore, appropriate cycles of drainage-imbibition or imbibition-
drainage processes should be conducted to obtain relations for possible intermediate flows.
These relations are essential for more accurate flow prediction through mathematical models.

Mathematically, this leads to flow functions that are not only functions of current fluid
saturation but also of saturation history. One of flow characteristics is the relative permeabil-
ity. The concept of relative permeability is introduced to describe flow characteristics when
more than one immiscible fluid is present in a matrix. To account properly for the history
dependence, laboratory tests must be conducted to yield relative permeabilities values that
conform with the desired manner a saturation is approached. History dependent reiative per-
meability relations are particularly important for correct predictions in situations involving
flow reversals like in enhanced oil recovery and contaminant flow.

There have been many experimental attempts to understand the history dependence of
relative permeabilities which in turn lead to other attempts for constructing physical mod-
els. Geffen et al. [8] and Osoba et al. [23] illustrated through several laboratory studies on
two—ph;).se systems the history dependence of thg relative permeability and the impact of
the direction of saturation change on the relative permeability-saturation relations. Naar and
Henderson [19] derived a direct relation between the relative permeability characteristics dur-
ing imbibition and those observed during drainage for two-phase flow in consolidated porous
rock. They adapted the model of Wyllie and Gardner [29, 30] to include a trapping mecha-
nism for the nonwetting phase. The extension to three-phase imbibition relative permeability

then was made by Naar and Wygal [20]. Naar et al. [21] showed experimentally that consol-
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idated rocks and unconsolidated porous media exhibit different imbibition flow behavior for
two-phase flow. Snell [27] reported the first experimental investigation of history dependence
of three-phase relative permeability in unconsolidated sand. Raimondi and Torcaso [25] inves-
tigated the distribution of the nonwetting phase resulting from increasing and decreasing the
wetting phase saturation in a miscible displacement.

Land [14] developed imbibition relative permeability relations for both two and three-
phase systems. In that development, it was assumed that the amount of entrapment at any
saturation is a function of the initial nonwetting phase saturation established in the drainage
direction and residual saturation after complete imbibition. In a later paper {16], Land verified
experimentally these relations for two-phase system. Evrenos and Comer [6] proposed semi-
empirical equations for the loci of dynamic hysteresis envelopes and scanning loops spanning
the domains of relative permeability for compressible two-phase immiscible displacement.
Colonna et al. [4] performed experimental work to study the effects of alternate displacements
of water and gas on the hydrodynamic characteristics of rock. Based on these experimental
results, they proposed a schematic representation of the behavior of the porous medium
and the corresponding permeabilities relationship. Killough [13] combined history-dependent
relative permeabilities developed by Land [14, 15] with a three-dimensional, three-phase,
semi-implicit reservoir simulator.

Jones and Roszelle [12] proposed a graphical technique for determining relative perme-
abilities for drainage-imbibition flow cycles based on unsteady-state method applied to small
linear c;ores. In a paper by Gladfelter and Gupta [9], a graphical method for predicting the
occurrence of an experimentally observed hump, its rate of growth, and saturation within
an oil/water bank was developed using the observed hysteresis in fractional flow during a
tertiary oil recovery process.

Amaefule and Handy [1] demonstrated experimentally that hysteresis effect is much smaller
at low interfacial tension than it is at high interfacial tension. Carlson [3] presented a method

for calculating imbibition relative permeability for the nonwetting phase from the drainage
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curve, historical maximum nonwetting phase saturation and a minimum of one additional
point on some corresponding experimental imbibition curve. In his approach, neither the
pore size distribution factor in Land’s equation [14] nor the parameter in Killough’s [13]
approach is necessary. Lenhard [17] developed a predictive model for relative permeabilities
in two or three-phase systems subject to arbitrary saturation paths.

For flow predication, there have been many efforts to solve the flow equations but without
accounting for the history dependence. Buckley and Leverett [2] constructed the analytical
solution for immiscible waterflooding. Pope [24] generalized the fractional flow theory to more
complicated floodings and used the method of characteristics to construct the correspond-
ing solutions. The polymer flooding model without hysteresis was analyzed and solved by
Isaacson [10] and Johansen and Winther [11].

The first attempt to solve flow equations with history dependence was introduced by
Marchesin et al. [18]. In that paper, the authors used only a double-valued flux function to
model two-phase flow with hysteresis and constructed, graphically, the complete solution of
the associated Riemann problem. The author of this paper [7] analyzed and solved the Rie-
mann problem for a polymer flooding model with imbibition-drainage relative permeabilities.

In this paper, we present a general qualitative model for the history dependence of relative
permeabilities and the corresponding fractional flow functions. This model is incorporated
into the conservation law describing immiscible two-phase flow in porous media and the
corresponding Riemann problem solution is constructed. We demonstrate that the flow history
might !;ave notable impact on the saturation profile and fluids breakthrough. This implies
that more care should be taken when configuring the preinjection conditions and what kind
of tests on cores should be conducted to get the desired curves.

The outline of the paper is as follows. In Section 2 we present a physical discussion on
the history dependence of relative permeability. In Section 3 we introduce mathematical
assumptions and properties of the history dependent functions. In Section 4 and 5 we analyze

the flow equations and associated wave families. In Section 6 we construct the global solution
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for the Riemann problem. In Section 7 we examine the effects of history on displacement

flows. The concluding remarks are given is Section 8.

2. Flow History Dependence Characteristics

The history dependence we consider is based upon the manner in which fluids are distributed
in pore spaces initially or during a flow. We start our treatment by introducing some related
physical issues.

Relative positions of fluids in individual voids are controlled primarily by the wettability
characteristics of the porous medium. In two-phase systems the wetting phase is located
as a film over pore walls as well as completely filling some of the smaller pores while the
nonwetting phase fills the bigger ones.

When a wetting and nonwetting phase flow together in a porous medium, each follows
separate and distinct filamentary paths. Surface tension forces make the wetting phase pref-
erentially fill the smallest of the voids, and the nonwetting phase fill the large spaces between
the rock grains, which themselves are covered by a film of the wetting phase. This leads to
marked differences in fluids flow behavior based on the direction of saturation change. In
particular, this leads to nonwetting phase entrapment.

In view of the above, we should consider different flow characteristics based on whether the
wetting or nonwetting phase saturation is increasing. We label a flow drainage or imbibition
according to saturation change of the wetting-phase.

One of the important flow characteristics is the relative permeability. Relative permeability
relations should reflect the saturation direction effects for imbibition and drainage flows. As
a result, relative permeability should be a function of saturation as well as saturation history

that describes the way that saturation is approached.
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For a full description of the history dependence of relative permeability, one should consider

the following elements.

Irreducible Saturation

Experiments have shown that each maximum saturation for the nonwetting phase results in
a different irreducible saturation for the wetting phase. See for example [8] and the references
in [14]. Based on these observations, attempts have been made to develop empirical relations.
For example, Land [14] used published data to find a relation between the residual nonwetting-
phase saturation after imbibition and initial nénwetting phase saturation. From this empirical
relation, mathematical expressions were obtained for the trapped and mobile nonwetting-

phase saturation.

Hysteresis Magnitude

There have been many attempts to describe the magnitude of hysteresis in relative perme-
ability relations. Some laboratory investigations have shown that the wetting-phase imbibi-
tion and drainage relative permeabilities show little deviation from each other [9, 16], while
considerable differences has been observed for the nonwetting phase relative permeabilities.
On the other hand, other investigations indicated that both wetting and nonwetting phase
relative permeabilities may exhibit hysteresis and the greater the trapped saturation, the
greater the imbibition wetting—phase relative permeability. In many experiments it has been
observed that for the nonwetting phase at a given saturation, imbibition relative permeabil-
ity is smaller than the drainage one while the opposite was observed for the wetting phase
relative permeabilities [1, 8, 16, 21, 23, 25]. The contrary behavior have been reported for
unconsolidated porous media [21]. In yet other experiments, effects different from the above

have been noticed [4, 9].
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Reversibility

Many experiments have shown that relative permeability curves reach stability after a cycle
of flow reversal. In particular, when reversing the flow direction from drainage to imbibition,
the imbibition curve is reversible. In other wards, once a nonwetting phase saturation has
been established and the flow behavior has been determined in imbibition direction, this flow
behavior is reversible and reproducible, provided the previous maximum nonwetting phase
saturation is not exceeded [8, 16, 25, 26]. A justification for this behavior is that, the trapped
fluids are distributed within a range of pore sizes in such a way that if the direction of the
saturation change is reversed from imbibition to drainage, the trapped fluids are released in
the reverse order of entrapment. In this paper, we assume that relative permeability curves

for wetting and nonwetting phase exhibit a more or less reversible nature.

Porous Medium History

The initial saturation history of a porous medium depends on the extreme values of saturation
reached in that medium. For example, a typical oil reservoir may initially contain connate
water and oil as a result of oil invasion of pores. After a period of primary production, water
(wetting) often enters the reservoir either from the surrounding aquifers or surface injections
and leads to an imbibition flow. In this scenario the reservoir can be assumed to have a
drainage history followed by an imbibition. Accordingly, the current relative permeability
values lie on an imbibition curve determined by the maximum saturation reached during the
drainage process. On the other hand, if the reservoir is depleted by decreasing the oil (wetting)
saturation and increasing the gas saturation, as in a dissolved-gas drive, the drainage relative
permeability curves corresponding to the maximum saturation occurred during oil imbibition
apply. Another example, in contaminant flow, when a porous medium has been through a

sequence of events of water drainage, rainfall, contaminant leakage, etc. [17].
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3. Mathematical Description for Saturation Functions

In this section we describe mathematically the different saturation functions and their history
dependence based on the physical characteristics presented above. We discuss the mathemat-
ical assumptions and properties of relative permeabilities and their implications on fractional

flows. Saturation functions vary according to the following types of flow.
3.1. PRIMARY FLow

Consider the case when pores are completely filled with a nonwetting (nw) phase. We call
the displacement of this fluid by a wetting (w) phase primary imbibition. Similarly, primary
drainage is the flow in which a nonwetting phase displaces the wetting phase filling completely
the pores.

Let S denote the wetting phase saturation. Let Srw and Spny, be the irreducible saturation
for the wetting and nonwetting phase, respectively. For j = w or nw, let K};(S) and K2(S)
denote the relative permeability for primary imbibition and drainage, respectively. Then,
K, (S) and K?,(S) are increasing functions of S while K¢, ,(S) and K2, (S) are decreasing
functions of S.

We assume that the primary relative permeabilities are C? functions and convex (positive

second derivative) for Sy, < S <1 — Sy, Typical primary relative permeability curves are

shown in Figure 1. The wetting fractional flow function is defined by

KE,(S) |
PE) =5 KO =KLO) +uIhy(S),  p=id &)

Where, o = piny/py is the viscosity ratio. Note that F? is a C? increasing function for
Srw < S < 1= Sppy. Typically, curves of FP have inflection points. To guarantee this we

assume that

aK?
dS

dK?

(Srw) S 0) dS

(1 = Spnw) > 0. ()



History Effects 9

1 T . 1
| Imbibition ~——p |
]

t

Imbibition —>

Relative Permeability

Fractional Flow

Wetting Phase Saturation Wetting Phase Saturation

Figure 1. Primary flow curves.

According to (38) and (40) in the Appendix,“ condition (2) is a sufficient condition for the
primary fractional flow function, F?, to be convex in a neighborhood of § = S,,, and concave
in a neighborhood of § = 1 — S,,. This implies the existence of an inflection point of
F?. However, for most applications, experimental data indicates that the fractional flow
function has at most one inflection point. Therefore, we assume that S;ns is the only point
of inflection, and consequently, for p = ¢ and p = d, FP is convex in (Syw, Sin #) and concave

in (Singy1 — Srnw) as shown in Figure 1.
3.2. SECONDARY FLows

If a flow reversal occurs during a primary flow, we call the flow a secondary flow. This includes
the secondary drainage of a primary imbibition (id) and secondary imbibition of a primary
drainage (di). We denote the critiéal saturation at which the flow reversal occurs by Sy, where
h = id, di, indicates the relevant flow cycle for the secondary flow.

For secondary flows, we denote the relative permeability function of the j-phase, j = w, nw,
by K:‘j. If necessary, we use the superscripts u and [ to indicate whether at any saturation
the relative permeability value is greater than or less than the one for the primary flow,

respectively. In other wards, for any saturation S, the relative permeabilities are related as
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Figure 3. Relative permeability curves for id flow with K%,
follows:

K5'(S,8i) < K5(S) S Ki%%(S,8:),  KYH(S, Su) < Ki(5) < K%%(S, Sai).

rj

3)

Typical curves are shown in Figures 2- 5. Although, some of these curves may not be observed
experimentally, we consider all the possibilities of disjoint curves for the purpose of complete-

ness.
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The irreducible saturation of a secondary flow is a function of the critical saturation Sj.

We define the irreducible saturations by

Sria(Sia) = max{S : K4 (8, Sig) = 0}, (4)

and

Srdi(Sai) = min{S : K% (S, S4x) = 0}. (5)

Accordingly, the domain of secondary relative permeability functions consists of the satura-

tion values that lie between S, and S,;.
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We assume that K}, is an increasing function of the wetting phase saturation S while
K}, is decreasing. Moreover, we assume that the transition from primary to secondary flow

is continuous, i.e.,
K'r)'lj(shv Sp) = I{Tj(sh)a ' (6)

and that all Kf‘j (S,.) functions are C?! in their domain. Moreover, for a fixed Sk, Spy < Si <
1 - Srpw, Wwe assume that Kfj(., S1) is C? and convex in its domain. We also assume that the

secondary relative permeability curves are disjoint for distinct values of Sj. Or,
Os, Kiam >0, 95, Kit' <0, ds5,K¥v<0, 05 K% >o0. )

The condition (7) and definition of left and right derivatives, 85 and 8%, respectively, as in

(41) of the Appendix also imply that

05 K74 (Shy Sh) < 85K}y (Sn) < 85 Ki%H(Sh, Sh), (®)
and

O K7 (Shy Sh) < O K}, (Sh) < OF K15(Sh, Sh). (9)

The analog holds for the nonwetting phase relative permeabilities.

We define the secondary fractional flow function F%(S, S;) for the wetting phase by

Kr"lw(S1 Sh)
K}, (S, Sh) + n K, (S, Sh)’

F*(8,8,) = h = id, di. (10)

Note that the transition from primary to secondary flow is continuous and that F*¢(S,4, Sia) =
0 while F%(S,4,Ss) = 1. Moreover, note that F5(., S) is C? while FA(S,.) is C! in their
domains. From equation (29) in the Appendix, for each S), F"* is an increasing function of
the wetting saturation S.

Note that given S;4, we have

o Kiy . Kidw
Ki,+pKi,, = K4 4 K93

(11)
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Table 1. Secondary fractional flow curves behavior.

13

Kb, Kk, 0s,KM,  8s,Kn, F*—Fr 95 F*  p*
p=ih=id
Kidw Kidl >0 <0 implies >0 >0  Fide
Kidu Kidu >0 >0 assume >0 >0 Fidu
Kidt Kidy <0 >0 implies <0 <0 Fid!
Kidt Kidl <0 <0 assume <0 <0 Fidd
p=d,h=d;
K& K, <0 >0 implies >0 <0 Fdiu
K3 Kgis <0 <0 assume >0 <0 Fdire
K&t K&y >0 <0 implies <0 >0 Faid
K% Ko, >0 ->0 assume <0 >0 Foid
1 1

B 3

) )
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é g
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Figure 6. Fractional flow curves for id flow.

for Srig < S < S;q. Moreover, froin (30) in the appendix, the 85, derivative of the right hand

side function is positive. This implies that the corresponding secondary curves lie above the

primary curve and are disjoint. We denote such curves by F**, This is not true in general

for Kids /[Ki%® + u Ki93). However, for this case we assume that the secondary curves are

of F9% type. Table I summarizes all the possible cases we consider for F*, h = id, di. The

curves of these cases are shown in Figures 6 and 7.
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Figure 7. Fractional flow curves for di flow.

Note that the curves slope at the critical s;;,tura.tion satisfies
85 F'*(Sy, Sh) < OsF*(Sk) < 85 F'¥ (S, Sh), (12)
and
03 F! (Sh, Si) < 8sF*(Sh) < 0F F¥*(Sh, Sh). (13)

We assume that the curves of F*® are convex in some neighborhood of S,;; and the curves
of F% are concave in a neighborhood of S,4. By equations (34) and (36) of the Appendix,

sufficient conditions for this behavior are

dsK}%,(Srid, Sia) + p 05 Ki2 ,(Sriay Sia) < 0, (14)

and
Bs K2, (Sridy Sas) + p Os K, (Srai Sui) 2 0. (15)

Unlike the primary fractional flow function, assumptions on K?,(S, Sy) and K%, (S, Si)
guarantee neither existence nor uniqueness of inflection points for secondary fractional flow

functions. We assume that any secondary fractional flow function has at most one inflection

point.
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4. Flow Equations

Simultaneous flow of two immiscible phases is described by the basic equations: volume bal-
ance, Darcy’s law and conservation of mass. We assume that the porous medium is homoge-
neous, 8o that the porosity and total permeability of the rock are constant. For the phases, we
assume incompressibility aqd constant viscosity. Moreover, we assume that diffusive forces,
such as capillary pressure, are negligible and the flow is horizontal so there is no gravity effect.
We also assume that the flow is one-dimensional with constant total velocity.

Under these assumptions the basic equations reduces to the dimensionless single conser-

vation law, known in literature as Buckley-Leverett equation [2],
0:S + 0, F =0, (16)

where S and F are the saturation and fractional flow function, respectively, for the wetting
phase. For more details on the derivation of (16) and physical assumptions see [24].
The fractional flow function F is history dependent and determined by the type of the

flow. In other words,

Pe { F?(S) for primary flow, a7

Fh(S,84) for secondary flow.

The conservation law (16) requires initial data for S and S} at each point in space. We

consider the Riemann initial condition:

[ (5450 = <0,
(S,50)(2,0) = { SRS 5 0 (18)

where for the primary flow the initial condition (18) reduces to values for S only since Sj, = S.
The solution of (16) and (18) describes the saturation distribution and history at each point
of space and time.

If the flow is secondary, F = F"(S, S}), then the conservation law (16) can be closed by

adding the constraint 9,5, = 0 for the reversibility assumption. The two equations can be
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written in the quasilinear form

S ] dsF* dg, Fh
o | +40,|° | =0, a=|%" IS, (19)
Sh Sh_ 0 0
The characteristic speeds and their corresponding eigenvectors are
' 1] ds, F*
M=0sFr ro=||, Au=0, re=| " |. (20)
0] ~dgFh

Note that the characteristic speed A is the slope of F* which is nonnegative while the
other characteristic speed )A,; is identically zero. This implies that all wave families are either
stationary or traveling to the right.

When the flow is primary, equation (19) reduces to the single equation
85+ 2,0, =0, (21)

where A, = (F?)’ is the characteristic speed and equals to the slope of FP.

For the transitional states (Sx,S4), we define the characteristic speeds by:

Ao(Sh) = 8sF(Sh),  Au(Sh,Sh) = BGF* (S, Sh), (22)

where, 33 is the appropriate right or left derivative. The type of the flow (secondary or

primary) determines which velocity is to be used in determining Riemann problem solutions.

5. Waves Families

Solutions of the Riemann problem for conservation laws consist of elementary waves. Given
left and right states, then at any time the saturation profile consists of self-sharpening fronts
(shocks), expansion waves (rarefactions) and contact discontinuities.

The corresponding waves to the zero characteristic speed ), are stationary contact dis-
continuities since the field is linearly degenerate. On the other hand, due to the inflection

points of FP and F*, the p-family and h-family are not typically genuinely nonlinear since

V/\h'rs::aSSFh, V= (3S,as,.)- (23)
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Thus both families consist of rarefactions and shocks.
As we know, any discontinuity solution of speed & must satisfy the Rankine-Hugoniot
condition. For the secondary flow, the Rankine-Hugoniot condition takes the form

(Fh)n__ (Fh)t] _ [SR_ SL] .

24
0 Sp - S} 24

The condition (24) is satisfied by two kinds of discontinuities. The first one is a shock that

travels with speed

()" — (B
TR

g =

(25)

and across which the history parameter Sj, is constant. The second discontinuity is a sta-
tionary one across which the fractional flow is continuous. This saturation discontinuity is
associated with the characteristic speed )\,;.

For the primary flow, the Rankine-Hugoniot condition reduces to
(FP)* = (FP)! = o (S® - S5*). (26)

This discontinuity is a shock that travels with speed o.
To distinguish the physically meaningful shocks, we need to impose an entropy condition.
For our purpose, a shock is considered admissible if it satisfies the Oleinik condition [22] for

scalar equations. For a fractional flow function F = FP or F*, Oleinik condition requires that

F® — F(S, S)) FR_ Ft
T Sr_§  S9% GECgt (27)

for all S between S* and S*. In other words, the chord from (S®, F®) to (S%, F*) must lie
above the chord from (S®, F?) to (S, F(S,Sk)) for any S in between.

In a rarefaction, the saturation distribution is continuous in space and the velocity of a
given saturation is equal to the characteristic speed A, or Ay, For this profile, the characteristic
speeds should be monotonically increasing from left to right.

The monotonicity and Oleinik condition are equivalent to the construction of the concave

hull when §* > S® and convex hull when S% < S® for the fractional flow curves as shown
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Figure 8. Concave and convex hulls,

in Figure 8. A straight line segment represents a shock and a curve segment represents a
rarefaction. The shock speed is equal to the slope of the straight line. The stationary contact
discontinuity corresponds to a horizontal line connecting the left and right states since the
fractional flow is constant.

In petroleum engineering literature, the above solutions are usually explained in terms of

Welge tangents [5, 28]. Welge tangents are equivalent to Oleinik chords for such problems.

6. Riemann Problem Solution

The glqbal solution to the Riemann problem can be constructed graphically using the wave
families mentioned above. Uniqueness of solutions can be easily verified by imposing the
compatibility condition, i.e., the initial speed of each wave is greater than or equal to the
final speed of the preceding wave.

Note that for any given left and right state, the horizontal line through the left state
intersects the secondary fractional flow curve associated with S§ provided that the fractional
flow value for Sj7 is greater (less) than the value of the left state for id (di) flows. Otherwise,

the horizontal line intersects only with the primary curve at some saturation S = S°. Please,
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see Figure 9. This horizontal line represents a stationary contact discontinuity. Since this
discontinuity is stationary and all other wave solutions travel to the right, we can reduce the
Riemann problem to cases for which either the left and right history are the same (Sf = SF)
or the initial left flow is primary (S* = Sf).

The stationary contact discontinuity is an outcome of the reversibility assumption on the
flow (8;Sk = 0). Physically, this discontinuity acts as an adjustment for the saturation to keep
the same rate of flow for two adjacent parts of the porous medium with different histories.

In view of the above observation and without lose of generality, we only consider the

following two cases for the initial left and right states.

- (a) Equal Left and Right History

In this case, both left and right state fractional flow values are given by the secondary curve
associated with Si¥ = Si. The solution is determined by the concave hull if S® < S* or by
the convex hull if S® > S*. Thus, we have an h-wave connecting the left and right state

across which Sj, is constant and is equal to S§.
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Wetting Phase Fractional Flow

Wetting Phase Saturation

Figure 10. Solution for initial primary left di flow,

(b) Primary Initial Left Flow

In this case we have St = Si; < S} < S®for di flow and S*? <Sfi<St= £, for id flow. For
a di flow, note that the left state (S*,8*) can be connected to the critical state (S7, ST) by
a unique p-wave determined by the convex hull of the primary curve joining the two states.
On the other hand, the critical state (S%,ST) can be connected to the right state (S®, S2)
by a unique h-wave determined by the convex hull of the secondary curve. If the union of the
two convex hulls is also convex then the two waves are compatible. Otherwise, the solution
is given by the convex hull of the union of the two convex hulls as shown in Figure 10. The

solution for an id flow is obtained using the same construction but for concave hulls instead.

7. History Effects on Displacement Processes

In this section we evaluate the impact of flow history on two-phase systems. For this purpose,
we investigate displacement processes in which a fluid is injected into a porous medium. We

denote the preinjection fluid composition in a porous medium by (8%, 8%) and the injected
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fluid saturation by S”. Initial saturation history S{ depends on the sequence of events the
porous medium exposed to or went through. In view of this, we consider the following scenarios

for preinjection flow in a porous medium.

(a) Primary Preinjection Flow
In this flow the porous medium is assumed to undergo a primary flow through either primary
drainage or imbibition. This corresponds to the initial condition with S’ = S} and thus the

flow values are extracted from the primary curve.

(b) Secondary Preinjection Flow
If, however, the porous medium under consideration is assumed to be exposed to an event of
flow reversal at some saturation S}, then the preinjection fluid characteristics are determined
by the secondary fractional flow curve associated with Sj.

Based on these two preinjection flows, there are three consequent displacement flows that

can take place.

(a) Primary Flow Displacement

If the preinjection flow in a porous medium is primary and the injected fluid saturation value,
S7, agrees with the monotone direction of the saturation change for that flow, then the entire
displacement flow is primary. This takes place when S’ > S’ for id flow as well as when
§7 < 87 for di flow. In both cases we have S’ = Sj. In such a displacement, saturation

history is irrelevant.

(b) Secondary Flow Displacement
On the other hand, if the preinjection flow in a porous medium is secondary and the injected
saturation value, S”, agrees with the monotone direction of the saturation change for that

flow then the displacement process is entirely a secondary flow. This situation arises if either
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Figure 11. History Effects on di flow displacements.
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Figure 12. History Effects on di flow displacements.

S’ > Sf for di flow or $7 < S} for id flow. As a result, the saturation profile is determined
by the hulls of the secondary curve associated with Si. Using the secondary curve rather
than primary curve in this case leads to different hulls and thus a different saturation profile.
In Figures 11 and 12 we present examples of displacements in a di flow. These examples
demonstrate history effects on the saturation profile and compare the flow with (solid curves)
and without (dashed curve) accounting for flow history. ~ We notice that, flow history not

only effects fronts and rarefactions speed, but also interchanges a front combined with an
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Wetting Phase Fractional Flow
Wetting Phase Saturation

Wetting Phase Saturation x/t

Figure 13. History Effects on id flow displacement.

expansion wave by a single front and vice versa. Similar effects exist, for the other types of

flow.

(¢) Secondary-Primary Flow Displacement

Finally, consider the case when the injected fluid saturation value, S, is less than Si; or
greater than Sj;. Then, at each position in the porous medium, the displacement process
starts as a secondary flow followed by a primary one. The saturation profile is determined
by constructing the appropriate hull for both the primary and secondary curves. For such
displacement, taking into account the history effects may result in saturation profiles with
reduced or increased number of fronts or expansions as well as different breakthrough times.

In Figure 13 we present an example for an id flow.

8. Concluding Remarks

— Saturation history of a porous medium has a variety of implications on the flow, even with

reversibility assumption. Including history dependence may result in flows with different

number of fronts and expansions as well as different traveling speeds of waves.
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— To reach the right prediction for a two-phase flow in a porous medium, it is impera-
tive that laboratory tests be conducted with a saturation history simulating that of the

medium being under consideration.

— Displacement processes can be made more efficient by modifying the preinjection history
of the porous medium to get the preferred breakthrough time or rate of advance of a
certain composition. This has important economic implications in enhanced oil recovery,
contaminant cleanup and similar processes in which the porous media is exposed to

successive cycles of productions or flows.

— The observed history effects under the reversibility assumption suggest that more inves-

tigation is to be done for cyclic history dependence.
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Appendix
Mathematical Expressions

For secondary fractional flow functions,

I(:‘w (S ) Sh)

F*(S,8,) = , 28
(5:54) = RE1575%) + 5 K5(5.59) (28)

the first derivatives are
0sF" = ¢ K’ti,)g [ 0sKE, - KE, 05KR,,] > 0 (29)
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and

Bs, F" = (_Ié:’T [ row 05, K, — K}, 85, K:"“"] ’

where,

K} =K!, +uK!

rnw

The dgg derivative is

25

(30)

(31)

(32)

{Kt [ rnw aSSKrl'zw I{l‘w assl{fnw] 2 aSKth [Kr"‘nw aSKr"‘w - Kv’"w aSKr"tnw] } .

Note that similar expressions hold for F? with ds replaced by / = d/dS.

When (S, Si) = (Srid, Sia) the derivatives for the id fractional flow function reduces to

1 9sKj3,
>
”, I{td = 0

rnw

asFid =
and

The derivatives for the di fractional flow function at (S, Si) = (Syai, S4i) are

asKd
ll/ I{dtn‘w > 0

as Fdi —
and

dssF¥ =

( e e 7 (K& ossK&,, - 205K BsKh.}

For primary fractional flow functions, when S = S,,, we get

and

1

(FP)' = ;;i_(—kp_—)—g'{

p K, (KE,)" - 2 (KP)'(KP,)'}

(33)

(34)

(35)

(36)

(37)

(38)
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However, for S = 1 — S,.,,,,, we have

and

v, (KB
(F’)-—M—K?TZO (39)

Finally, derivatives at (S, S)) are defined in a similar way to

K% (Sig, Sid) — Ki%%(Siq — 6, Sia)

K}%(Si4, Sia) = lim 3 (41)
. K. (Sia) - K5 (S; ;
< g% w( ) 3 ru(Sid = 6) = 0sK;,,(Si)- (42)
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