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1. Introduction

The theory of optimal control of nonlinear systems has always been an active area
of research [2,4,8,9,10,11] to cite a few. However, the methods used led to difficult
computations. In a recent paper [5], we solved successfuly and in a simple manner
‘the bilinear quadratic optimal control problem. The idea was to transform the
original optimal control problem in;co a recursive optimization problem, so that
at each step we obtain a term of a series representation of the optimal control
and a term of the corresponding series representation of the optimal state, i.e.,
U= Ykso Uk » T° = Lgso 2k - These series were shown to be absolutely and
uniformly convergent on [0, T], for any fixed but arbitrary T > 0, to the solution
of the original problem.

Continuing our effort to provide an effective mean to compute the optimal
control, we propose , in this paper to generalize the results in [5] to the optimal
control of nonlinear systems.

The outline of the paper is as follows, in section 2, we shall derive a functional
series representation of the state in terms of the functions involved in the series
representation of the input. We shall prove that if the series representation of the
input is absolutely and uniformly convergent so is the seriés representation of the

state. In section 3, we state and solve the optimal control of nonlinear systems.




2. The functional expansion for nonlinear input-output maps

In this section, we shall present a functional expansion for nonlinear i/o maps
suitable for the computation of the optimal control.
Consider the nonlinear system defined by,
& = f(z,u) , te[0,T) 1)
z(0) = zo
where f is an analytic function from R? x R? to R? such that f(0,0) =0, u is
an p-dimensional input vector and z is an g-dimensional state vector.
We shall use Adomian’s decomposition method [1] (see also [5], [6],[7]) and

seek a series expansion of the state of (2.1) in the form,

z(t) = > 2l"(2) (2.2)
n>0
while
u(t) = 3" uf(z) . (2.3)
k>0
Thﬁs,

flz,u)= OO [, E ultl) = Fo(2) + Z Fr(2 ... glm] 40 qfm=1]y

n>0 k>0 m>1
(2.4)



where,

Fo(=P)) = £(21,0)
) Fr(2l) ... 2lml; 0] ylm=1]) = (2.5)

E?:l Ek1+...+k,=m fp(x[olao)(x[klla u[kl—ll; ooy x[kp]a u[kp_ll)v m2>1
\ k121..kp>1

where the fp(a:[°],0)(., s} -3 +y+) are the p-linear maps appearing in the Taylor’s

series expansion of f around (z!%,0),

f(z,0) = (20,00 + 3 fo(21,0) (z = w552 - 2 w)  (26)

p21 p—times

Remark 2.1: The F,, are polynomials in xll], ...,x[m],ulol,...,u[m'll, m 2> 1.
Going back to (2.1), replacing z, u, f(z,u) by their respective series expansions,

we get,

L3 0l = Ro(el) + 3 (@, ol o, ulm) (27)

n20 m21

We shall define the sequence {:c["]}nzo by,

$20 = f=l,0) ,  2l0) = 2o

A

Lalmtll = B (200, 2l 1] g0 ylm]), (2.8)

zl™+1(0) = 0,m > 0



We shall make the following assumption,
Assumption A: |
@ IBI<A
(i) 3Ly > 0/ |f(z,u) - TG Bl < Cile =T+ Colu—Woa| , 12 Li+1
where Z; = ! _o 2l and 7 = 4 ol
(i) p=pC1 < 1
The inequality in (ii) is due to the analyticity of f(z,u).

We claim the following theorem:

Theorem 2.1. Let u € L*[0,T, R?] such that it can be expanded in a uniformly
and absolutely convergent series as k30 ulkl. Let assumption A be satisfied.
Then the state  of the system (2.1) has an absolutely and uniformly convergent

series representation 3,5 2" whose terms are computed recursi vely using (2.8)

and (2.5).

Proof. That the sum ¥, 2[" is the solution to (2.1) is trivial. What remains

to be proved is the fact that the series 3,50 z[™ is uniformly and absolutely
convergent when 3.5, ul¥ is.
Let 21 = 2 — Z; . We have,

d

-1
74 = flz,u) - ZF, , z2(0) =0 (2.9)

=0

A straightforward application of Lemma (2.1)[5] and Gronwall’s Lemma to-



gether with assumption A, will yield the result (proof follows along the lines of

the proof of theorem (2.1)[5)).

3. Optimal control of nonlinear systems

In this section we shall consider the optimization problem

T
minJ =: h(z),_. +/ g(z,u)dt (3.1)
U -JO

subject to the constraint (2.1), where h and g are any convex analytic functions.
Let J; denote the value of the cost functionnal when z is replaced by 7, and

u by 7 that is,

T
Jp =: h(TH'I)I::T +[J g(TH_l,ﬂ[)dt (3.2)

Suppose that the optimum values uldl vy " and the corresponding 2] vyl
have been obtained from the minimization of Jp, <y J1-1 With respect to u[O], ey ull=1
(under the corresponding constraint) respectively. We shall seek the minimum of

Ji with respect to ul7 sub Jject to the constraint

dew[l-H] = Fl+l(x[olv ~'-,$[l+1], u[OJ’ ""u[l])’ (3 3)
el+1(0) = 0,7 >0

We have,



Fipa(@l9, . o0 gl = gf(mIOI,O)x[I+11 + g_i(m,mum +Byr, 020

where,

+1
Far=) ¥ S 0@, ula; bl glk-1)
p=2 k1+...+hp=i+1 ’
k121..kp2>1

Fy,, is independent of 2"t and wull .

The Hamiltonian of the problem is

0 0 2
Hy = 9(@is1, W) + M (5L (%,0)e+) + 2L (510,000 4 )

du
therefore, the necessary conditions for optimality are,

9 9 AT
g 1=0 st =0

together with the boundary condition

oh
A = o-@)  at t=T

which read,

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)



8 8
5%@Hﬁo+ﬂ3§ﬂ%m=0

d d\T
a—Z('sz,m) + )\1 ( ol 0) + '““I" =0

- Therefore, locally, around (z;,%;-; ), we have

ull = Ry %wﬁﬂ“”+( (mMo»TA}

d\;

ﬁ=4 2L (219, 0))7, - Qualt*1) — prya

together with

A= Pz.’E[H'l] at t=T
where,

(

2 —_
R = Z5g(7),7-1)

2
W = Qg%g(fhﬂl—l)
4

.
Qi = Z9(F,T-1)

2  —
P = Zh(m)

provided, R; is non singular.

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

Remark 3.1: This result agrees with the bilinear quadratic case presented in [5]

where W; = 0 , B = R and %(mlol,o) =B+ 20T .

Standard computations and arguments show that the optimal control is given

7



by,

Theorem 3.1. The optimal control problem (3.1) and (2.1) has a suboptimal
solution given by a uniformly and absolutely convergent series (2.2) and (2.3)

whose terms are given by
ul = ~RyYWT + BT S}l - BBy, (3.15)
together with (2.5) and (2.8), where S is the solution of the Ricatti differential

equation

45+ SA+ATS - SBR7'BTS + Q1 =0

(3.16)
S=nB at t=T
and vy is the solution of the differential equation,
Lv+ {AT — SBR;'BT - WiR'BT}u; + §Fiyy = 0 (3.1

v =0 at t=T

where R;,W;,Q,, P, are defined in (3.14) and A, B, A; and @1 are defined below,

_of »
A= ==(a1%,0) (3.18)
_ g
B = 2-(a1,0) (3.19)
A= A- BR'WT (3.20)



Q1= Q- WiR;'WT (3.21)
and provided R; is non singular for all | > 1.

Proof. follows along the lines of the proof of theorem (3.2)[5].

4. Conclusion

In this paper we have extended our result [5] concerni‘ng the quadratic bilinear
optirﬁal control to the optimal control (;f nonlinear systems.The method used
is promising and simple to implement. It consists of solving a matrix Ricatti
differential equation and linear differential equation at each step. The method
is more systematic as compared to ad-hoc techniques presented for example in
[4]. We shall see in a futur paper how well this approach compares with existing

methods by providing some simulation results.
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