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Abstract

In this paper, we shall introduce a new functional series expansion of the
response map of a general nonlinear system, it is a power series in powers of the
input components. We shall illustrate the usefulness of this series by considering
two important problems namely those of realization and systems inversion.
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1. Introduction

Functional expansions of nonlinear response maps have been the subject of ex-
tensive research ever since the work of Volterra {1}, Wiener [2], Brillant (3], and
George [4]. The Volterra series, introduced by Wiener in the 1940’s has played
an important role in the analysis of noniinear systems (Brockett [5], Lesiak and
Krener [6], Sussman [7], Boyd, Chua and Desoer [8], Isidori [9], Sandberg [10],
Banks [11]). In 1981, Fliess [12], using the work of Chen [13] on iterated inte-
grals, introduced an algebraic approach to nonlinear functional expansion: it is
a formal power series in noncommuting variables (see also Fliess, Lamnabhi and
Lamnabhi-Laguarigue [14]).

Recently a new series expansion of the input output map of general nonlinear
systems in powers of the input components was introduced, Chanane and Banks
[15], assuming that the input is a polynomial satisfying u(0) = 0, u/(0) # 0.
The approach used was based on the notion of delta operators and their basic
polynomial sequences developed by Rota et al [16].

In this paper, we shall derive the same expansion using the Lie series and relax

the condition on the input. We shall assume the input to satisfy any autonomous
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nonlinear differential equation with »(0) = 0, «'(0) # 0.

The outline of the paper is as follows, in section 2, we introduce the new
series solution to nonlinear differential equations. This result is used to obtain,
in section 3, thé series expansion for the i/o map of single-input single-output
systems in powers of the input. In section 4, we extend this result td multi-
input multi-output systems and in section 5, we illustrate the usefulness of the
expansion by tackling the problems of realization and systems inversion and draw

some conclusions in the final section,

2. Series solution to nonlinear differential equations

Consider the differential equation

%:f(m)  2(0) =0 2.1)

where f is an analytic function from R" to R". We assume this Cauchy problem
to have a unique solution. We shall present in this section a series expansion
of the solution of the above problem in powers of a given function u : R = R
s;.tisfying the following,

Hypothesis (H1):

() w(©0)=0,4'(0)#£0;



(ii) 3~ : R™ — R analytic such that %'t:,,l.ﬁ = h(u, u',,,,,u(m-l))

Letyr=u, 2=,y = u(m—-l)’ yT = (yly'"’ ym) , we have

d
""'" = (y2, oy Ym; h(yh“-a ym))T (2.2)

Thus,

%(zT’ yT)T = (fl(w)’ eeey f'rf(m)a Y2505 Um,y h(yl, ey ym))T (2~3)

but %’ti = y therefore,

5%(31" yT)T = (fl(z)/yh seey fn(m)/y% 1’ ?13/112» rery ym/?h, h(yl, seey ym)/yZ)T

(2.4)
whose solution can be obtained using the Lie series approach as
o) = exp{urpn}(? (2:5)
, v expulygn I( ) (so) .
where
m-—1
Lin = —[Z ft(“’)"“' + Z 3/1+1 + h(y)z— Bym ] (2:6)
2 =1 J=1



since '(0) # 0 in the neighbourhood of 0 , y2 # 0 . Define

z[ol =2 R m[k] = Lf'hx[k—ll (2.7)

so that according to (2.5)

uk
z=3 'k'j'“’|[tio (2.8)
k20

We also take the following hypothesis
Hypothesis (H2):
3a, p > 0 such that ||m{f]=0|| < pafk! k>0and [ul] <1

to conclude

Theorem 2.1. Let u € C™(R) satisfy hypothesis (H1). If hypothesis (H2) is
satisfied then the solution to the Cauchy problem (2.1) can be expanded in a

uniformly and absolutely convergent series (2.8) and [lz]] < ﬁ&eﬂiﬂ

Example 2.2. If u satisfies a second order differential equation, we have,
""{?.]-.-o = %o
2o = {L7pe % emo = L f(2)pm0 = gy f(20)
Thieo = {L1alE (@m0 = {E1E @) — B F(@)h(u1,82) Hemo

= Wf(mo)f'(mo) - W‘(%H&f(‘vO)h(o’ '(0))

etc...



so that,

2
u
T = w{?_]__,o + um}ﬂ__,o + —éTw{fLo + o (2.9)

Remark 1. It is clear from the fact that the approach needs only differentiations
and functions evaluations that we can generate as many terms of the series as

desired using any symbolic mathematics package (maple, mathematica,...)

Remark 2. This expansion reduces to the Taylor series expansion of = around

t = 0 if u(t) = ¢ since h in this case is defined by h(u)=1.

3. Input-output map for single-input systems

Consider the nonlinear system described by

£ = f(z,u) z(0) = zo 3.1)
z = g(z)
where 2(t) € R" for each t > 0 and suppose that f and g are analytic functions
from R™ x Rto R"and R" to R respectively. Suppose that u , the input,
satisfies Hypothesis (H1) of the previous section. Assume that g satisfies the
inequality llg(x)l] £ G(l|z]]) for some analytic increasing function G.

Turning u into a state as usual, by letting y; = u, and the y ’s are defined as

in section 2, we obtain,



d
E't'(wT) yT)T = (fl(z’ yl), vesy fn(‘v) yl)’ Y299 Ym, h(yla vesy ym))T (3-2)

but%:yg,so

%(GJT, yI)T = (filz )/ v2, ---,fn(ﬂﬂ,?/lj/yzy 1L, 43/Y2y oves Ym /Y20 B(Y15 oy Y ) [ 2)T
(3.3)

whose solution can be obtained as in the previous section, using the Lie series, as

T z
( y) = exp{uly} (y) IE)=(22) (3.4)
where this time,
1. g = 98 9
Ly = — Wz, )= 41 = + h(y)=— 3.5
Lk y2[§f (:B yl)am‘_ + Z}l Yi+1 ayj + (y)aym] ( )

so that (2.8) still holds, where the z[*] are defined as before and satisfy hypothesis
(H2).
Returning to the output equation in (3.1), we may expand g in a Taylor’s

series around zo and get,



g(z) = g(zo) + Egp(wo)(z —~ L0y .0y T — Tq) (3.6)
p21

where g,(20)(., ...,.) are p-linear maps. Replacing z by its expansion in powers of

u yields, corresponding to (2.8),

um
2=y —.-z'[:';lo 3.7

where

Tt ks tothpmm (kl;'ffkp)gp(xo)(:c[kll,...,z[kpl) ifm>1
2im] — ki yennkp21 (3.8)

gz ifm=0

Theorem 3.1. Let u € C™(R) satisfy hypothesis (H1). If hypothesis (H2)
is satisfied then the input-output map associated with the system (3.1) can

be expanded in a uniformly and absolutely convergent series (3.7) and [lz]| €

G(=amy)

4. Input-output map for multi-input systems

Consider the nonlinear system described by



K=fzu) , 20 =2 (1)
z = g(x)

where z(t) € R" for each t > 0 and suppose that f and g are analytic functions
from R” x R" to R" and R" to RY respectively. Assume that g satisfies the
inequality ||g(z)]] < G(||z|]) for some analytic increasing function G. Suppose
that u: R — R" , the input, satisfies the following

Hypothesis (H1’):

() uw0)=0,v'(0)#0

(ii) 3 A : R™*" — R" analytic such that %5% = h(u,u’, ...,u(™"1)

Let yy = u, g2 = 0y ey ym = v T = (47, ...,yT) , we have

'J{ = (yg,--"yaahT(yl,“w ym))T (4.2)

Thus,

d
:ﬁ(zT’ yT)T = (fl(x: yl)a ---,fn(wa yl)’yg, '--serr‘uhT(yl’"-)ym))T (4.3)

but %’;‘- = ¥, therefore,



0
%’f(mTy yT)T = (fl (xa yl)s eesy fn(z’ yl)a y;, sery ys;a h(yh seey ym))T/I/!j (404)
J

for j = 1,...,7, whose solution is given by

z _ r '
(y) = exp{fi‘: “J'Lf,h,j}(y) I2)=(:2) (4.5)
where
1.& 9 m~1 F] 0
Lep:= — (2, 01)=— RNy Y1) 4.6
hi = [gz:lf(a: yl)b‘w; + kz.—.:x Yrt1 g + (U)aym] (4.6)
80
U
*= L m ulmd g (40

and if the vector fields are commuting this expansion can be rewritten as

1
r = }: -—Ia-axux (4.8)
K30

where K = (ki,...,k,) is a multi-index, ¥ = u'{‘...uﬁ' s KV = kb, u =

(u, ...u,)T, ax € R™ for each K. A similar expansion holds for z,



1
z= E "]}TCK"K (4.9)
K20

where cx € RY for each r-index K

Theorem 4.1. Let u € C™(R) satisfy hypothesis (H1’). If hypothesis (H2)
is satisfied then the input-output map associated with the system (3.1) can

be expanded in a uniformly and absolutely convergent series (4.9) and ||z]] <

Glr=m)

5. Realization and Systems inversion

From the very nature of the expansion introduced, two important problems can
be tackled, namely, the realization problem and the problem of the inversion of a
nonlinear system. Alternative approaches can be found for example in Jakubczyk

[17] , Sontag and Wang [18] and Hirschorn [19] respectively.

5.1. Realization

In the following we shall solve the problem for single-input single-output system.
Shppose that a pair of input and output (u, 2) is available. We shall assume that
these functions are differentiable.

Now, recall Teixeira’s extended form of Burmann’s theorem , Whitaker and
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Watson [20},

Theorem 8.1. Let f be a function of 2 , analytic in a ring-shaped region A,

bounded by an outer curve T' and an inner curve ¥ . Let @ be a function of z

analytic on and inside ' and have only one simple zero a within this contour.

Then for z € A , we have

f@) =3 An{0@)}" + 3 - Bn

n>0 ' n>1 {0(3:)}“

where

Ag = f(a)
An = gk fo fmdz,n 2 1
m;f {0()}*f'(2)dz,n > 1

Therefore, we have the expansion,

zZ= % uk
k>0
where
% | , k
ap =
LT
SO o 5 k21
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From the uniqueness of the power series representation, we obtain the following

realization result,

Corollary 5.2. The coefficient of the same powers of u in the two series (5.3)
and (3.7) must be equal, that is

dlo=ar  , k20 (5.5)

Now, to get a realization in the form of (3.1), we proceed as follows. We

assume first that the output map is given by

z=cz ) (5.6)

where for simplicity we take ¢ = (11 ... 1). Then, solve

o=, k20 (5.7)
for zo and f ,where z[¥] are given by (2.7) and (3.5).

Example 6.3. If u satisfies a second order differential equation, we have,
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(0]

wltzo =T
mﬁio = {Lspa} g = L f(z, 1m0 = ot/ (20,0)
2w = {L1AlE F() Ym0 = {E1E F@, 1) 8 — & 529051, 10) emo

= /20, 0)f (20,0) = s £z, OR(0, (D))

etc...where we have made use of the condition u(0) = 0.

Thus,

CTo = Op

cﬁ'ﬁ)’f(mﬂa 0) =oq
[y £(20,0)f"(20,0) — prdiy £ (30, 0)h(0, w/(0))] = ez

etc...from which we get sufficient information to determine zo, f(%0,0), f'(z0,0),
etc... to within n — 1 parameters each. Hence, zo and f(z,u) (see [21] for an

alternative approach).

5.2. Inversion of nonlinear systems

If we assume the system at hand is single-input single-output, we can immediately
obtain a result concerning the inversion (compositionwise) of the system by just

considering the inversion of a power series
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expansion of the input-output map of general nonlinear systems in powers of
the input components. We have illustrated the usefulness of this approach by
considering two important problems, those of realization and systems inversion.
In a future paper, we shall develop further these ideas and present some symbolic
algebra tools to overcome the computational burden involved when dealing with
nonlinear systems.
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