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ABSTRACT. It is ‘well-known that multi-phase flow in porous media exhibits hysteresis. This is
typically modeled by modifying the saturation dependence of the relative permeabilities. In this
paper, a model for hysteretic relative permeabiliti;:s is built into the polymer flooding model and
the analytical solution to the corresponding Riemann problem is constructed. This produces a non-
strictly hyperbolic system of conservation laws with a history-dependent flux function. Because the
polymer model without hysteresis possesses Riemann problem solutions that are not monotonic,
the ‘introduction of hysteresis necessarily produces structurally different solutions. We show that

hysteresis produces more complicated solutions with more fronts and expansions; and removes

some non-uniqueness of solutions.

1. INTRODUCTION

In this paper we solve the Riemann problem for the system of conservation laws

s+ 8, F =0,
0i(cs) + 0z(cF) =0,

with the flux function F of the form

Fe f(s,c)  ifs=m015>0, (primary flow) @)

h(s,m,¢) otherwise, (secondary flow)

and initial conditions

(SL' "L’CL) z<0,

s,m, c)(z,0) =
( =) (s®, 7R, cR) z>0,
1

)
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where, t > 0, z € R. The variables s,m,c € I and s S m, where I is the interval [0,1). The

system (1) is used in enhanced oil recovery to model polymer)ﬂp‘o,dingt in which oil is displaced by

water containing dissolved polymer. The variable s is the satiitatioﬁ of the aqueous phase and ¢ is v

the concentration of polymer. The flux function F js the fractional flow function for the aqueous

phase and 7 is the hysteresis parameter. For the derivation of (1) and physical assumptions see [12].

Experiments have shown that the flow functions are not only functions of current fluid saturations
but also functions of the saturation history. Moreover, the solution of the Riemann problem for the
polymer flooding model without hysteresis [5] shows cases with nbn-monotonic behavior in satura-
tion. The form of F in (2) is based on remembering the saturation history through parameterizing
the states at which the imbibition process is revex:sed. The/fl.;n‘ctio;F = f(s,¢) describes the flow
when the saturation increases monotonically from the u'reducxble aqueous phas; ‘sa;:u‘ratmn 8yq to
the maximum saturatxon 1 — 8,4, where s, is the residual liquid phase satnratxon. W- will consxder

this imbibition of the aqueous phase as the primary flow. When this imbibition Precess is reversed

at 8 = m, a new flow function F = h(s,,c) appears and the flow is called a secondary flow. ‘

The main contribution of this paper is incorporating the flow hiatory into the flux function
and constructing the unique global solution of the Riemann.problem. The Oleinilxg‘entropy condi-
tion [11] for scalar equations and the generalized Lax entropy condition [7] are used to distinguish

the physically meaningful discontinuities. The solution is constructed by piecing together a compat-

ible sequence of elementary waves (shocks, rarefactions, contact digcontinuities) to connect constant

states.

Includihg hysteresis produces more complicated solutions. Another effect of including hysteresis
is that it removes some of the non-uniqueness cases arises in (5] wherg the solution is unique in the
z,t-space but not in the state space. However, for some w’? large enough the same non-uniqueness
problem persists. Although for certain critical values of the left and right states the solution is not

pointwise continuous with respect to the left and right states, it is continuous in L norm.

Buckley and Leverett [1] constructed the analytical solution for immiscible waterflooding. Sys-

tem (1) reduces to their single equation model when c is constant. Pope [12] generalized the fractional
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flow theory to more complicated floodings and used the method of characteristics to construct the
corresponding solutions. The polymer flooding model without hysteresis was analyzed and solved
by Isaacson [5] and Johansen and Winther [6]. The problem is similar to the Riemann problem for
vibration of an elastic string considered by Keyfitz and Kranzer [7].

Hysteresis phenomena in multi-phase flows in porous media has been recognized by many re-
searchers. For example, Colonna et al. [2], Killough (8], Gladfelter and Gupta (4] and Lenhard [9).
Marchesin et al. [10] used a double-valued flux function to model two-phase flow with hysteresis
and constructed, graphically, the complete solution of the associated Riemann problem. However,
in this paper we consider a three-component two-phase flow with a more complicated model of hys-
teresis. The treatment of the history dependence-in this paper is similar to that of motion in an
elastic-plastic bar studied by Trangenstein and Pember in [13).

The outline of the paper is as follows. In Section 2 we present a brief derivation of the model. In
Section 3 we state the mathematical assumptions and prope‘rties of the flux functions and analyze

the hyperbolicity of the model. In Section 4 we discuss the different wave families. In Sections 5-8

we construct the Global solution for the Riemann problem.

2. DERIVATION OF THE MODEL

In polymer flooding, a solution of water and polymer is injected into an oil reservoir to pusix the
oil through the rock. The reservoir fluid is considered to consist of three components: oil, water
and polymer. The oil forms its own liquid phase, and water with polymer form the aqueous phase.
The polymer transports oply in the aqueous phase and does not partition to oil. The purpose of the
polymer is to increase the viscosity of water, thereby enhancing its ability to push the oil.

System (1) is derived under many assumptions. We assume that the reservoir rock is homogeneous,
so that the porosity and total permeability of the rock are constant. For the phases, we assume
incompressibility and that the liquid phase viscosity is constant, but the aqueous phase viscosity
increases as the concentration of polymer increases. Moreover, we assume that there are no diffusive

forces, such as capillary pressure, and no gravity forces.

The mass conservation equations for water, oil and polymer, respectively, can be formulated as
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FIGURE 1. Hysteretic relative permeability curves.
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follows:

$ 848 + Ovq =0,
¢6¢31 + aaxvl = 0’ (4)
$8i(c8a) + Oz(cva) = 0,

where ¢ is the rock porosity, c is the polymer concentration and s, and s; are the aqueous and liquid
phases saturations, respectively. The fluxes v, and v; are the volumetric flow rates of the aqueous

and liquid phases, respectively, and are given by Darcy’s law:

Kkra Kkrl
-——=0,P, = - 8. P. 5
Hac) " moo (5)

Vg =

Here, P is the fluid pressure, K is the absolute permeability of the rock, kg _and ky; are the relative
permeabilities of the aqueous and liquid phases, respectively, and pu,, u; are the corresponding
viscosities.

Next, we use the assumption that the total velocity v; = vq + v is constant to eliminaté the
pressure éradient. Adding the first two equations in (4), using the assumption that 81 +38,=1 amvdi

changing = to ¢ z/v; we obtain (1) with s = s, and

ke
- kra + krl ,U:(C)’ ‘ (6)

F
where p = pq/u; is the viscosity ratio.
To complete the description of the conservation laws we need to describe the relative permeability.

curves. In this paper, we will consider the typical relative permeability curves shown in Figure 1,

with the aqueous phase being the wetting phase. The solid curves give the relative permeability
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values when the saturation s is monotonically increasing from 8yq. We will call such curves the
primary curves. When the aqueous phase saturation decreases, the relative permeability will be
smaller and follow the dashed curves. We will call such curves the secondary curves. When the
saturation increases again, we will assume that the relative permeability will trace back the secondary
curve until it meets the primary curve, then will follow the primary curve.

We will parameterize the secondary curves by the symbol «, which we will refer to as the hysteresis
parameter. The primary and secondary curves are denoted by krj(s) and k%;(s,7), respectively,

where j = a,l. Thus we have

kr; ifs=m,0i8>0
krj ={ 1(3) iU 8=1m,01 ’ j=al (7)

kk;(s,m) otherwise,
With the above forms of the relative permeability curves, the fractional flow function F takes the

form (2) with

bl)
kra(8) + kri(s) p(c)’

kfa(s, )

f(s0) = kb (8,7) + kPy(s,) p(c)’ R

h(s,m,c) =

Figure 2 shows typical fractional flow curves.
Note that since the polymer will increase water viscosity, the ratio p = p(c) is an increasing
function of ¢. This implies that the fractional flow function F is decreasing with respect to c.

Physically, this means that adding polymer will increase the oil flow rate which is equal to 1 — F.

3. THE MATHEMATICAL DESCRIPTION OF THE MODEL

in this section we present the mathematical assumptions and properties of the relative per-
mea!;ilities and hence the flux functions. Accordingly, we will analyze the hyperbolicity of the
system of conservation laws (1). Let I = [0,1], I, = [8rs,1 — 8] and I = (8x,7], Where
8y = max{s : h(s,m,c) = 0}. We will assume that the relative perme#bility curves satisfy the
following c;onditions, as shown in Figure 1:

Al. kyj(s) € C*(1,), kP;(s,m) € C*(I,) in s and € C'(I,) in m, where j = a,l;

A2. kPi(s,8) = krj(s), Vs € I, j = a,];

A3. k., >0,k >0,k ,<0and k> 0,Vs€l,;
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A40 0,’6".‘“ > 0, 81rk',-l“ < 0, 0,,’0:.", > 0’ a‘k:.l‘ < 0’ awk:.‘l > 0 and a‘.k".ll > 0 in Ig X I.;

Ab.

A6.

k.o (8ra) + #(c) kuy(8ra) < 0 and kyo(L = 851) + p(c) kpy(1 — 871) 2 0, Ve € I

O3kt (8x,7) + u(c) BskPi(8x,7) <0, Ve E L

Assumption A5 is a sufficient (not necessary) condition for the primary fractional flow function,

f(.,c), to be convex in a neighborhood of s = s., and concave in a neighborhood éf 8=1-s,.

This implies the existence of an inflection point of f.

We assumed O.k?, < 0 and 0-k% > 0 so that the secondary relative permeability curves are

disjoint for distinct values of 7. Assumption A6 is a sufficient (not necessary) condition for the

secondary fractional flow function A(s,r,c) to be convex in some neighborhood of the irreducible

saturation sy.

With direct examinations of the derivatives, the above assumptions imply the following properties

for the flux functions f and h as shown in Figure 2.

P1.
P2.

P3.

P4.
pPs.

P6.

f(s,c¢) is a C? function in I, X I, and f(8r4,¢) = 0 and f(1 - sp,¢) =1, Ve € I

8,f(s,c) >0 and 8. f(s,c) < 0in I, X I}

For each ¢ € I, there is an inflection point, s’ = 87(c) € (8ra,1—8y1), such that 8,, f(s,¢) > 0
for s < s7;

h(s,=,c) is a C? functionin s € I, C' inw € I, and C?* inc € I;

h(sx,m,c) = 0 and h(s,s,c) = f(s,c) for each m,s € I, and c € I

8,h(s,m,c) > 0, 8xh(s,m,c) < 0 and Och(s,m,c) < Oin Ir x I, X I
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P7. 845h(sx,m,c) > 0, for each c € I and 7 € I,, and h has at most one inflection point s¥(m,c),

for s € Iy

P8. 8,f(m,c) < 8; h(m,m,c), for each c € I, where 8; is the left derivative.

Note that the assumptions on relative permeability curves imply existence (property P3) but not
necessarily uniqueness of the inflection points of f. However, for most applications, experimental
data indicates that the fractional flow function does not have more than one inflection point. There-
fore, for each ¢ € I we will assume that s¥(c) is the only point of inflection, and consequently, f(.,¢)
is convex in (sra,s7(c)) and concave in (s7(c),1 — 8-1).

Property P8 implies that the secondary fractional flow curves for a fixed c are disjoint for distinct

values of 7. Also, it implies that for a fixed = the curves are disjoint for distinct values of c.
Unlike the primary fractional flow function, f(s,c), assumptions on kh,(s,7) and kP (s,7) do not
guarantee the existence of inflection points for the secondary fractional flow function, h. Moreover,
the assumptions do not guarantee the uniqueness of such points for the cux;ves of h, as for f. The
— assumptions only guarantee Property P7 which implies that all the curves of h are convex in some
neighborhood of sx. We will assume that for each ¢ € I and 7 € I,, h(s,7,c) has at most one

Unﬁection point, s'(m,c), for s € Ir.

For the primary flow, system (1) can be written in the quasilinear form

o |l a0, |l =0, a=|® . (9)
c c 0 f/s

Since the eigenvalues of A are real, the system of conservation laws is hyperbolic, and has t".he two

characteristic speeds and the corresponding eigenvectors:
1 8
=0, m=| |, A,:if-, rp = 1, (10)
0 8 Ap =X

The characteristic speed Ay is the Buckley-Leverett rarefaction wave speed, which is equal to the

slope of f. The second characteristic speed, A, is the aqueous particle velocity, which is equal to

the slope of the chord from the origin to the fractional flow function.
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FicURE 3. Tangential states.
If the flow is secondary, F = h(s,m,c), then the system of conservation laws (1) can be closed by

adding the constraint ;7 = 0 and written in the quasilinear form

s 8 O,h O.h Bnh
O jc|+48: [c|=0, A=|o0 n/s o0]. (11)
T T 0 0 0

The characteristic speeds and their corresponding eigenvectors are

1 Och Oxh
h J
Abs = 85, T4, = |0 ) Apl = ;’ Tps = Apl =dafr Ax=0, 1= . 0 (12)
4] 0 =Abs

Note that all the characteristic speeds are non-negative. This implies that all the‘wave faﬁxilies
are either stationary or traveling to the right.

For the border states u = (m,w,c), we define the Buckley-Leverett characteristic speeds by:
Ap(mym,¢) = 8, f(m,c) and Ayy(m,7,c) = 6] h(m,7,c). The type of the flow (secondary or primary)
determinés which velocity is to be used in determining the Riemann problem solutions.

Note that for a given ¢ the Buckley-Leverett and particle velocities might coalesce as shown in
Figure 3. However, this is not always the case as shown in Figure 4. We let w**"(c) and u'*"*(,c)
be the states such that Ay(u!*™) = A, (u'*") and Abs (u'®™) = A, (u'®™*). For the fractional flow

curves described above we have the following results.

Lemma 3.1. For each ¢ € I, f(.,c) has at most one tangential state u'*"(c). If such a state exists,

then Ay(s,c) > Ap(s,c) for spa < 8 < 3'%"(c) and Ab(s,¢) < Ap(s,c) for st*n(c) < s.
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FIGURE 4. No tangential states.

Proof. Note that by definition, the tangential states u!*™ are the solutions of the gquation Ay —
Ap = 0,f — f/s = 0. Given c € I, let g(s) = 50, f(s,c) = f(8,c), for 8 € (8ra,1 — 8,1). Since.
g'(s) = 88..f(s,c) and f(s,c) is assumed to have a unique inflection point u/ = (s7(c),c), g(s) has
only one local maximum at s7 in (spq,1 — 8,1). Therefore, g = 0 can have at most one solution since
9(8ra) > 0. This proves the uniqueness because any s*o» is‘ by definition a solution of g = 0. The

second part follows from the observation that g changes from positive to negative at s = gto®, [

The next lemma shows for which values of 7 the tangential state 4**™* might exist.
Lemma 3.2. For a given c € I and 7 < 5'**(c), A, (8,7,¢) > Apa(8,7,¢) for s € (8, 7).

Proof. For a fixed c € I and 7 € (854, 8"*"(c)), let g(s) = 8 0,h(s, 7, c) — h(s, ,c). From Property P7
of the secondary fractional flow curves, we have g'(sx) = 8x 8,4h(s4, T, ¢) > 0. In addition, g satisfies
the following inequalities:

9(8x) = 8 Osh(sn,, c) >0,

(13)
9(r) = 767 h(m,7,c) = h(m,m,c) > 78, f(m,c) — f(m,¢) > 0.

From those inequalities and the assumption that & has at most one inflection state, it follows that

g is positive for s € (sx, 7). This proves the result. [J

The above lemma implies that the tangential state, u!*™* = (s**"*(m,c),m,c), may only exists if

7 2 $'"(c). The following lemma is about the uniqueness of u!%"s,

Lemma 3.3. Given c € I and m > $'"(c), there exists at most one tangential state ubt(r c) =

(s'*"¢(m,c),m,c), 8ra < 8197 < 7.
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Proof. As in the proof of Lemma 3.1, the result follows from the uniqueness of the inflection point

ofh. O

In the above proofs, note that the uniqueness of the tangential states follows from the uniqueness
of the inflection points. However, this does not guarantee their existence. In this paper we will
assume the existence of u‘*" but not necessarily 4**™*, However, if for 7 > 8'a" the state u!*™* does

not exist we have the following lemma.

Lemma 3.4. Given ¢ € I and ™ > 5'"(c), if there is no tangential state u'e™® then the state

u™ = (m,m,c) satisfies

(o (™) = Aps ()] (w™) = Ap(u™)] < 0. (14)

Proof. Again, for fixed ¢ and 7 consider the function 9(8) = 88,h — h. By assumption, g =0 has
no solution for s € (s, 7). But g(s,) > 0 and g'(sx) > 0. Therefore, 9(s)>0for sy < s <m By
continuity, this implies that g(r) > 0, and thus the first bracket in the inequality (14) is non-negative.

The second bracket is non-positive by Lemma 3.1. This proves the result. O

To summarize, for each ¢ € I we assume that there exists a state 4" = (8'"(c),c) such that
Ap(u?®™) = Ay (ut®™). Moreover, for eachc € T and 7 € I, if w < 8'*(c) then Ay, (u) < A, (u) for all
u = (8,m,c) with s < 8 < 7. If 7 > 5'*"(c), then either there exists a state 'u.“‘"" = (#'*™(m,c),,c)
such that A,, (u**™*) = Ay, (u'*"*) or the state (r,, c) is a transitional state across which the relation
between the two speeds is reversed. Both states 4!3® and 4!%" are unique.

We will partition the set of all states into the following sets:

P={u:Ap(u) > M(u)}, B = {u:X(u) > A,(u)}, T={u:d(u)= As(u)},
Po={u:Aps(u) > Apu(w)}, B, ={u: Aoa(v) > Apa(u)}y T ={u: Apa(u) = Apa(u)}.

Those sets will be used in characterizing the different cases for the solutions.

4. WAVE FAMILIES

In this section we will determine all wave families associated with the Riemann problem (1)-(3).

Those wave families consist of the elementary waves: rarefactions, shocks and contact discontinuities.



POLYMER FLOODING MODEL WITH HYSTERESIS 11
To find all the‘possible waves we need to examine the nonlinearity of the characteristic fields, the
conditions for discontinuities and the integral curves of the characteristic eigenvectors.

For the nonlinearity we need to check the projection of the characteristic speed gradient into the

corresponding eigenvector. For our problem we have
VAp Ty = V'erpo *Tps = Vade 12 =0, VAp mp = 8uf, Vi Aby 7o = Oush,

where V = (9,,8;) and V, = (8,,0.:,8+). Consequently, the p-field, ps-field and =-field are linearly
degenerate and therefore the corresponding families consist only of contact discontinuities. On the
other hand, due to the inflection points of f and A, the b-family and bs-family are not typically
genuinely nonlinear. We expect both families to c'onsist of rarefactions and shocks.

As we know, any discontinuity solution of speed o must satisfy the Rankine-Hugoniot conditions.

For the primary flow those conditions take the form

R _ ¢L §R — b
-1 = o. (15)
cRfR _ cLL cRgR _ oLgL
One solution for (15) is ¢ = A, = f/s. Another solution is determined by taking ¢ to be constant
and o = (f]/[s], where [.] denotes the jump of the argument across the discontinuity.

For the secondary flow, the Rankine-Hugoniot conditions take the form

h® — pL sR — gL
cRRR — cLhL| = |cReR ~ cLgl| 0. (186)
0 R — gl

The conditions in (18) have the three solutions:
(1) o = [A)/[s] and ] = [x] = 0;
(2) 0 = Aps = h/s and [x] = 0;
(3) c=0and [h] =[] = 0.
To search for rarefactions we need to consider the integral curves of the eigenvectors ; and r,.

The integral curves of 73 are the curves where ¢ is constant. Similarly, the integral curves of r;, are

the curves where ¢ and 7 are constant.

Accordingly, the wave families for the Riemann problem for system (1)~(3) can be classified as

follows.



12 KHALED FURATI

Rarefaction 7 - [T / r
z s | Convex. ..
o 7 SR o Hull
- Y 4 A - I Shock
c o ; 5[
k=] Shock B R §
B A QO .0 o
@ '.. Concave E

Hull
RO/ "y .-/ Rarefaction
Saturation Saturation

FicurE 5. Concave and convex hulls.

b-waves and bs-waves. The two families correspond to the characteristic speeds Ay and A, re-
spectively, and consist of rarefactions and shocks. Note that cis a Riemann invariant of both families
and 7 is a Riemann invariant of the bs-family. ,T‘hus, from the solutions of the Rankine-Hugoniot
conditions, the wave curves for the shocks and rarefactions of both families are identical. The b-
family curves are the ones along which c is constant. The bs-family curves are the ones along which
both ¢ and 7 are constants. As a result, both families can be considered as solutions of the scalar
equation 8;3+ 8, F = 0, F = f, h.

To distinguish the physically meaningful shocks, we need to impose an entropy condition. For our
purpose, a shock is considered admissible if it satisfies the Oleinik condition [11] for scalar equations.
This condition requires that

F@uR) - Fu) _ _ F(u) - Fub)

Ry TS TR ()
for all s between s and s®. In other words, the chord from (s®, F(uR)) to (8%, F(ul)) must lie
above the chord from (s%, F(u®)) to (s, F(u) for any s in between.

Since Aboth families are not genuinely nonlinear, the solution may consist of a combination of
a shock and rarefaction. For the rarefactions, the characteristic speeds should be monotonically
increasing from left to right. This monotonicity and Oleinik condition are equivalent to constructing
the concave hull for s© > s® and the convex hull for s < s® as shown in Figure 5. A straight line
segment represents a shock and a curve segment represents a rarefaction. The shock speed is equal

to the slope of the straight line.

In petroleum engineering literature, the above solutions are usually explained in terms of Welge
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tangents [3, 14]. The Welge tangents are equivalent to the Oleinik chords for such problems.
We will use k-wave, k = b, bs, to denote a k-shock, k-rarefaction or any consecutive combination

of them. Note that to have a b-wave we must have s¥ > s® so it corresponds to a primary flow.

p-waves and ps-waves. The two families correspond to the characteristic speed A, and Ap,, re-
spectively. The two families are linearly degenerate and consist of contact discontinuities since A,
and )p, are Riemann invariants.

The wave curves for the p-family are thé curves ¢ = c(s) along which ), is constant. The slope
of such curves depends on the relation between ), and A, since dc/ds = (A, — M)/ fe. The same
argument is true for the ps-family curves ¢ = ¢(s, 7).

The states u? = (s£,c%) and u® = (s%,cR), s¥ > s%, can be connected by a contact discontinuity
if Ap(ut) = Ap(u®) and they both belong to either PUT or BUT. The last condition is to fulfill
the generalized Lax’s entropy condition [7] which requires that exactly one of the b-characteristics

leave the discontinuity. With 7% = 7®, similar results are true for the ps-family.

st-waves. This family consists of stationary contact discontinuities satisfying Rankine-Hugoniot

conditions with speed o = 0. Across this discontinuity, [} = [¢] = 0.

5. GLOBAL SOLUTION OF THE RIEMANN PROBLEM

The global solution to the Riemann problem can be constructed graphically using the wave
families mentioned above. The uniqueness of the solutions can easily be verified by imposing the
compatibility condition, i.e. the initial speed of each wave is greater than or equal to the final speed

of the preceding wave. We will start with the following remarks.

Remark 1 (Notation). Although the problem during a primary flow is independenf of the history
parameter 7, we will write any state u = (s,c) as u = (8,8,c). Thus, for primary and secondary
flows we can let uZ = (sZ, 7%, c?) and u® = (s®, 7%, c®) be the left and right states of the Riemann
problem. For the rest of this paper we will use h(s,3,c) to denote f(s,c). For-simplicity, we will use

he to denote h(u®) and A* to denote A(u®). Moreover, we will use %, to denote a k-wave.
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Remark 2 (Reduction). For any given two states uf = (s¥, 7%, L) and u® = (sR R, cR) let w9 =

(n®, 7R ). Accordingly, there are two cases as shown in Figure 8. If A9 > hZ, then thereis a

unique state u4 = (s4, 7%, cl) such that h4 = AL, and u’ can be connected to u4 by a stationary
wave ul =2 u4, Otherwise, there is a unique state u” = (8%,8P,c), 8P < 8%, such that h? = AL -

and 4% can be connected to u” by a stationary wave ul 2 uP, Thus, the problem can be reducec*:

to solving either for u” = (s%, 7%, c) or u = (s%,4%,c%), n® < sZ, for any arbitrary u®

To account for all possible cases, we will treat three different cases separately: c£ = c®, ¢f > ¢R

and ¢ < c®. Solutions of the Riemann problem will be composed of compatible sequences of the

st-waves, bs-waves, b-waves, p-waves and ps-waves.

8. THE CASE c* = ¢® (BUCKLEY-LEVERETT EQUATION WITH HYSTEREsIS)

When ¢ = ¢®, the system (1) degenerates to the Buckley-Leverett equation and the solution will
consist of b-waves and bs-waves. For this special case we will omit the concentration argument and

write any state u as u = (s,7). From Remark 2, we only need to consider the following two cases.

1. u? = (sL,7R). In this case, u¥ and u® lie on the same secondary curve h = h(s,7®). The
solution is a bs-wave determined by the concave hull if s® < s or by the convex hull if s® > s&,

- Thus, we have the wave u” 22, uR across which 7 is constant and is equal to &, See Figure 7 for

the case s® < s%,
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FIGURE 7. Solution for ¢* = c®, 7% = #® and s& > &%,
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FicUure 8. Solutions for ¢’ = ¢® and 8% = xL > =R,

2. uP = u(sl,s*) and 7% < s, Consider first the intermediate states u = (s,8), 7% < s < 8.
The left state u” can be connected to any of those states by a unique b-wave determined by the
concave hull of the primary curve joining the two states. In particular, for the state (7%,7%) we
have the connection uZ —>» (7%, 7R). On the other hand, the state (v®,7®) can be connected
to the right state u? by a unique bs-wave determined by the concave hull of the secondary curve.
Thus, we have (7%,7®) 2% 4R, If the final speed of the b-wave is less than the initial speed of

the bs-wave, then the two waves are compatible and can be composed to give the unique solution
) : t

L

uk 2 (rR,7R) 22, 4R as shown in Figure 8a. Note that, in this case, the union of the two

concave hulls is also concave. Otherwise, we need to construct the concave hull of the unjon of the

two hulls as in Figure 8b. The saturation s satisfies

1) = LI Man) - 18)
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Fractional Flow

Saturation
FIGURE 9. The state u¥ and the intermediate states.

Thus, the solution starts with a rarefaction from w” to 4™ along the primary curve, followed by a

shock to u®. This shock is actually a composition of a b-shock and a bs-shock traveling with the

same speed.

7. THE CASE ¢ > ¢R

Considering the left state u? = (s£, 7L, ck), it is enough to soive for the following two cases as

pointed out in Remark 2.

7.1. The Case n’ = n®. The different possibilities for this Riemann problem are listed in Table I.
Note that when u’ € B, UT,, u® € P, and vAf,‘, = /\ff,, the solution is not unique in the state space
but it is unique in the physical space. Similar non-uniqueness occurs when u% € P., uf € P, and
AR = AL, where uT = (sT,7R,cL) € 7, is the tangential state as in Figure 3. Moreover, both
special cases are examples of solutions that are not pointwise continuous with respect to the initial

data but continuous in L' norm. Note also that all the flow is secondary for all different cases.

7.2. The Case s = n’ > xR, With such initial conditions, part of the flow is primary and the
other is secondary. This is because the saturations of some intermediate states exceed the history

parameter m = &, Consider the following two cases listed in Table II.
€ BU 7. As shown in Figure 9, there are two possibilities for uZ with respect to

Case 1: ul

F R

u’ = (w®, 7R c®). For both, any compatible sequence consists of a contact discontinuity leaving

the left state followed by a b-wave or a bs-wave.
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I ol = (sf,7R,ch) €

L I
B eP,UT, i =
PsUT, 3 AL, = A,
and ps ps ‘
AR <AL i
LA 9 LNV O LN R
i® ’
uL EBaUT; -]
, y
WR € B.UT, N ul = (sT, 7R, cR) € B,
9 L
I [
or 3 A, = AZ,.
AR > 2L ,
PETUR |yl B 1 b R I -
KRV'
A1 yT = (sT,7%,cb) € T, as in Figure 3.
[+
4
A ol = (sf,7R,ch) € —~— N
weP,UT, B
a,nd P'UZ9A£‘=A,}3‘.
AR sAT
PR b e : :
. Ll
uL € P, i ' &
-]
AN ul = (], 7R,cR) € B, r . L
uReB,UT, 3,\£_=,\g", .
or
AR SOT, b 2o, T 22, 0 e
R I R
uk >

=

TaBLE I. Solutions for ¢f > ¢® and 7% = 7R,
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The intermediate states are as in Figure 9.

c
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u
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¥ ]
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y
T A L
. O —)
ut = (nR, 7R, L),
3T S.n.R
ul 4 uh Section 7.1 uR _
R
8
‘HR
[+]
y
T F T L
Ap 2 )\P
ulep
[ b
WAL S I - B
Oemasann—
LR 3
=X ]
“R
sT > xR .
4
T F T L
Ay <Ay o ]
I
b
ul — T 2, 0 P2
b
ul 24 yR R

=

e ]

TABLE II. Solutions for cL > c® and s = nL > xR,
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FIGURE 10. The states u4 and u3.

Case 2: u” € P. The slowest wave that leaves u’ is a b-wave. How far this wave can be extended
depends on the position of uT = (s7,sT,ct) € T ;vith respect to u®,

If sT < 7R, then both u” and u4 = (xR, xR, c%) lie on the concave part of the primary curve and
can be connected by the rarefaction ¥ —— u4 with final speed equal to A\, Afterwards, u4 can-
be connected to u® as in section 7.1. There, the wave that leaves u4 is either a bs-rarefaction or a’
ps-wave. The initial speed of both waves is greater than or equal to A{. Thus, the whole connection’
is compatible.

When sT > x®, 4T considered as the left state, can be connected to 4% as in Case 1 in which
the initial speed of the p-wave leaving u7 is equal to /\g'. Moreovér, u% and 4T can be connected :

through a b-rarefaction. From the definition of u7, the two waves are compatible. '

8. THE CASE cF < c®

Considering the characteristic speeds at the right state, we treat the following two situations

separately.

8.1. The Case u® € P, UT,. As shown in Figure 10, for a given c”, the state u® determines
uniquely different states of the same particle velocity. The first one is the state 4 = (84, 7R, c%)
such that A}, = AR and v/ € B,. If AR 2 AL, where uf = (v®, 7R, cL), then there exists a

state u® = (s%,7R, k) € P, such that Af, = AR, Otherwise, there exist the two states u =

(xR, aR,cM) e P, el < M < cR, and uB = (sB,88,ct) € P, 88 > xR, such that AM = AP = AR
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Ficurg 11. The cd-wave.

as in Figure 11.

If AR < AP, consider the case shown in Figure 11. In that case, we consider a left state ul =
(s¥,m%,cP) such that AL, > AR and either 7% = x% or 8% = 7 > xR, Let ol = (sL,88,c%) be the
state such that AL = AL, Thus, uL can be connected to u® by a stationary contact discontinuity
and to uB by a bs-wave along the convex hull with constant 7 = 5. Since u®B lies on a concave
segment, the bs-wave will end with a shock. To have & compatible sequence, we must have the shock
speed less than or equal to )\f. By inspecting the convex hull joining 4% and «5 , this is equivalent
to the condition that /\g‘, > /\;f, and the bs-wave is necessarily a shock. However, when/\ﬁ’, < Af,,
the final speed of the wave ul b, B s greater than ,\f and the above sequence is incompatible.

Figure 11 suggests the following lemma for an alternative connection.

Lemma 8.1. Let a be a given particle velocity. Let ul = (s¥y78,ct) and uP = (sB,4B,cL) € P
be such that AL, > A2 =a. Let ul = (st,5B,cL) be such that hY = KL, Then, /\f;, < e if and only
if there exist the unique states uw’ = (s7,37,¢’), ¢ < ¢’, and ul = (sz,s],cL), ht = AL, such that

/\}I;‘, = )\1{ =a.

Proof. The necessity follows from the fact that we have three conditions for the three unknowns s/,

¢’ and eL. For sufficiency, notice that for such »’ and ul,a= z\£‘, >AL. o

Note that if ul = (s7,s7,¢7) € B, is the unique state for which Aps = AJ,, then u? and u’ can be

connected by a bs-shock of speed ,\}{ . Afterwards, u’ can be connected to uM by a p-wave. Hence,
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the sequence

ub 2L T B8 07 B M (19)

is a compatible sequence that consists of a single discontinuity. For simplicity we will denote such a
discontinuity by v <% 4™, Finally, «M and 4R can be connected by a ps-wave. As a result, we

have proven the following lemma.

Lemma 8.2. Let u® € P, UT, and u’ be such that A5, AL, > AR, Let u¥, uB and uM be as in

Figure 11. If /\f;, > Af, then the solution is given by the unique compatible sequence

¢
ub Ly L 2o, B B, M B2 R (20)

Otherwise, the solution is given by the unique sequence

ul 2 oL 24, M B2, u®, ' (21)
where ul is as in Lemma 8.1 and <% is as in (19).

Note that all the waves in (21) are discontinuities that travel with speed AR. Thus the connection

L

ul — u® in the physical space is just one contact discontinuity. Next, to find the complete set of

solutions we consider the following two cases for the left state.

Case 1: w% = x®, For such left states, there are different possibilities described in Table IIL Note
that in the first two solutions, all the flow is secondary with # = xR, However, when s* > s4
and MY, < A%, any compatible sequence will pass through some intermediate states with larger
n. Solutions for such Riemann problems are given by Lemma 8.2. Note that when sl = 44 and

i

A},‘, > /\f,, the solution is unique in the physical space but not in the state space and is L? continuous

with respect to the initial data but not pointwise.

Case 2: s¥ = nL > 7R, The different possibilities for this case are shown in Table IV. Note that
when AZ, > AJ,, both states u? and u” lie on a concave segment of the flow curve and their
Buckley-Leverett speeds are less than the particle velocities. Hence, both states can be connected

by a primary rarefaction followed by a secondary one with final speed equal to Aﬁ. Thefeafter, a

faster ps-wave will take over to u®.
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TaBLE III. Solutions for c® < ¢®, u® € P, UT, and 7% = =&,
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AR 2

AR <AL

Let v/ = (1rR,1tR,cI),

cLScI<cR,3,\},=

sk < gB

'lI.L at uL bs 'u.B P

’
MML)‘U,R

TABLE IV. Solutions for ¢ < &,

uReP,UT, and s& = 7L > xR,
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FIGURE 12. Solutions for cf < c®, u® € B,, 7% > sto»(cR) and 7L = R,

When A% < A, we need to distinguish two possibilities for sZ with respect to s3. First, if
st > 5B, then u® can be connected to u? with a b-rarefaction of final speed equals to A2. Since
uB € P, any p-wave passes through »® will be faster and thus the two waves are compatible, Second,

if s¥ < 3B, then the solutions are given by Lemma 8.2.

8.2. The Case u® € B,. Unlike in section 8.1, where 78 > s'™(c®), in this section 7® can also
be less than s'**(c®). For the first case the same connections in section 8.1 can be used to connect
u® to uT followed by a bs-wave to u®. For the second case, we need to construct other different
compatible connections. |

To account for all different possibilities, we will characterize the left states according to the

relation between #F and s**"(c®), and some relating states as follows.

Case 1: nR > ston(cR), Let uT = (8'74(w R, cR), n R, cR) if it exists, otherwise let uT = (wR, R cR),

Note that for uZ = (s, 78, cL) € B, such that AL, < A7,, the solution is the same as in Case 1 of
section 8.1 for s¥ < s and shown in Figure 12a. Otherwise, uT can be connected to uZ as in

section 8.1 with »7 in place of u® and to u® by a bs-wave. See Figures 12 and 13 for the different

solutions. =
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F1GURE 13. Solutions for c* < c®, u® € B,, n® > §'"(cR) and &L = 7% > 7R,
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FIGURE 14. The states «T, u?, 47 and uA4,

Case 2: m® < s'**(c®). The solution will vary according to the position of uL 'with respect to
some st;tes associated with uT = (s7,57,c®), 4T = stan(cR), and uf = (7rR,1rR,c“‘). Let u4 =
(s4,78,cb), uF = (58,57 ,c%) and uP = (s2,s0,c") be the states that satisfy: Ay = Al and
Ap» = AP = AT as shown in Figure 14.

Considering the left states with 7° = 7R, we can characterize three different pc;ssibilities listed
in Table V. If A% < hA4, the solution is as iﬁ Case 1 of section 8.1 with s < s4 and the flow
is secondary. When A% < AL < h%, a geometric inspection shows that there exists a unique pair

of states u’ = (s7,57,c®) and u = (s%,s’,cL) that satisfy the two conditions: AL = Al and
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TaBLE V. Solutions for ¢* < ¢, u® € B,, 7% < 59%(cR) and 7L = 7R,
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TABLE VI. Solutions for ¢f < ¢, u® € B,, 7R < s'9"(cR) and s* = 7L > R,

ht = hL, These intermediate states are used-to form the compatible sequence.: Finally, when
h® < hE, let u = (s£,sP,cL) be the state such that kX = AL and the solution can be constructed
as in Lemma 8.2,

Similarly, for the left states with s = x~ > n®, the solutions will vary according to the values

of h* with respect to AZ as listed in Table VI.

SUMMARY

In this paper we studied the effect of hysteresis on the mulnpha.se flow in porous media. We
presented a model for the hysteresis in relative permeabilities and discussed the corresponding frac-
tional flows. The model is based on considering the initial imbibition of the aqueous phase as the
primary flow and any other flow as secondary. We assumed that secondary curves for imbibition
and drainage are identical. We analyzed a non-strictly hyperﬁolié system modeling polymer ﬂooding
with Lysteretic fractional flows and constructed the global solution .for the correspon&ing Rlemann

problem.

Due to the hysteresis and generality of the model, it was not practical to deal with a fixed



28 KHALED FURATI

partition of the state space. Instead, for each case we looked at a suitable criterion to account for
all possibilities. Although many possibilities end up having similar solutions, we did not group them
together because of their different criteria and to make the construction process easy to follow. Our
purpose in presenting the different cases is to provide useful test problems for numerical methods.
Including hysteresis produced more complicated flows. This indicates that hysteresis may effect
the oil recovery efficiency. In a later paper we will verify numerically the solutions above using

second-order Godunov method and present the effect of hysteresis on oil recovery efficiency.
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